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Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct 
consequence of uncontrolled metabolic syndrome and is widespread in US population 
and worldwide. Despite of the heterogeneous and distinct features of DCM, the clinical 
relevance of DCM is now becoming established. DCM progresses to pathological cardiac 
remodeling with the higher risk of heart attack and subsequent heart failure in diabetic 
patients. In this review, we emphasize lipid substrate quality and the phenotypic, meta-
bolic, and biochemical stressors of DCM in the rodent and human pathophysiology. We 
discuss lipoxygenase signaling in the inflammatory pathway with multiple contributing 
and confounding factors leading to DCM. Additionally, emerging biochemical pathways 
are emphasized to make progress toward therapeutic advancement to treat DCM.
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iNTRODUCTiON

Cardiovascular disease (CVD) is the primary cause of death including substantial people suffering 
from obesity and type 2 diabetes. With an increased population of patients displaying metabolic 
syndrome, there are 17.3 million deaths per year, and this number is expected to increase to more 
than 23.6 million by 2030 (1, 2). Diabetes and obesity are primary metabolic triggers associated 
with imbalanced energy [fatty acids (FAs)] intake, which is an inherent part of the modern lifestyle. 
Obese people are often prone to or diagnosed with insulin resistance, pre-diabetes, impaired glucose 
tolerance, or type 2 diabetes. According to current statistics, nearly 29 million individuals in US have 
diabetes, and one in three adults has the pre-diabetic condition (3) and heart disease, and stroke is 
leading cause of disability, morbidity, and death among people with accelerated or uncontrolled type 
2 diabetes. CVD is associated with ~65% of deaths related to diabetes (4) and has an adverse effect on 
left ventricle size, geometry, and function leading to diabetic cardiomyopathy (DCM).

Diabetic cardiomyopathy is a complex pathological as well as adaptive condition characterized 
by dysfunctional effects on the left ventricle and is developed by a combination of several metabolic 
disorders including prediabetes, hyperglycemia, insulin resistance (in type 2 diabetes), hyperten-
sion, and obesity (5). There are multiple factors and mechanisms including aging that aggravate 
the pathology of DCM. However, in the current context of cardiomyopathy, DCM is defined by 
presence of abnormal myocardial diastolic or systolic function in the presence of diabetes without 
known hypertension or coronary artery disease (6). It has been categorized and presented in dif-
ferent manners as it includes features of left ventricular (LV) hypertrophy, myocardial fibrosis, and 
myocardial energy dysregulation with differential degrees of myocardial biochemical, mechanical, 
or structural dysfunction. Due to its multifactorial origin and distinct pathophysiology, there are 
some controversies regarding the existence or non-existence of DCM. Clinically, DCM lacks classi-
cal features of a cardiomyopathy such as ventricular dilation and meaningful systolic dysfunction. 
From metabolism perspective, DCM is a combination of molecular myocardial abnormalities 
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TaBle 1 | Metabolic dysregulations in diabetic cardiomyopathy.

Phenotypic parameters STZ Ove26 BB NOD KKay alloxan akita ob/ob db/db ZDF

Obesity − − − − + − + + + +
Diabetes ++ + + + − + + + + +
Hypertension − − − − + − − +/− − −

+, positive for metabolic pathology; ++, highly positive for metabolic pathology; −, negative for metabolic pathology.
STZ, streptozotocin; OVE26, beta-cell overexpression of calmodulin; BB, Biobreeding rat; NOD, non-obese diabetic; KKAy, yellow KK obese; ob/ob, leptin-deficient obese mice;  
db/db, type 2 diabetic Lepr deficient; ZF/ZDF, Zucker fatty/Zucker diabetic fatty rats.
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that lead to the development of myocardial dysfunction with  
co-existence of additional stressors such as obesity, hyperten-
sion, and coronary artery disease. In this review, we focus on the 
etiology that aggravates DCM in clinical and pre-clinical settings. 
We discuss pathophysiological and metabolic stressors that are 
prime contributors to DCM. In order to focus on the develop-
ment and advancement of therapeutic targets in the DCM field, 
we asked three questions: (1) Do we need to treat the original 
conditions or metabolic abnormalities of DCM in order to reduce 
or prevent DCM and heart failure? (2) Do we need to develop 
a pharmacological lifestyle or targeted aggressive metabolomics 
approach to identify the biomarker signatures to treat DCM? (3) 
Does a combination of (1) and (2) allow adequate control of the 
original metabolic abnormality with focused treatment of DCM, 
particularly in an aging population?

