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Abstract

Highly methylated Long Interspersed Nucleotide Elements 1 (LINE-1) constitute approxi-

mately 20% of the human genome, thus serving as a surrogate marker of global genomic

DNA methylation. To date, there is still lacking a consensus about the precise location in

LINE-1 promoter and its methylation threshold value, making challenging the use of LINE-1

methylation as a diagnostic, prognostic markers in cancer. This study reports on a technical

standardization of bisulfite-based DNA methylation analysis, which ensures the complete

bisulfite conversion of repeated LINE-1 sequences, thus allowing accurate LINE-1 methyla-

tion value. In addition, the study also indicated the precise location in LINE-1 promoter of

which significant variance in methylation level makes LINE-1 methylation as a potential

diagnostic biomarker for lung cancer. A serial concentration of 5-50-500 ng of DNA from 275

formalin-fixed paraffin-embedded lung tissues were converted by bisulfite; methylation level

of two local regions (at nucleotide position 300–368 as LINE-1.1 and 368–460 as LINE-1.2)

in LINE-1 promoter was measured by real time PCR. The use of 5 ng of genomic DNA but

no more allowed to detect LINE-1 hypomethylation in lung cancer tissue (14.34% versus

16.69% in non-cancerous lung diseases for LINE-1.1, p < 0.0001, and 30.28% versus

32.35% for LINE-1.2, p < 0.05). Our study thus highlighted the optimal and primordial con-

centration less than 5 ng of genomic DNA guarantees the complete LINE-1 bisulfite conver-

sion, and significant variance in methylation level of the LINE-1 sequence position from 300

to 368 allowed to discriminate lung cancer from non-cancer samples.

Introduction

Alteration of CpG methylation status at either genome-wide or gene-specific level has been

confirmed as powerful biomarkers for diagnosis, prognosis, and prediction of diseases [1].

Until now, bisulfite treatment, which specifically converts unmethylated cytosine but not

methylated ones to uracil residues [2] is exclusively used in many methods and commercial

kits for DNA methylation analysis [3]. For instance, profiling methylation level using bisulfite
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converted DNA has been performed through PCR-based amplification (MethyLight, Methyla-

tion-Sensitive High-Resolution Melting), post-PCR sequencing (conventional Sanger sequenc-

ing, pyrosequencing, mass spectrometry-based bisulfite sequencing, next generation

sequencing) and methylation arrays [3].

The technical weakness using bisulfite conversion is the incomplete conversion of

unmethylated cytosines leading to overestimation of methylation level [4, 5]. In addition, inap-

propriate conversion of 5-methylcytosine (5mC) to thymine could occur when cytosine con-

version achieved complete, thus leading to underestimation of methylation level [6].

Therefore, different commercial bisulfite conversion kits applied to various DNA sources have

recently been comprehensively evaluated for their bisulfite conversion efficiency [7–9]. In

most of these performance evaluations, only one concentration of different target regions that

are single copy sequences were chosen as reference thus limiting the in-depth performance

assessment, particularly if one wanted to analyze repeated sequences. These latter constitute

about 50% of the human genome [10], and their methylation profile can be used to estimate

global DNA methylation for biomarker determination [11, 12]. Indeed, 2 µg of DNA input as

usually recommended by most of manufacturers for the methylation analysis of single locus,

which only have 2 copies per diploid genome, may not be adapted for repeated sequences,

which can have up to 105 copies per genome [13]. Moreover, besides target concentrations, it

has been reported that sequence complexity, GC content, secondary structure elements and

even a given cytosine in a particular sequence can interfere with bisulfite conversion efficiency

[6]. In this delicate technical context, there are still lacking milestones guiding the determina-

tion of an optimized genomic DNA input that guarantees complete bisulfite conversion of

repeated targets, which is critical to their correct methylation measurement. In addition, not

all CpG sites within a single promoter region are functionally equivalent in transcriptional reg-

ulation; thus, the precise location of clinically relevant methylated CpGs plays an important

role in the development of a DNA methylation-based biomarker [14, 15].

