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Abstract

This paper presents a forecasting technique based on the principle of naive approach imposed in a probabilistic sense, thus
allowing to express the prediction as the statistical expectation of known observations with a weight involving an unknown
parameter. This parameter is learnt from the given data through minimization of error. The theoretical foundation is laid
out, and the resulting algorithm is concisely summarized. Finally, the technique is validated on several test functions (and
compared with ARIMA and Holt—Winters), special sequences and real-life covid-19 data. Favorable results are obtained in
every case, and important insight about the functioning of the technique is gained.
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1 Introduction

Extrapolative forecasting methods are widely used in pro-
duction and inventory decisions [1], tourism data forecasting
[2], economic and financial risk management [3], wind fore-
casting [4], analyzing and forecasting traffic dynamics [5],
forecasting road accidents [6], demographic and epidemio-
logical projection [7], etc. One finds forecasting-related work
employing both conventional techniques and machine learn-
ing (ML)-based techniques [8], for instance electricity load
forecasting using hybrid model based on IEMD, ARIMA,
WNN and FOA [9], short-term electricity price forecasting
using an adaptive hybrid model based on VMD, SAPSO,
SARIMA and DBN [10], and electricity requirement fore-
casting for smart grid and buildings using ML models,
ensemble-based techniques and ANNSs [11]. The most recent
application of forecasting techniques carried out by various
researchers is on the covid-19 data (see for instance [12—16]).
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There is a relation between the future and past; however,
the knowledge of this relation is not available which calls
for developing innovative methods of prediction. Before pro-
ceeding to introduce our technique, let us look at the methods
proposed/studied in literature. There are a wide range of fre-
quently used quantitative forecasting tools, but most of the
focus is still on moving average, simple linear regression
based on covariance, and multiple linear regression.

Dedicated forecasting algorithms like ARIMA, SARIMA,
Holt—Winters, etc. majorly use integrated moving average
after disaggregating into trend, seasonality and white noise.
According to Billah et al. [17], applications of exponen-
tial smoothing to forecasting time series usually rely on
simple exponential smoothing, trend corrected exponential
smoothing and a seasonal variation. Their results indicate
that the information criterion approaches provide the best
basis for automated method selection, where the Akaike
information criteria has a slight edge over its information
criteria counterparts. Exponential smoothing-based models
like Holt—Winters are widely used for forecasting [18]. The
interested readers may refer to the work of Chatfield et al.
[19] and Armstrong et al. [20] who provide general guide-
lines for selecting forecasting methods.

Carbonneau et al. [21] applied a representative set of tra-
ditional and ML-based forecasting techniques to the demand
data and compared the accuracy of the methods. The aver-
age performance of the ML techniques did not outperform
the traditional deterministic approaches. Efficient training of

Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-022-06819-0&domain=pdf
http://orcid.org/0000-0002-2710-1640

Arabian Journal for Science and Engineering

ML models with ANN, CNN, LSTM, GRU backbones is now
possible for deep representation learning. Siami et al. [22]
concluded that the average reduction in error rates obtained
by LSTM was between 84% and 87% when compared to
ARIMA, indicating the superiority of LSTM to ARIMA;
however, it is only suitable where ample amount of data
and computation resources are available. Problem of over-
fitting in ML needs to be tackled by different regularization
techniques. However, using a support vector machine (SVM)
trained on multiple demand series produced the most accurate
forecasts. Myrtveit et al. [23] simulated a machine learn-
ing and a regression model, based on which they suggested
that more reliable research procedures need to be developed
before we can have confidence in the conclusions of compar-
ative studies of software prediction models.

Zhang et al. [24] and Khashei et al. [25] created a hybrid
model with ARIMA and ANN to capture the linear and non-
linear modeling simultaneously to obtain better accuracy.
Hybrid forecasting system based on a dual decomposition
strategy and multi-objective optimization was proposed by
Yang et al. [26] for electricity price forecasting. In fact,
optimization algorithms are widely used to obtain optimal
parameters of the forecasting models. It is important since
Das et al. [27] concluded that the accuracy of the PV power
forecasting model varies by changing the forecast horizon,
even with identical forecast model parameters. Zou et al.
[28] tried to combine forecasts of individual models with
an appropriate weighting scheme to have a predictor with
smaller variability so that the accuracy can be improved rela-
tive to the use of a selection criterion. Stekler et al. [29] found
that combining forecasts does improve accuracy while work-
ing on sports forecasting. Also, a need to adjust weights for
new and old information is pronounced as prediction may
be independent of previous events. Makridakis et al. [30]
showed that the statistical methods are more accurate than
ML and require lesser computation. Green et al. [31] after
comparing 25 papers with quantitative comparisons claimed
that complexity (by using more equations, more complex
functional forms and more complex interactions) increases
forecast error by 27% on an average.

Transdisciplinary transition to distributional or probabilis-
tic forecast has been observed in the past few years. Gneiting
et al. [32] formalized and studied notions of calibration in
a prediction space setting. Probabilistic forecasts serve as
an essential ingredient for optimal decision making since
they can quantify uncertainty. Overall, the need for advance-
ment in the methodology of forecasting is immense; thus,
researchers constantly look for opportunities to overcome
challenges in the field.