MeTaBOliC STReSSORS FOR THe 
DevelOPMeNT OF DCM

In order to understand the pathophysiology of DCM and its 
etiology related to metabolic remodeling in the heart, we have 
highlighted the major confounding causes below and sum-
marized experimental rodent models used to understand the 
dysregulation in the latter (Table  1), acknowledging that the 
scope of this review does not allow us to discuss them all.

Obesity
Obesity is characterized by a low-grade chronic inflammation 
phenotype with an excessive amount of body fat leading to heart 
disease, diabetes, and high blood pressure. More than 34.9%, almost 
78.6 million of US adults are obese (7). Obese and overweight 
individuals are prone to insulin resistance and diabetes, accom-
panied frequently by LV eccentric or concentric hypertrophy (8). 
Obesity is characterized on the basis of body mass index (BMI) 
and has been proved to be associated with ventricular hypertro-
phy (9, 10). The association of obesity with systolic dysfunction 
and with the prevalence of diabetes makes obesity a confounding 
factor of DCM. The predicted body weight along with the excess 
fat mass accounts for a rise in LV stroke volume and stroke works 
due to accelerated heart rate. The Framingham study suggested 
that a BMI >30 kg/m2 is positively correlated with increased LV 
wall thickness, LV internal dimension in diastole, and LV mass 
(11). A number of studies have shown that visceral adipose tissue 
has higher levels of pro-inflammatory cytokines when associ-
ated with LV diastolic dysfunction (12). Studies performed on 
the isolated hearts of genetic animal models of obesity, such as 

Zucker fatty (ZF) rats or leptin-deficient obese mice, showed a 
depression in cardiac function (13, 14). However, a few studies 
also reported the normal function of the heart in obese rodent 
models (15, 16). As type of fat, duration, and dose consumed 
impacts LV structure, function, and healing in the myocardial 
infarction (MI)-induced model, the translational prospects of fat 
intake and intervention studies should be used with caution. This 
is exemplified by studies from Brainard and colleagues suggesting 
that a high-fat diet in the form of lard or milk before and after 
MI is insufficient to induce cardiac dysfunction, despite adiposity 
and impaired glucose disposal (17). The study showed that the 
signs of cardiac dysfunction are not visible in commonly used 
mouse model [type 2 diabetic Lepr-deficient (db/db) mice or 
streptozotocin (STZ)-treated wild-type mice] when subjected 
to pressure overload. But the db/db model showed depressed 
cardiac function when subjected to ischemia–reperfusion injury 
in comparison with non-diabetic mice (17). By contrast, when 
the obesity is superimposed on aging that is the trigger to develop 
non-resolving inflammation post-MI. Recent study by Lopez 
et al. highlighted that supplementation of n-6 FAs in aged mice 
resulted in higher levels of 12-S-hydroxyeicosatetraenoic acids 
(HETE) leading to an acute inflammatory response, further 
delaying healing in MI (18). These results are similar to the find-
ings that showed higher levels of 12-HETE in individuals with 
stable angina (19). Studies of aging coupled with obesity have 
shown that the n-6 enriched fat diet creates lipid metabolites that 
are pro-inflammatory in nature (Figure 1). Aging mice fed a diet 
enriched in linoleic acid showed increased neutrophils in the gut 
and development of dysbiosis (20). Thus, these metabolites and 
their action in disease pathology such as pressure overload, post-
MI healing, and overall cardiac remodeling will provide novel 
tools for drug discovery and target identification.

Metabolic Syndrome, Diabetes, and insulin 
Resistance
Type 2 diabetes is defined as a metabolic syndrome with a 
combination of insulin resistance and defective insulin secretion 
by pancreatic β-cells. The Diabetes Control and Complications 
Trial/Epidemiology of Diabetes Interventions and Complications 
(DCCT/EDIC) study was important in showing the role of 
hyperglycemia in micro- and macro-vascular diabetes-mediated 
complications (21, 22). Impaired insulin sensitivity results from 
obesity and physical inactivity or genetic susceptibility (23, 24). 
Currently, 39 million Americans are diabetic, predisposing them 
to cardiovascular risk. Clinical data have demonstrated that diabe-
tes is an independent risk factor for cardiovascular complications. 

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


FigURe 1 | Overview of the metabolic and biochemical stressors in 
diabetic cardiomyopathy (DCM). Metabolic stressor such as obesity, 
diabetes, insulin resistance, aging, and circadian rhythms while the 
biochemical stressors 12-(S)-HETE, cholesterol, ceramide, lipoproteins, 
glucose trigger inflammation-mediated DCM.

TaBle 2 | Biochemical dysregulations in diabetic cardiomyopathy.