The repetitive DNA retrotransposon Long Interspersed Nucleotide Elements 1 (LINE-1)
consists of around 5x105 copies in a genome with 3000–4000 copies in full length [13]. The

first 460 nucleotide base pairs of its 5’-UTR is particularly important region for the effective

transcription, and contains an internal promoter including 33 CpG sites, which are heavily

methylated in normal somatic cells [16, 17]. Because of its high frequency in the genome

(approximately 20%), the LINE-1 methylation status could reflect the global DNA methylation

level of the genome [12]. Methylation heavily occurs at the LINE-1 promoter in normal tissues,

a mechanism whereby LINE-1 transcriptional expression and transposition are inhibited, con-

sequently contributing to genome stability [16]. Loss of LINE-1 methylation promotes chro-

mosomal instabilities and tumor development, which is consistently observed in age related

diseases and cancers [10]. LINE-1 methylation status has thus been considered as a significant

diagnostic, prognostic and predictive factor in various types of cancer [18–20]. In most of pre-

vious studies, LINE-1 methylation was quantified thanks to the bisulfite conversion of 100 ng

to 2 µg of genomic DNA [1, 21]; however, the methylation values varied broadly among stud-

ies, even on the same cancer type [22, 23]. Moreover, most studies were based on only a few

specific CpG sites while methylation occurred differently at individual sites [24]. This lack of

consensus about the precise location in LINE-1 promoter and its methylation threshold value

may be a part of the reasons delaying the translation of LINE-1 methylation-based biomarker

into available clinical test [25].

We have previously validated an Internal Control (IC) system that allows to evaluate the

bisulfite conversion efficiency of unmethylated cytosines by quantitative real time PCR [26].

In the present study, based on this IC system, we investigated the bisulfite conversion effi-

ciency of the repeated LINE-1 sequences. We showed that an amount of 5 ng, instead of 50 ng
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or 500 ng of DNA, is appropriate to achieve complete bisulfite conversion of the LINE-1 target,

avoiding over-estimation of LINE-1 methylation level measured by real time PCR. Using 5 ng

of DNA extracted from 275 formalin-fixed, paraffin-embedded (FFPE) tissues, we further

showed that two regions within the first 460 base pairs portion of LINE-1 5’-UTR was signifi-

cantly hypomethylated in lung cancer as compared to non-cancerous lung diseases, and their

hypomethylation levels were different from each other. There was no significant association of

LINE-1 methylation level with cancer stage.

Material and methods

Sample collection, genomic DNA isolation and bisulfite conversion

FFPE tissue samples were collected from 171 lung cancer patients and 104 patients suffering

from non-cancerous pulmonary diseases (whose classification was examined by pathologists)

at the 175 Hospital (Ho Chi Minh City) during 2018–2020. Informed consent was obtained

from healthy participants and patients in written form and the study was approved by the Eth-

ics Committee of Vietnam Academy of Science and Technology (03-2020/NCHG-HDDD).

Genomic DNAs were extracted from FFPE lung tissues using the QIAamp DNA FFPE Tissue

Kit (Qiagen). After DNA quantification using the NanoDrop2000 –Invitrogen device (S1

Table), serial concentrations ranging from 5 ng, 50 ng and 500 ng of genomic DNAs were sub-

jected to bisulfite conversion using the EZ DNA Methylation-Gold kit (Zymo Research). Bisul-

fite treated DNAs from 50 ng and 500 ng were diluted 500–1000 times before use for real time

PCR. One µl of converted DNA was used as the template in 20 µl reactions.

Primer design

Primer sets for methylation specific PCR method were designed for measuring methylation

level of two regions within the 460 bp portion of LINE-1 50 UTR. The first region is located

from 300 bp to 368 bp (named LINE-1.1) and the second from 368 bp to 460 bp (named LINE-
1.2). Specific primers that are complementary to the sense strand of the bisulfite converted

LINE-1 were designed using the Methyl Primer Express Software v1.0. The methylation-

dependent-specific PCR (MSP) primers used for profiling LINE-1 methylation or unmethyla-

tion were derived from the CpGs-containing sequence to ensure their specific annealing to the

bisulfite treated target. The methylation-independent-specific PCR (MIP) primers used for

quantifying bisulfite converted LINE-1 were designed from CpGs free region. Primer

sequences and their positions on the LINE-1 promoter (X58075), amplicon lengths and qPCR

conditions are shown in S1 Fig and S2 Table.