@ Springer

This paper proposes an unconventional forecasting
approach where the principle of naive method and average
method is modified and simultaneously employed in a proba-
bilistic sense where a parameter is learnt from available data
by minimizing an error function, and consequently make a
prediction at the unknown point. The paper is organized as
follows: Section 2 develops the technique and formally sum-
marizes the algorithm, and Section 3 applies it on several
standard mathematical functions, special sequences and a
real-life example (covid-19 dataset).

2 Problem Formulation and Development of
Technique

Suppose an analyst is given n data points denoted by (x;, y;)
for 1 < i < n. The objective is to determine y, | corre-
sponding to the point x,1 where x,+1 > x,.

The three most basic approaches in literature are: aver-
age method, naive approach, and drift method. In average
method, the non-observed value is estimated as the average of
past observed values. Naive approach generates predictions
equal to the last observed value, mathematically, y,+1 = y,
where y, is the last data. Modifying this idea to allow slope
gives the drift method which is similar to using first and last
observation for linear extrapolation to the future. Often there
is such a relation where the future is related to the past, how-
ever, the knowledge of this relation (or model) is either not
available or not accurate, and has uncertainty which clearly
indicate that forecasts should be probabilistic. In order to
determine y,41 from (y;)1<;<n, the technique proposed is
an agglomeration of naive approach and average method but
in a probabilistic sense as described below.

Since x,41 is near to x,, so the likelihood of y,4 being
almost (or exactly) equal to y, is higher than any other y;.
It is quite intuitive that as x,+1 — Xy, SO y,41 — Yy for
a continuous function. Thus, the value at point x,, 1 must
be most influenced by the value at point x,. Let y,41 =
Y be treated as a random variable and P[Y = y;] is the
probability that y,4 is equal to y;. This probability falls as a
point is chosen far away from x,,4 1. Additionally, it must be
maximum only at x,; which is not actually possible since
it is the point at which prediction is to be made, so the value
is not known beforehand. Keeping these properties in mind,
P can be chosen to obey the Gaussian distribution curve with
peak at x4 with some parameter o. Thus, the predicted
value of y, 41 can be given as the expectation of past data:

Fur1 = Y wiPlY = yil, (1)

i=1
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where

PLY =y;] =

o2

o 2
exp <_%> _ )

Here, the parameter o depends on the available data and can
be extracted by minimizing the following error function:

n—1 5
E= Z (3’\j+1 — yj+1) , 3)
j=1

which shall give the optimal ¢* = argmin E that is substi-
tuted in (1) to predict y,41.

With (3), one gets good performance for certain standard
functions; however, the technique does not perform satisfac-
torily for functions like y = log(x). This situation can be
improved by employing the operating principle on the error
function as well, that is, for evaluation at x,,+1 consider only
nearby points in the error function. But reduction of data
points is not a wise decision; instead, all data points must
be kept but with higher importance assigned to the nearby
points. So, we consider the error function given below:

T SR
— v X —
por Yi+l — Yj+1 nn—1)

to determine o * and then predict y,4. The final technique
is concisely given as Algorithm 1.

Algorithm 1: Proposed prediction technique

Inputs : Observations (x;, y;) V1 <i <n
Output : Predict 3,41 at x,,+]

/* Error function is defined */
1 def ErrorFunction (o):

2 E:=0

3 Initialize j = 1

4 while j < n do

5 Yj+1 = Prediction(o, j)

2 2
6 E<—E+ n(nj—l) (V41 = yj+1)
J<Jj+1
8 | return £
/* Predict function is defined */

9 def Predict (o,k):

_xjmxgn)?

k
10 fkﬂzﬁzlyjexp( T)
Jj=

1 return yi|

/* Main code */
12 ¢* = argmin(ErrorFunction)
13 Y41 = Predict(c*, n)

/* End */

Table 1 Performance of the proposed technique for different test func-
tions

Function Range Step h Final o* RMSE MAPE
X [1,50] 0.25 0.2009 0.4809  3.5873
x2 [1,50] 0.25 0.2021 9.2894  4.1773
log x [1.5,50] 0.25 0.1999 0.1386  3.3952
exp x [1,30] 0.25 0.5808 2366.0  0.8154
sin0.1x [1,207] 0.25 0.1984 0.0420 10.9208
cos0.1x [1,207] 0.25 0.2002 0.0911 12.9588