Functional and metabolic outcomes Type 1 diabetes Type 2 diabetes

STZ Ove26 BB NOD alloxan akita ob/ob db/db ZDF

Inflammation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Cardiac size = = = ↑ = ↓ ↑ ↑ ↑
Cardiac function ↓ ↓ ↓ ↓ ↓ ↓ ↑/↓ ↓ ↓
Cardiac efficiency ↓ = = ↓ ↓ = ↓ ↓ =
Mitochondrial energetics ↓ ↓ ↓ = ↓ ↓ ↓ ↓ =
Lipid storage ↑ = = ↑ = = ↑ ↑ ↑
Fatty acid oxidation ↑ = = ↑ = ↑ ↑ ↑ ↑
Glucose oxidation ↓ = = = = ↓ ↓ ↓ ↓

Up and down arrows indicate increase and decrease, respectively; =, indicates no change.
OVE26, beta-cell overexpression of calmodulin; NOD, non-obese diabetic; STZ, streptozotocin; ZF/ZDF, Zucker fatty/Zucker diabetic fatty rats.

3

Kain and Halade Metabolic Remodeling in DCM

Frontiers in Cardiovascular Medicine | www.frontiersin.org May 2017 | Volume 4 | Article 31

In both men and women, diabetes has been observed to be one 
of the primary causes of DCM and subsequent heart failure 
over the last three decades (5, 25). The development of diabetes 
with LV dysfunction was clinically evident 20 years earlier (26). 
Many clinical studies have shown that more than 60% of diabetic 
patients compared with well controlled subjects are diagnosed 
with early and mild ventricular diastolic dysfunction (27, 28). 
Studies have confirmed that DCM is not an unusual condition but 
caused by low-grade non-resolving inflammation, uncontrolled 
hyperglycemia (glucotoxicity), or hyperlipidemia (lipotoxicity). 
These factors mainly contribute to metabolic syndrome, leading 
to cardiac dysfunction and increasing the risk of MI or recurrent 
MI (29). Glucotoxicity refers to uncontrolled hyperglycemia and 
subsequent metabolic changes triggered by excess sugar or car-
bohydrate (30). Lipotoxicity is more complex and diverse because 

of the essential nature of FAs, but excessive intake in aging may 
lead to bone marrow adiposity and non-resolving inflammation 
post-MI (31–35). The consequences of glucotoxicity or lipotoxic-
ity considering the metabolic health and physical inactivity of a 
diverse human population are key challenges in the prevention 
and treatment of DCM (36). The Framingham Heart Study 
showed that the frequency of heart failure is doubled in diabetic 
men and quintupled in diabetic women in comparison with 
age-matched control subjects. Clinical studies have shown that 
diabetic subjects have a high risk of cardiac failure accompanied 
with systolic dysfunction and LV hypertrophy (37, 38). Number 
of surveys and studies have shown a higher prevalence of diastolic 
dysfunction in diabetic patients (39, 40). Rodent and clinical 
studies in diabetes setting have shown functional and structural 
alterations in myocardium tissue. Studies performed in type 1 
diabetic model, i.e., STZ-induced diabetic mouse, and rodents 
with type 2 diabetes, i.e., ZF rats or db/db mice, have shown dias-
tolic dysfunction (Table 2) (13, 41). In fat and fructose-feeding 
studies, serum uric acid levels led to an increase in cardiac tissue 
xanthine oxidase activity, which was temporally related to an 
increase in body weight, fat mass, and insulin resistance without 
changes in blood pressure, when these mice were subjected to 
excess fat (46%) and fructose (17.5%) for 16 weeks. The high-fat 
and fructose diet led to cardiomyocyte hypertrophy, oxidative 
stress, interstitial fibrosis with impaired diastolic relaxation, and 
macrophage polarization toward a pro-inflammatory phenotype 
(42). Recent studies in many models have shown increases 
in levels of the 12/15-lipoxygenase (LOX) pro-inflammatory 
intermediate metabolite 12-HETE (43, 44). Insulin resistance is 
the prime risk factor to initiate the defects in insulin signaling 
pathways and glucose transport to cells. The resistance of the 
body toward insulin results in increased production of insulin 
in the pancreas leading to hyperinsulinemia (45). An association 
between insulin resistance and heart failure was noted a century 
ago and later traced to metabolic alteration (46).

Studies have shown that insulin resistance is a common fac-
tor in patients with non-ischemic cardiomyopathy compared 
with control populations, which exclude pre-existing diabetes 
patients (47). A study of 1,187 Swedish people showed that heart 
failure could be anticipated in the patients with insulin resist-
ance without any prior heart failure history, excluding all other 
factors (48). Lack of insulin response can lead to inactivation of 
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cellular pathways such as AKT inactivation, reduced nitric oxide  
production, and increased apoptosis with alterations in myocar-
dial structure (49–51). Insulin resistance is now considered to be 
a cardiometabolic disorder predisposing people to both CVD and 
diabetes. Metabolic risk factors in patients with insulin resistance 
are atherogenic dyslipidemia, hypertension, glucose intolerance, 
and a prothrombotic state (52). Further, McGavock et  al., by 
using proton magnetic resonance spectroscopy, have shown 
that triglyceride accumulation occurs in human myocardium in 
association with diabetes mellitus and insulin resistance, much 
earlier than the symptoms of heart failure develop (53). Thus, the 
accumulation of fat and abundance of FAs is associated with an 
impaired cardiac efficiency and lipotoxicity.