Quantitative real time PCR assay

In order to verify primer specificity, real time PCR reactions were performed on (1) bisulfite

treated; (2) non-treated DNA, and (3) a mixture of the linearized recombinant plasmids pRef-

LINE (containing bisulfite converted LINE-1 sequence), pMe-LINE (containing methylated

LINE-1 sequence) and pUn-LINE (containing unmethylated LINE-1 sequence). LINE-1 meth-

ylation status was quantified by real time PCR carried out in 20 µl per reaction using one µl of

bisulfite converted DNA as template and SsoAdvanced Universal SYBR Green Supermix

(Biorad). Real time PCR assays were duplexed for each of the 3 reactions: (1) using MIP prim-

ers to quantify bisulfite converted LINE-1; (2) and (3) using MSP primers to quantify methyl-

ated LINE-1 and unmethylated LINE-1, respectively. Water with no DNA template was

included in each PCR reaction as a control for contamination. All qPCR reactions were per-

formed using the 7500 Real time PCR instrument (Applied Biosystems, CA).
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Methylation calculation

Real time PCR used the primers specific to methylated-CpG and unmethylated-CpG in LINE-1.1
and LINE1.2 regions were designed as methylation and unmethylation reactions (S2 Table). Also,

qPCR used the reference primer pair which is not dependent on methylation status was designed

as reference reaction. Three adequate formulas: (1) 100 × methylated reaction/(unmethylated

reaction + methylated reaction) [27], (2) 100 x (methylated reaction/reference reaction) [28], and

(3) the classical ΔΔCT approach using a calibrator reference [29, 30], were chosen to calculate

methylation level of the LINE-1.1, and the formula (3) only used to calculate methylation level of

the LINE-1.2. The percentage of methylation was defined as the ratio between methylated mole-

cules and the sum of methylated and unmethylated molecules or the reference molecules [27],

which were calculated based on standard curve performed on serial dilutions from 106 to 10 cop-

ies of the linearized recombinant plasmid pMe-LINE, pUn-LINE and pRef-LINE, respectively.

Three reactions were carried out for each sample: one reaction that used the LINE-1 MIP primer

set to quantify the total LINE-1 after bisulfite conversion and two reactions using the LINE-1 MSP

primer sets thus quantifying the methylated and unmethylated LINE-1. A serial dilution of the lin-

earized recombinant plasmids pRef-LINE, pMe-LINE and pUn-LINE containing bisulfite con-

verted LINE-1, methylated LINE-1 and unmethylated LINE-1 sequences, respectively were used

as a standard for the measurement of LINE-1 methylation level. The formula (1) does not use a

reference value, while in the formulas (2) and (3), the bisulfite converted LINE-1 sequence esti-

mated through pRef-LINE was set as reference. To calculate LINE-1 methylation level following

ΔΔCT approach as in the formula (3), a calibrator sample with a defined methylation level of 10%

was obtained by mixing linearized pRef-LINE and pMe-LINE plasmids with 10 ng of genomic

DNA extracted from lymphocytes of healthy donors. The relative amount of methylated LINE-1
was calculated for each sample as following: ΔΔCTSample = ΔCTSample−ΔCTCalibrator, where

ΔCTSample = CTSample/Methylated LINE-1 –CTSample/Ref- LINE-1 and ΔCTCalibrator = CTCalibra-

tor/Methylated LINE-1 –CTCalibrator/Ref-LINE-1. ΔΔCTs were measured in duplicate. Methylation-

Sample = MethylationCalibrator x 2ΔΔCTSample. Samples were excluded from the study when two

replicates of the quantification methylation assay showed CT value> 34.

Statistical analysis

In all boxplots, methylated and unmethylated LINE-1 were expressed as medians with interquar-

tile values. Comparisons between more than 2 groups on a quantitative value were assessed either

by (i) a mixed model with sample as random effect to account for the fact that the same sample

was analyzed using 5 ng, 50 ng or 500 ng DNA; (ii) one-way ANOVA test when conditions on

normality and homogeneity of variance were met; or (iii) Kruskal-Wallis test. As for posthoc anal-

ysis, the Bonferroni adjustment for multiple comparisons was applied to maintain the type I error

at 0.05. Comparisons between 2 groups on a quantitative value were assessed using the Student t-

test when normality was met, otherwise by the Wilcoxon test. The association of LINE-1 with

tumor stage was investigated using a linear regression model with adjustment on patients’ age

and sex. For all statistical analyses, a p-value< 0.05 was considered as significant. All analyses

were performed with the STATA program version 12 (https://www.stata.com/) and Graphpad

Prism program version 9 (https://www.graphpad.com/ scientific-software/prism/).

Results

Validation of primer specificity and amplification efficiency

As false positive result in DNA methylation analysis could be due to mismatches of primers to

unspecific targets [31], the specificity of LINE-1 primers, designed to specifically recognize
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methylated LINE-1 promoter in genomic DNA, was tested by qPCR using either bisulfite

treated or untreated genomic DNAs alone, or a mixture of untreated genomic DNAs with dif-

ferent recombinant plasmids (pRef-LINE, pMe-LINE and pUn-LINE) as templates. PCR

product was amplified only from specific target templates but unamplified from untreated

DNAs, ensuring that the accuracy of MSP primers designed for only methylated targets was

guaranteed. The specificity of the primer sets used in the study were thus confirmed and pre-

sented in S3 Table and S2 Fig.