Hypertension
Elevated blood pressure exerted on the vessel wall is commonly 
referred to as hypertension. Hypertension is a well-known risk 
factor for dilated hypertrophy, heart failure, and stroke. About 
50% of ischemic strokes are caused by hypertension with a high-
risk factor for hemorrhagic stroke. The risk ratio of MI doubles 
when the diastolic pressure is 94 mm Hg and systolic pressure 
is 140 mm Hg (54). Untreated hypertension is an add-on factor 
for DCM, as it leads to the rapid advancement of mild subclini-
cal DCM to the clinically visible diastolic dysfunction and then 
later systolic dysfunction (55). Studies have shown that the 
hypertensive-diabetic rats have greatest relative cardiac hyper-
trophy and increased interstitial fibrosis compared with only 
diabetic or hypertensive animals. The combination of hyperten-
sion and diabetes mellitus led to myocardial degeneration similar 
as observed in human patients (56). Increased blood pressure is 
linked with sodium intake, hyperlipidemia, insulin resistance, 
impaired glucose tolerance, obesity, pre-diabetes, and diabetes 
and can lead to pulmonary edema and heart attack. The progres-
sion of DCM leads to activation of the renin-angiotensin system, 
which leads to an increase in oxidative damage with cell apoptosis 
and necrosis in the heart thereby increasing interstitial fibrosis 
(57). The potent vasoconstrictor endothelin-1 (ET-1) isolated 
from endothelial cells has inotropic, chemotactic, and mitogenic 
properties, activating the renin-angiotensin-aldosterone system 
to increase blood pressure. Many in vitro studies have highlighted 
that high glucose activates ET-1, which mediates cardiomyocyte 
hypertrophy via mitogen-activated protein kinase (MAPK) 
activation (58). Genetic deletion or pharmacological inhibition of 
ET-1 results in salt-sensitive hypertension (59). Depending upon 
its presence in either medulla or cortex, the renal ET-1 has differ-
ent effects on blood pressure. The upregulation of cortical ET-1 
expression has been well demonstrated in various hypertensive 
models via an increase in renal vascular resistance and a reduc-
tion in glomerular filtration rate (60, 61). Further, activation of 
the glomerular ETA receptor leads to hypertension by enhancing 
production of monocyte chemoattractant protein-1 and other 
pro-inflammatory factors, sequestering macrophages and lym-
phocytes, thereby increasing sodium reabsorption (62). Clinically, 
it has been observed that mortality of patients suffering from MI 
is greater in hypertensive patients, as showed in the PROCAM 
study (63). Hypertension, when it coexists with diabetes, doubles 
the risk of cardiac failure. Other trials, 4S, CARE, and LIPID, 

which included patients with MI and angina pectoris, showed a 
23–45% incidence of hypertension (64, 65, 166). Recent studies 
suggest the involvement of 12/15-LOX in the murine models of 
experimental hypertension by altering macrophage functions 
(66). Patients with essential hypertension were observed to have 
higher levels of 12-HETE and 12/15-LOX protein compared 
with control subjects (67). A randomized, double-blinded, and 
controlled clinical trial with patients having peripheral arterial 
disease (75% hypertensive) showed that patients who consumed 
a diet including 30 g of milled flaxseed (n-3-fatty acid-α-linolenic 
acid) for 6  months displayed significant reductions in systolic 
(−10 mm Hg) and diastolic (−7 mm Hg) blood pressure (68). 
The plasma of FlaxPAD (Flaxseed for Peripheral Arterial Disease) 
patients exhibited significant decreases in 5,6-, 8,9-, 11,12-, and 
14,15-dihydroxyeicosatrienoic acid and 9,10- and 12,13-dihy-
droxyoctadecenoic acid versus controls. The study showed 
that inhibition of soluble epoxide hydrolase contributed to the 
antihypertensive effects and could be one of the pharmacological 
targets (68).

BiOCHeMiCal STReSSORS FOR THe 
DevelOPMeNT OF DCM

This review further discusses biochemical mechanisms such 
inflammation, 12/15-LOX signaling, FA oxidation, and lipotoxic-
ity that are directed toward increasing our understanding of novel 
ways for the prevention and treatment of cardiomyopathy.

lOX Signaling and inflammation
Inflammation is an essential biological process to restore normal 
tissue homeostasis after injury. The state of inflammation is 
mediated by upregulation of multiple signaling pathways, such 
as NF-κB, c-Jun NH2-terminal kinase, or p38-MAPK associated 
with insulin resistance, which have profound roles in diabetic 
complications (69, 70). Thus, overactive inflammation is unifying 
component of many chronic diseases eventually leading to heart 
failure. Since in early 1950s, several reports validates that chronic 
inflammation is key hallmark signature in congestive heart failure 
pathology. Levine et al., in 1990, documented a positive correla-
tion between TNF-α and chronic heart failure (71). Direct cor-
relation between many chemokines/cytokines and heart failure 
suggests large oxidative products, which are key regulators of the 
inflammatory process, exerting both pro- and anti-inflammatory 
effects (72, 73). The lipid-metabolizing enzymes, including 
different members of the LOX family, are major players in the 
pathogenesis of heart failure. LOXs are enzymes that metabolize 
polyunsaturated FAs (74). The differential prostaglandins are pro-
duced by the cyclooxygenase pathway and leukotrienes through 
the LOX pathway, with availability of arachidonic acid substrate 
leading to overactive inflammation during the healing process in 
heart failure pathology. Arachidonic acid serves as the substrate 
for LOX pathway that facilitates interaction with 5-, 12-, and 
15-LOX. Within the family of LOXs, 12- and 15-LOX (referred 
as together 12/15-LOX) forms a subgroup of phylogenetically 
closely related enzymes that are highly, but not exclusively, 
expressed in distinct monocyte-derived cells (74). 12/15-LOX is 
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often referred to as “leukocyte-type” 12-LOX, and has orthologs 
in other species such as human 15-LOX and rabbit 15-LOX-1 (75). 
Murine and human 12/15-LOX differ in their enzymatic activity 
and in their position during arachidonic acid oxygenation result-
ing in the predominant generation of 12-(S)-HETE by murine 
12/15-LOX and 15-HETE by human 12/15-LOX (15-LOX-1), 
respectively (76). The pro-inflammatory role of 12/15-LOX has 
been evidenced in failing hearts (44, 77). Wen and colleagues 
demonstrated that 12/15-LOX products, i.e., 12(S)-HpETE 
(12(S)-hydroperoxyeicosatetraenoic acid) and 12(S)-HETE, 
are pro-inflammatory in nature and stimulate TNF-α and IL-6 
expression in macrophages as a particular effect of the 12/15-LOX 
products. A recent report by Suzuki et al. demonstrated that the 
TNF-α and collagen markers were elevated with increases in 
12/15-LOX expression in the STZ-induced diabetic heart (44). 
By contrast, 12/15-LOX knockout mice showed suppressed levels 
of TNF-α and collagen markers with improved cardiac function. 
These authors also demonstrated that administration of a 12/15-
LOX inhibitor (CDC) suppressed the TNF-α levels associated 
with high blood glucose levels in vitro (44).

Fa Oxidation
The beta-oxidation of FAs is the primary mechanism for the 
heart to produce energy. Under resting conditions, FAs cover 
more than 70% of the cardiac energy needs by meeting this 
demand through the tricarboxylic acid cycle and electron 
transport chain. The excess of FAs is stored in adipose tissue. 
During obesity and diabetes, the adipose tissue increases in size 
that overspills free FAs leading to imbalance between energy 
demand and supply (78). An imbalance of FA oxidation or 
glucose oxidation leads to changes in cardiac mitochondrial 
metabolic energy that leads to ventricular dysfunction and to 
a decrease in cardiac performance. The impaired FA oxidation 
or increase in FA uptake in diabetes leads to an intramyocardial 
lipid overload (79). Myocardial abundance triggers defects in 
insulin signaling and activation of peroxisome proliferator-
activated receptor-α (PPAR-α)/PGC-1 (80). The changes in FA 
oxidation lead to lipotoxicity and ceramide accumulation in 
cardiac tissue. Wu et  al. have demonstrated that the deletion 
of the gene encoding aryl hydrocarbon nuclear translocator 
(ARNT) in the liver/pancreas leads to a diabetic phenotype 
with twofold increase in FA oxidation. The deletion of ARNT 
leads to an increase in the expression of PPAR-α and its target 
genes (81). FA oxidation is a major contributor of carbon 
substrates to ATP generation in the adult heart. However, the 
heart has a unique ability of metabolic flexibility and utilizes 
glucose, lactate, ketones, and amino acids (82). The heart has 
the capacity to selectively use substrate based on availability 
and pathophysiological state. It is well documented that glucose 
and lactate are preferred by the fetal heart; however, lipids 
are the predominant fuel in the adult heart. Animal models 
of cardiac hypertrophy are observed to switch their substrate 
metabolism, recapitulating the “fetal metabolic profile” utiliz-
ing carbohydrates as primary energy sources (83, 84). Cardiac 
hypertrophy models show the consistent appearance of fetal 
gene expression, which is considered prime trigger in the 
pathological remodeling of the heart.