Determination of the optimal genomic DNA quantity for LINE-1 complete

bisulfite conversion

In order to monitor bisulfite conversion efficiency in DNA methylation assays, we previously

validated an artificial internal control (IC) that contained both a cytosine-free (CF) sequence

and CpG sequences (Fig 1A). We showed that IC copies number higher than 107 led to incom-

plete bisulfite conversion [26]. The LINE-1 gene consists of around 3000–4000 full-length cop-

ies in a diploid genome (~ 6 pg), thus ~ 1.5 ng of genomic DNA will contain 106 LINE-1 full-

length copies. Because DNA extracted from FFPE samples is often highly cross-linked,

degraded and fragmented, we chose 5 ng of FFPE-extracted DNA (corresponding to ~4x106

LINE-1 copies) as the minimal amount for bisulfite conversion to ensure sufficient amount of

analyzable DNA. To monitor LINE-1 bisulfite conversion efficiency, either 5, 50 or 500 ng of

genomic DNA extracted from 25 FFPE samples was mixed with either 106 (equivalent ~ 0.004

ng) or 108 copies (~ 0.4 ng) of IC and submitted to bisulfite treatment. The converted products

were then amplified with the MIP or MSP primers, matching respectively the CF or CpG

sequences present in the IC (Fig 1A) and LINE-1.1 (Fig 1B). It is worth noting that the primer

Fig 1. Impact of input genomic DNA quantity on bisulfite conversion efficiency and methylation level. After

bisulfite treatment, (A) the internal control (IC) used to monitor bisulfite conversion efficiency, and (B) the LINE-1.1
sequence was amplified thanks to either the MIP primers targeting cytosine free sequences (CF) or the MSP primers

targeting CpG sequences, respectively. Bisulfite conversion efficiency of the IC determined from bisulfite-treated

samples containing 106 (equivalent ~0.004 ng) or 108 (equivalent ~0.4 ng) IC copies mixed with 500 ng, 50 ng or 5 ng

of genomic DNA (C). The comparison in each group (106 or 108 copies) and between two group were done by mixed-

effects analysis. LINE-1.1 methylation level calculated from bisulfite-treated samples containing 500 ng, 50 ng or 5 ng

of genomic DNA mixed with 106 IC copies (D). One-way ANOVA were used to analyze the data in this experiment.

https://doi.org/10.1371/journal.pone.0256254.g001
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set specific to the bisulfite converted LINE-1.1 sequences did not produce any PCR product

from bisulfite treated IC sequence, confirming its specificity (results not shown). Bisulfite con-

version efficiency of the IC calculated by the ΔΔCT method was incomplete (< 80%) when 108

IC copies were used, while an efficiency of over 90% was observed when using 106 IC copies,

regardless of the genomic DNA amount (Fig 1C). Conversion efficiency of IC changed from

75% to 95% when 108 or 106 IC copies were bisulfite treated with 5 ng of genomic DNA (Fig

1C). The direct sequencing of PCR products indicated that all cytosines on the IC were

completely converted to thymines when 106 IC copies were mixed with 500 ng, 50 ng and 5 ng

genomic DNA while the conversion was incomplete when 108 IC copies were used, either

mixed with 500 ng or 5 ng or genomic DNA (S3A–S3C Fig). Moreover, the methylation level

of LINE-1.1 significantly varied following the genomic DNA amount used for bisulfite treat-

ment (Fig 1D). As for LINE-1.1 conversion, all LINE-1.1 non CpG cytosines was completely

converted using 5 ng genomic DNA but the conversion remained incomplete with higher

DNA quantity (S3D–S3F Fig). This result suggested that low conversion efficiency was due to

high copy number of the IC and LINE-1 targets.

In order to ascertain the impact of DNA amount on LINE-1 methylation measurement, 60

FFPE samples from lung cancer (30 samples) and non-cancerous lung disease patients (30

samples) were converted by bisulfite, testing 3 DNA quantities, 5 ng– 50 ng– 500 ng for each

sample. We observed significant differences in LINE-1.1 methylation level according to DNA

quantity (Fig 2A). Using 500 ng or 50 ng genomic DNA, LINE-1.1 methylation values (24.85%

and 20.40%, respectively) are significantly higher as compared to 16.22% (p< 0.0001)

observed with 5 ng DNA, associated with higher measurement variances, suggesting a propor-

tion of false-positive artifacts probably derived from incomplete bisulfite conversion. Those

artifacts may mask the difference in LINE-1.1 methylation between lung cancer and non-

cancerous lung diseases, which were not observed when using high quantity of genomic DNA

(Fig 2B and 2C) but appeared significant when using 5 ng of input DNA (17.19% versus

15.25%, p< 0.05, respectively) (Fig 2D). Overall, those results indicated that 5 ng of genomic

DNA is the optimal DNA quantity ensuring the complete bisulfite conversion of LINE-1
sequences, thus allowing the discrimination of lung cancer against non-cancerous lung dis-

eases based on LINE-1 methylation level.