lipotoxicity
Altered FA utilization and intramyocardial lipid accumulation 
are key major factors in the pathogenesis of DCM. The meta-
bolic preference of the diabetic heart toward glucose leads to an 
increase in FAs, which leads to lipid accumulation resulting in 
lipotoxicity. Clinical studies suggest that congenital lipodystro-
phy, a rare disease causing accumulation of lipids in non-adipose 
tissue, is one of the causes of premature cardiomyopathy (85). In 
diabetic and obese animal models, accumulation of triglycerides 
in cardiomyocytes is often associated with impaired contractile 
function (86). Further, rat models of obesity have shown that 
defects in the leptin receptor result in an excess of fat overload 
in non-adipose tissues resulting in lipotoxicity (87). A study in 
obese Zucker rats have shown that PPAR-α-regulated genes play 
a crucial role in FA oxidation but become impaired in the failing 
heart, suggesting that metabolic dysregulation due to triglyceride 
overload and gene expression alteration leads to contractile 
dysfunction. It has also been reported that intake of unsaturated 
FAs increases low-density lipoprotein (LDL), triacylglycerols, 
and Lp(a) lipoprotein, and decreases high-density lipoprotein 
with a reduction in LDL cholesterol particle size, which leads 
to alteration in serum lipid profiles, thereby doubling the risk 
of CVD (88). Further, the consumption of FAs increases inflam-
mation altering the prostaglandin balance. This impairment in 
the activity of desaturase (the enzyme converting linoleic acid to 
arachidonic acid and other n-6 polyunsaturated FAs) confers a 
high-risk of CVD (89–91).

glucotoxicity
Dysregulation of myocardium FAs use for energy source results 
into glucotoxicity in hyperglycemia setting developing progres-
sive myocardial fibrosis due to glycosylation, cross-linking, and 
accumulation of extracellular matrix proteins (92). There is a 
reduction in glucose transporter expression, which inhibits 
glucose translocation from plasma membrane to the cell in 
DCM. During ischemia, PPAR’s inhibits insulin’s action that 
reduces the rates of glycolysis and pyruvate oxidation resulting 
in shutdown of glucose metabolism to the hexosamine biosyn-
thesis pathway (93–95). The inappropriate hexosamine bio-
synthesis metabolism leads to the production of reactive oxygen  
species (ROS) and the increased formation of intracellular 
advanced glycosylation end-products (AGEs). AGEs and hex-
osamine biosynthesis impacts the sarco-endoplasmic reticulum 
Ca2+-ATPase and the Ca2+ release channel, ryanodine receptor 2, 
leading to abnormal cardiac relaxation and contractility (96, 97).  
Wang et al. showed a novel role of active heparanase in modu-
lating cardiac metabolism via cross talk between endothelial 
cell and cardiomyocyte to increase lipoprotein lipase secretion 
after hyperglycemia (98). The study showed that high glucose 
is a common stimulus for latent heparanase secretion from 
the endothelial cells and promotes its uptake into the car-
diomyocyte (99). Presence of latent form of heparanase in the 
cardiomyocyte leads to the significant shift in the expression of 
apoptosis-targeted genes, providing an acute cardioprotective 
effect indicating diversified roles of heparanase in DCM and 
heart failure pathology (99).
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geNDeR SPeCiFiCiTY, CiRCaDiaN 
RHYTHM, aND agiNg MODUlaTORS  
iN DCM