Selection of the calculation method for quantifying LINE-1 methylation

Before enlarging LINE-1 methylation analysis for LINE-1.1 and LINE-1.2 regions on the whole

sample set using the optimal 5 ng genomic DNA, we proceeded to the selection of the optimal

methylation calculation formula, by comparing the ΔΔCT approach that we had used until

now with two other formulas in the literature. We thus compared the methylated LINE-1 per-

centage obtained following three formulas: (1) 100 × methylated reaction/(unmethylated reac-

tion + methylated reaction), (2) 100 x (methylated reaction/reference reaction) and (3) the

classical ΔΔCT approach using a calibrator reference. Analyses were performed on 10 FFPE

samples, using 5 ng of bisulfite converted genomic DNA and three primer sets specific to the

unmethylated, methylated and bisulfite converted LINE-1, as detailed in the Material and

Methods section. With the formula (1), the methylated LINE-1.1 percentage was around

93.7%, significantly much higher than those calculated with the formulas (2) and (3), which

showed similar values of 15.4% and 17.0%, respectively (Fig 3A). Moreover, in our hands, the

unmethylated LINE-1.1 calculated with the formula (1) showed greater measurement variance

compared to those calculated with the formulas (2) and (3) (Fig 3B). Given its feasibility and

popularity, the ΔΔCT method was retained for calculating the LINE-1.1 and LINE-1.2 methyla-

tion levels in further analysis.
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Fig 2. LINE1 methylation level depends on the quantity of input genomic DNA submitted to bisulfite conversion.

LINE-1.1 methylation level determined from 500 ng, 50 ng or 5 ng of genomic DNA extracted from FFPE tissue and

submitted to bisulfite conversion, no matter the samples are lung cancer (LC) or non-cancerous lung disease (NC) (A), in

LC versus NC samples when using 500 ng (B), 50 ng (C) and 5 ng (D) of genomic DNAs. (�) p< 0.05; (��) p< 0.01; (���)

p< 0.001; (����) p< 0.0001. One-way ANOVA (A) and Welch’s test (B-D) were used in statistical analysis.

https://doi.org/10.1371/journal.pone.0256254.g002
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Analysis of LINE-1.1 and LINE-1.2 methylation levels in patients with lung

cancer and non-cancerous lung diseases

In order to gain insight into a possible diagnostic value of LINE-1 methylation level in lung

cancer, we extended the LINE-1 methylation analysis for two regions, LINE-1.1 (position 300–

368) and LINE-1.2 (position 368–460), respectively on 275 FFPE samples (171 patients with

lung cancer versus 104 patients with non-cancerous lung diseases), using 5 ng genomic DNA

for bisulfite conversion. A significant hypomethylation was observed for both LINE-1.1 and

LINE-1.2 (Fig 4A and 4B). As observed on the test sample set (Fig 2D), the fully methylated

LINE-1.1 level in lung cancer (14.34%) was significantly lower than that in non-cancerous lung

disease samples (16.69%) (p< 0.0001). The methylated LINE-1.2 level in lung cancer patients

(30.28%) was significantly lower than in non-cancerous ones (32.35%) (p< 0.05). We also

observed a linear regression correlation between LINE-1.1 and LINE-1.2 in malignant samples

(with slope value is 0.1124; p < 0.01, and Y intercept value is 10.79; p< 0.0001) (Fig 4C) but

not in benign ones (Fig 4D).

Association of LINE-1 methylation level with lung cancer pathological

characteristics

We further analyzed the association of LINE-1 methylation level with tumor stage, EGFR
mutation status, adjusting for patients’ age and gender using multiple linear regression.

Fig 3. The methylated (A) and unmethylated (B) percentage of LINE-1.1 sequences calculated by three formulas (1), (2) and (3) (see text) using 5 ng of

DNA extracted from FFPE samples and bisulfite converted. (�) p< 0.05; (��) p< 0.01; (���) p< 0.001; (����) p< 0.0001. Statistical analysis was done

by one-way ANOVA.

https://doi.org/10.1371/journal.pone.0256254.g003
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Among a total of 171 FFPE samples from lung cancer patients analyzed for LINE-1.1 methyla-

tion, only 162 had data recorded with age and gender, 110 had EGFR mutation status and 90

had tumor stage information. All of samples are non-squamous non-small cell lung cancer

(NSCLC) samples, which corresponds to the most frequent lung cancer histologic subtype.

Thus, we analyzed those samples and did not include the histological characteristics in the

regression model. No statistically significant linear dependence of LINE-1.1 (Table 1A) or

LINE-1.2 (Table 1B) on age, cancer stage and EGFR mutation status was detected (all regres-

sion coefficients had p> 0.05).

Fig 4. LINE-1 methylation. Hypomethylation of LINE-1.1 (A) and LINE-1.2 (B) in NC and LC. Linear regression correlation between LINE-1.1 and LINE-
1.2 in LC group (C) and NC group (D). Methylation measurement was performed on 5 ng of DNA converted by bisulfite. Welch’s t test was used in (A)

and (B) while multiple linear regression was used in (C) and (D). (�) p< 0.05; (��) p< 0.01; (���) p< 0.001; (����) p< 0.0001.

https://doi.org/10.1371/journal.pone.0256254.g004
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Discussion

To date, bisulfite conversion is indispensable for DNA methylation profiling either on the

whole genome or on a particular target [3]. In fact, there are some methods that does not

require bisulfite conversion but instead use methylated CpG binding proteins or methylation

sensitive endonucleases. However, none of those can focus on specific CpG sites of interest but

likely bias results towards CpG-dense regions due to the difference in antibody combination

or enzymatic digestion efficiency, respectively [32]. Thus, bisulfite-based methods have been

considered as the gold standard in DNA methylation analysis with current challenges consist-

ing in maximizing bisulfite efficiency since incompletely converted DNA templates produce

biases and errors in methylation measurement [4, 5]. Most assays evaluating bisulfite conver-

sion efficiency have been performed on single copy sequences with only 2 copies in a genome

[7, 8]. As to repetitive sequences that can reach up to 105 copies and representing about 50% of

the human genome, no report on their bisulfite conversion efficiency have been described so

far.

LINE-1 is the only autonomously active family in human genome. LINE-1 mobilizes itself

and ALU and SVA retrotransposons in trans, leading great impact on genome structure, gene

transcription and various other functional consequences [33]. LINE-1 expression is strictly

controlled through DNA methylation. Over 90% of methylated CpG sites in the human

genome occur particularly in the LINE-1 and Alu [34]. Loss of LINE-1 methylation promotes

tumor development and is associated with cancer recurrence [10]. LINE-1 methylation status

has thus been considered as a significant diagnostic, prognostic and predictive factor in various

types of cancer [18–20]. However, the standardization of LINE-1 methylation as a clinical bio-

marker for cancer and treatment response prediction has been hindered by substantial incon-

sistencies in LINE-1 methylation measurement over various studies using bisulfite-based

methods. Indeed, LINE-1 methylation widely ranged from 14.8% to 78.8% in non-small cell

lung cancer tissues [35], from 21.3% to 76% in ovarian cancer [36] and from 6% to 94.0% in

oropharyngeal squamous cell carcinoma [27]. A disagreement about diagnostic value of LINE-
1 methylation has been debated among studies on the same cancer type [22, 23]. A controver-

sial hypermethylation of LINE-1 has been also reported to colorectal and cervical cancers [19,

37]. Recently, a multicenter benchmarking study using a wide range of DNA amount (45 ng–

1.6 µg) and comparing the performance of different bisulfite-based DNA methylation assays

realized on 32 reference samples in 18 laboratories in 7 different countries showed divergent

results of LINE-1 methylation levels between assays [1]. All these discrepancies could be due to

one part by methylation level was measured on different regions of the LINE-1 promoter [22,

Table 1. Association of LINE-1.1 (A) and LINE-1.2 (B) methylation status with cancer stage and patients’ demographical characteristics in non-squamous NSCLC

analyzed by multiple linear regression.