Although gender-specific studies have shown that females tend to 
develop cardiac complications 10–15 years later than men (100), it 
has also been proven that women with diabetes and hypertension 
have a greater risk of developing CVD (101, 102). Clinical reports 
have also shown that if CVD presents at a younger age in women, it 
is more detrimental (103). The female heart tolerates stress, such as 
ischemic insults, better than the male heart. In diabetes, the estro-
gen in females may interact with certain risk factors, which may be 
deleterious to overall cardiac function. A study published by Peters 
and colleagues showed a sex-specific risk of stroke conferred by 
diabetes. Meta-analysis conducted for 64 cohorts including 775,385 
individuals who did not show any signs of cardiac problems at 
baseline determined that 12,539 individuals experienced fatal or 
non-fatal stroke events (104). The circadian clock allows the body 
to adjust metabolic cycles according to the shift in day and night. 
These circadian oscillations impact physiological parameters of 
a cardiovascular function, thermoregulation, lipid, and glucose 
metabolism. Studies have shown that circadian misalignment 
accelerates diabetes due to disruption of glucose-stimulated insu-
lin secretion and beta-cell loss (105). Two transcription factors, 
CLOCK and BMAL1, transcriptionally control the circadian clock 
by binding to E-boxes of target genes upon heterodimerization 
(106, 107). In the heart, BMAL1 regulates substrate utilization, 
FA and glucose metabolism, and the PI3K/AKT/GSK3β signaling 
axis. The cardiomyocyte-specific knockout of BMAL1 leads to 
age-onset cardiomyopathy, reducing lifespan with impaired FA 
and glucose metabolism (108). Our group has shown that genetic 
disruption of BMAL1 results in diastolic dysfunction exacerbating 
extracellular matrix remodeling, with the increase in expression of 
a pro-inflammatory gene profile signifying early cardiac aging in 
mice (109). Aging, diabetes, and hypertension have similar effects 
on heart dysfunction, resulting in LV hypertrophy and stiffness. 
Aging leads to an increase in cardiovascular stiffness contributing 
to the development of fibrosis. Fibrosis increases collagen cross-
linking due to the formation of AGEs (110). Rodent studies have 
shown that at 16 weeks of age, structural and functional changes 
are observed in both the heart and kidney, in the Zucker diabetic 
fatty model of type 2 diabetes. Aging is widely impacted by the 
diverse intake of dietary ingredients (111). Both insulin resistance 
and hyperglycemia can occur with an increase in n-6 FAs, which 
further magnifies the inflammatory response in heart failure in 
aging (112). Clinically, with advancing age, the risk to people 
with the normal systolic function of having heart failure is 50%. 
However, diastolic dysfunction occurrence is higher in women 
with hypertensive heart disease and diabetes.

eMeRgiNg MOleCUlaR PaTHwaYS  
FOR DCM

Diabetic cardiomyopathy leads to structural and functional 
changes in myocardium by activation of signaling pathways, i.e., 
altered calcium signaling, increased ROS, ceramides, hexosamines, 

advanced glycation end-products, inflammatory signaling, and 
changes in many transcriptional regulators along with 12/15-LOX, 
which contribute toward the pathogenesis as shown in Figure  2 
(113). Being a multifactorial disease, the crosstalk between immune 
cell dysregulation, cardiomyocytes, endothelial cells, and fibroblasts 
leads to the impairment of several signaling pathways leading to the 
etiology of DCM discussed above. The MAPK family is essential 
for cardiac survival, and MAPK signaling impairment has been 
well studied in diabetic tissue (114, 115). STZ-induced diabetic rats 
have shown upregulated p-38-MAPK activity (116). The diabetic 
myocardium mediates apoptosis via ASK1, a MAPKKK signaling 
molecule (117). FoxO (forkhead box-containing protein, O subfam-
ily-3, -4) proteins are major targets for the maintenance of cardiac 
function and stress responsiveness by regulating cardiac growth, 
insulin signaling, and glucose metabolism in the heart (118–120). 
Also, several pathways including mammalian target of rapamycin, 
microRNAs, Pim-1 (proviral integration site for moloney murine 
leukemia virus-1), endoplasmic reticulum stress, and unfolded 
protein responses are dysregulated in DCM (121).

DevelOPMeNT OF NOvel TaRgeTS  
FOR DCM

Being a multifactorial disease; currently, there is no specific 
therapy for DCM. Table 3 describes established rodent models 
to study DCM for novel treatment. Since insulin resistance is 
one of the leading causes of the pathogenesis of cardiomyopa-
thy, insulin signaling is one of the targets. Anti-diabetic drugs, 
such as metformin, act on the metabolic target AMPK and may 
confer cardiovascular benefit (122, 123). Similarly, maintaining 
a proper diet and exercise can reduce the risk of diabetes and 
CVDs (124). Compounds modulating free FA metabolisms, such 
as perhexiline, trimetazidine, ranolazine, and amiodarone, have 
been shown to reduce lipotoxicity (125). The resveratrol-activated 
NAD-dependent protein deacetylase Sirt1 is a potent target as 
it plays a role in lowering blood glucose and increasing insulin 
sensitivity (126). Cardiac excitation–contraction coupling and 
insulin signaling dysregulation can also be improved by cell-
based and genetic ablation therapy, which are among the robust 
strategies for treating CVDs (127). With the emergence of potent 
pro-inflammatory and anti-inflammatory roles of arachidonic 
acid metabolites such as 20-HETE, 12-HETE, and soluble epoxide 
hydrolase in diabetes and CVD (77, 128, 129), lipid mediators and 
their enzymes are among the potent future therapeutic targets to 
protect against the initiation and progression of DCM. The under-
lying concept “targeted or aggressive metabolomic” approach 
used by West et al. to the targeted metabolic profiling of cardiac 
tissue in dilative cardiomyopathy can be one the promising tool 
to delineate the DCM in future (130). With the rapid evolvement 
of the targeted metabolomics that aims to measure the endog-
enous metabolites in a cell or body fluid providing the functional 
readout. All the changes in the functional reads outs, such as 
shifts in the homeostasis of key lipids, carbohydrates, or amino 
acids, are associated with genetic variants. The first genome-wide 
association study with metabolomics (KORA study) using the 
quantitative measurement of 363 metabolites in serum of 284 
male participants (131). The study found an association of single 
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FigURe 2 | integration of metabolic and fatty acids (Fas) metabolizing enzymes pathway in mitochondrial dysregulation, fibrotic hypertrophy,  
and chronic inflammation.