Feature Regression coefficient 95% CI P value

A

Age (in years) 0.02979 [-0.1748; 0.2344] 0.7707

Gender (Male versus Female) -2.093 [-6.199; 2.012] 0.3100

Tumor stage (Metastatic versus Non-metastatic) 4.858 [-1.873; 11.59] 0.1530

EGFR mutation status -1.157 [-5.560; 3.246] 0.5992

B

Age (in years) -0.1749 [-0.5903; 0.2405] 0.3998

Gender (Male versus Female) -4.083 [-12.61; 4.440] 0.3388

Tumor stage (Metastatic versus Non-metastatic) 9.864 [-2.946; 22.67] 0.1275

EGFR mutation status -6.390 [-15.38; 2.598] 0.1585

https://doi.org/10.1371/journal.pone.0256254.t001
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23] and other part by a large range of DNA amount (50 ng– 2 µg) was used for bisulfite treat-

ment [36, 38]. In this context, our study aimed at optimizing genomic DNA input that ensures

complete bisulfite conversion for accurately measurement of LINE-1 methylation and opting

for LINE-1 local region of which methylation level could be a potential diagnosis marker for

lung cancer.

To our knowledge, this study is the first pointing out that the input genomic DNA quantity

should not exceed 5 ng, much less than what have been used so far. Based on the internal con-

trol system for bisulfite conversion efficiency that we have recently validated [26], we demon-

strated that LINE-1 sequences were completely converted when using 5 ng DNA (Fig 1, S3

Fig). Methylation value obtained from such bisulfite converted DNA was 14.34% in lung can-

cer samples (Fig 4A), much less than what have been previously described for lung cancer

(> 70%) [35, 39] but consistent with the global LINE-1 methylation (~5%) assessed by non-

bisulfite approaches [40, 41]. In contrast, when using higher DNA quantities (50 ng– 500 ng),

LINE-1 sequences were incompletely bisulfite converted (Fig 1, S3 Fig), which may be source

of artifacts behind higher methylation values (up to 25%) associated with greater measurement

variances (Fig 2). More importantly, decreasing the DNA amount down to 5 ng allowed to dis-

tinguish lung cancer against non-cancerous lung diseases based on LINE-1 methylation in

FFPE tissue-extracted DNA (Fig 2D, Fig 4), which could not be achieved with higher DNA

amount (Fig 2B and 2C). Our observation is in line with the results obtained from various pro-

tocols in the literature, which have clearly highlighted the relation between DNA input quan-

tity and skewed LINE-1 methylation values. For instance, LINE-1 methylation levels quantified

by bisulfite-based pyrosequencing assay using 1 µg or 250 ng of genomic DNA were all differ-

ent and much higher (>70%) as compared to the LINE-1 methylation level determined by

HPLC as reference (5.2%) [42, 43]. Liu and collegues (2013) have recommended less than 100

ng of DNA for bisulfite sequencing of repetitive elements [21]. Recently, only 30 ng of DNA

was recommended to assess LINE-1 methylation in cervical intraepithelial neoplasia [19]. Our

result is in line with the fact that LINE-1 hypomethylation is predominantly observed in cancer

tissues assessed by non-bisulfite approaches using methylation-sensitive endonucleases or

Methylation-Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA) [44,

45]. By directly demonstrating the impact of DNA quantity in LINE-1 methylation measure-

ment, our findings contributed to standardize bisulfite-based protocols for DNA methylation

assay particularly applied to repetitive targets, in order to integrate global DNA methylation as

a biomarker in cancer diagnostic and monitoring.

Aberrant methylated CpG hotspots at the 5’ region of single copy gene or repetitive

sequences were associated with tumor specificity [15, 24]. The internal region from position

300 to 460 within LINE-1 5’UTR was heavily methylated in normal cells [16, 17] and hypo-

methylated differently in cancer types [15]. Four CpG sites in positions 305 to 331 have been

chosen for quantifying methylation variance by commercially available pyrosequencing assay

(PyroMark LINE-1 kit, Qiagen, Hilden, Germany). In MSP method, MSP primers have been

designed based on CpG sites in different target regions, which could lead to an inconsistence

in LINE-1 methylation value. Thus, in this study, two MSP primer sets were created for LINE-
1.1 and LINE-1.2 regions which contain total 11 CpG sites from base pair 300 to 460 within the

LINE-1 5’-UTR. LINE-1.1 was less methylated (16.69%) than LINE-1.2 (32.35%) in non-

cancerous lung diseases but more hypomethylated (14.34%) than LINE-1.2 (30.28%) in lung

cancer (S4 Fig). The specificity of methylation in non-cancerous diseases and hypomethylation

in lung cancer between two regions could be explained by potential transcription factor bind-

ing sites for LINE-1 [17] and epigenetic heterogeneity in cancer [46]. Different variance in