TaBle 3 | established rodent diabetic cardiomyopathy models for the development of novel therapy.

S. No Model Metabolic, biochemical, and functional outcomes Reference

1 Streptozotocin Lipotoxicity, hyperglycemia, diastolic and systolic dysfunction, hypertrophy, 
inflammation, fibrosis, glucose and fatty acid (FA) oxidation, mitochondrial 
dysfunction, oxidative stress, Ca2+ impairment

(32, 33, 35, 134–138)

2 Beta-cell overexpression of calmodulin Reduced insulin levels, hyperglycemia and hyperlipidemia, impaired cardiac 
function, hypertrophy, inflammation apoptosis, FA oxidation, mitochondrial 
dysfunction, Ca2+ impairment

(98, 139–144)

3 Non-obese diabetic Autoimmune diabetes, hyperglycemia, high cholesterol, diastolic and 
systolic dysfunction, steatosis, immune dysregulation

(145–151)

4 Leptin-deficient obese mice Leptin deficiency, appetite suppression hyperglycemia and hyperlipidemia, 
diastolic dysfunction, hypertrophy, inflammation steatosis, apoptosis, 
decreased glucose oxidation and increased FA oxidation, mitochondrial 
dysfunction, Ca2+ impairment

(15, 41, 93, 135, 152–159)

5 Type 2 diabetic Lepr deficient Hyperglycemia and hyperlipidemia, diastolic and systolic dysfunction, 
hypertrophy, inflammation steatosis, apoptosis, decreased glucose 
oxidation and increased FA oxidation, mitochondrial dysfunction, oxidative 
stress, Ca2+ impairment

(13, 41, 147, 155, 158, 160–165)
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nucleotide polymorphisms with considerable differences in the 
metabolic homeostasis. The study found four genetic variants in 
genes coding for enzymes (FADS1, LIPC, SCAD, and MCAD) 
where the corresponding metabolic phenotype (metabolite) 
clearly matches the biochemical pathways in which these enzymes 
are active. The study clearly links genetic polymorphisms induce 
changes in the metabolic make-up of the human population 
opening a whole new field for personalized health care based 
on a combination of genotyping and metabolic characterization. 
The adaptation of sedentary lifestyle and eating habits has led to 
the increase in DCM about 5% of the global population (132). A 
blinded randomized personally tailored dietary intervention with 
consistent alterations to gut microbiota resulted in significantly 
lower postprandial responses (133). Accurate personal dietary 
recommendation using personal and microbiome features will be 
valuable in lowering the risk of DCM and associated inflamma-
tory, metabolic, and neoplastic multifactorial disorders and can 
be effective clinical decision-making scheme.

FUTURe PeRSPeCTiveS 

Application of novel imaging technology and the use of bio-
chemical markers (protein, enzymes, and metabolites) in clinical 
and pre-clinical models indicate that metabolic and biochemical 
stressors promote heart dysfunction in the diabetes setting. With 
the advancement of current research programs in pre-clinical 

and clinical models, it is possible to determine whether the 
DCM is of a dilated, hypertrophy, non-compaction or restrictive 
type, or of a combination of these. Whether the distinct target 
is at the enzymatic (LOX), mitochondria centric, ion-channel 
related, or defective chemokine-cytokine signaling level. Thus, 
additional studies with the major emphasis on metabolic and 
biochemical stressors in the advancement of heart function and 
dysfunction will determine future treatment(s). Despite the high 
mortality in diabetes patients due to heart failure, a number of 
questions regarding what triggers DCM or amplifies progressive 
cardiomyopathy remain unclear; therefore, urgent research on 
novel therapies is needed to meet the demand of personalized 
and precise medicine in the twenty-first century (165).
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