LINE-1.1 and LINE-1.2 methylation indicated that target sequence for methylation measure-

ment should be carefully chosen since altered methylation levels could not be equally
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detectable at all CpG sites. The MSP primers specific to CpGs in LINE-1.1 allowed discriminat-

ing significantly lung cancer from non-cancerous lung diseases better than the one in LINE-
1.2. Although LINE-1.1 and LINE-1.2 were hypomethylated in lung cancer, consisting with

previous reports on decrease in LINE-1 methylation in various type of cancer [10, 15], there

was no association of their methylation level with age, gender, and cancer stage. These results

are in line with former observations determined by non-bisulfite-based approaches [37, 45]. In

contrast, the conflict to our result have been shown in some previous studies in which more

than 500 ng of DNA was used for bisulfite conversion [11, 47]. A broad range of input DNA

amount used for bisulfite treatment in described studies might be the reason that makes the

multiple linear regression analysis to be more challenging. Otherwise, highly heterogeneity of

tumor cells and differential methylation could be the explanation to the contradictory [48, 49].

A minor attention should be drawn on the method for calculating the methylation level of

repetitive elements. Indeed, there are several formulas for absolute or relative calculations,

based on the quantitation of unmethylated target or a calibrator reference, respectively. Since

the unmethylated LINE-1 value is low (around 1–6%) but varies according to the calculation

method (Fig 3B), the calibrator may be a more convenient reference for LINE-1 methylation

measurement (S5 Fig). It is worth noting that the reference must be chosen from repeat ele-

ments to overcome the limited detection of single copy references when using low quantities

of input DNA [30]. Standardizing all the steps in methylation-based biomarker assay protocols

will promote the consolidation and performance of methylation-based marker [25].

Our study has some limitations. Firstly, the DNA concentration is calculated based on the

absorbance at 260 nm using UV-VIS, which could be less sensitive and less specific than that cal-

culated using fluorescence dye since the latter distinguishes DNA and RNA molecules. More-

over, as this study is a primary validation of the optimal DNA amount for accurate LINE-1
methylation analysis, we have set 5 ng of genomic DNA as the minimal amount ensuring analyz-

able material, having accounted for DNA degradation. Since this amount is still 10 times higher

than the 0.5 ng theoretically calculated based on the copy number of the LINE-1 in a genome, in

future studies, amounts less than 5 ng of genomic DNA from various sources (fresh tissue,

blood, urine, bronchial aspirate or washing during bronchoscopy. . .) should be more finely

investigated. In addition, inappropriate conversion of 5mC to thymine should be also investi-

gated since it could take place when cytosine conversion achieved complete [6], thus leading to

underestimation of LINE-1 methylation level. Particularly, the abundance of the LINE-1 copies

in circulating cell free DNA (ccfDNA) was more than that in the genome [50]. Thus, despite the

low DNA concentration isolated from noninvasive liquid biopsy samples, an appropriate

ccfDNA amounts used for measurement of LINE-1 methylation value should be evaluated in

respect to making it as an attractive methylation-based cancer biomarker.

Conclusion

To summarize, this study has proposed a technical standardization of bisulfite-based methyla-

tion analysis particularly applied to repetitive targets, and precise region in the LINE-1 pro-

moter of which variance in DNA methylation level has diagnostic potency in lung cancer. We

have showed that an input DNA amount no more than 5 ng was optimal to ensure the com-

plete bisulfite conversion of repeated LINE-1 sequences, which allows to measure methylation

level accurately. In such a way, methylation in LINE-1 sequence from position 300 to 480

could be conferred as a biomarker to lung cancer. These encouraging results prompt us to

quantitatively assess LINE-1 methylation in noninvasive liquid biopsy samples, in the common

effort to foster the use of global DNA methylation analysis in biomarker development and clin-

ical applications.
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and p = 0.9085 respectively). The pooled slope equals -3.409 and the pooled Y-intercept equals

36.19.

(DOCX)

S3 Fig. IC and LINE-1 sequencing results. Direct sequencing of the IC amplified from bisul-
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a serial concentration of the pRef-LINE-1 (read line) and a serial concentration of the pMe-

LINE-1.1 (blue line). (B) Validation of ΔΔCT method. The amplification efficiency of the

bisulfite converted LINE-1.1 and methylated LINE-1.1 targets was examined using qPCR. A

10% methylation LINE-1 calibrator was made by mixing pMe-LINE-1.1 with pRef-LINE-1 in

ratio 1:10 and the serial dilution of the mixture was made, then amplified by methylation inde-

pendent and methylation dependent primer sets, respectively. The ΔCT (CTMe-LINE-1.1-CTRef-
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analysis (N = 9).
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