3 Results and Discussion

The proposed method is applied to dataset sampled from
certain standard functions, special/popular sequences, and
real-life dataset like that of covid-19. In this paper, Nelder—
Mead algorithm [33] shall be used to minimize the nonlinear
loss function. Bottou et al. [34] explained that optimiza-
tion algorithms such as stochastic gradient descent (SGD)
show better performance for large-scale problems. In particu-
lar, second-order stochastic gradient and averaged stochastic
gradient are asymptotically efficient after a single pass on
the training set. Application of this algorithm minimizes the
loss function to get the optimal parameter o. The optimizer
algorithm may be changed; for instance, one may try [35].
Nelder—Mead requires very few function evaluations at each
step as it uses a simplex-based direct search method that
performs a sequence of transformations of the working sim-
plex, aimed at decreasing the function values at its vertices.
Interested readers may apply other optimization techniques
to minimize the error function. The experimentation is car-
ried out on an operating environment having Intel(R) Core
(TM) i5-10300H CPU with processor speed 4.5 GHz, 16 GB
RAM, 1 TB SSD, 8 GB NVIDIA GeForce GTX 1650 graph-
ics processor under 64-bit Windows 10 operating system.
The numerical validation of the algorithm is conducted on
python coded using open source libraries such as numpy,
pandas and matplotlib.

3.1 Testing on Standard Functions

The proposed technique is applied to certain functions having
different shapes and rate of growth as listed in Table 1. Each
test function is sampled at a step size & in the given range.
Prediction is made at every point using the data prior to that
point. The obtained actual versus predicted plots are shown
in Fig. 1 for the considered test functions.

For each test function, Table 1 gives the value of root mean
squared error (RMSE) and mean absolute percentage error
(MAPE) using the error evaluated between the actual curve
and the prediction. The actual and predicted data points for
selected test functions listed earlier are visualized in Fig. 1

@ Springer
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Fig.1 Plots of actual versus prediction for certain standard functions

where we observe that the proposed method successfully
learns the trend and predicts very close to the actual data.
Our method also performs well on periodic trigonometric
function like sin x which have alternating slopes.

An interesting revelation comes from Fig. 2 which depicts
the prediction for function sin(x) sampled at 0.25, 1.00 and
2.50, respectively. For data points relatively closer to each
other, our technique quickly learns and adapts, and thus per-
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forms better than other cases. Those working in the field
of signal processing might find resemblance of this phe-
nomenon to the Nyquist-Shannon sampling theorem. The
output is a flat line for 4 = 2.5, it is distorted/phase-shifted
(seems non-differentiable) for # = 1, but for h = 0.25,
the predicted curve initially overestimates then corrects itself
over two wavelengths eventually resulting in an almost accu-
rate approximation of the actual curve.
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Fig.2 Plot of actual versus predicted for sin(x) with sampling step of
0.25, 1.00 and 2.50

Figure 1 indicates that the prediction is overall accurate
except initially. The divergence is a specific property of
extrapolation methods and is only circumvented when the
functional forms assumed by the method (inadvertently or
intentionally due to additional information) accurately rep-
resent the nature of the function being extrapolated. In the
beginning, the prediction is poor due to insufficient data pre-
ceding the point at which prediction is to be made. Eventually,
the prediction becomes better and thus better fits the actual
curve.

To further strengthen our belief on the proposed technique,
it is compared with ARIMA and Holt—-Winters. ARIMA
refers to autoregressive integrated moving average and is a
more complex version of the autoregressive moving average,
with the addition of integration. The dependence between
an observation and a residual error from a moving average
model applied to lagged data is used in this model where
the “integrator” aspect makes the time series steady. The
Holt—Winters technique is a popular time series forecasting
approach that can account for both trend and seasonality. This
approach is made up of three different smoothing methods
viz. simple exponential smoothing (SES: assumes that the
level of the time series remains constant, so cannot be uti-
lized with series that have both trend and seasonality), Holt’s
exponential smoothing (HES: it allows trend component in
the time series data), and Winter’s exponential smoothing
(WES: it is Holt’s exponential smoothing enhancement that
finally allows for seasonality to be included).

Figure 3 shows the comparative plot of prediction made in
the specific range for linear and exponential functions using
ARIMA and Holt—Winters against the point predictions by
proposed technique. The process is omitted for other func-

tions since the conclusion remains same or the other methods
fail to perform on negative values.

3.2 Testing on Popular and Special Sequences

The proposed method is also applied to two widely known
sequences, namely the Fibonacci and partition sequences.
These are described below.

1. Fibonacci Sequence—It is a sequence defined by the
recursive relation F(n) = F(n —2) + F(n — 1) and
is listed as: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,
28657, 46368, 75025, 121393 and so on, for n > 1. More
information can be found on OEIS [36].

2. Partition Sequence—It is a sequence which represents the
number of ways of expressing a positive integer as a sum
of smaller positive integers. For n > 1, the sequence is
givenas: 1,2,3,5,7, 11, 15, 22, 30, 42, 56, 77, 101, 135,
176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575,
1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143
and so on. More information can be found on OEIS [37].

The actual and predicted data points for the consid-
ered sequences are depicted in Fig. 4. The obtained MAPE
for Fibonacci sequence is 78.8562%, while for partition
sequence is 73.6793%. While the values do not match, the
predicted curve increases at the same rate of growth. Reduc-
ing the step size is not an option in situations like these
where the function is not defined for non-integer inputs.
Considering observations from earlier results, it seems that
one can refine by scaling the x-axis (say by 1/6) which is
reversible step. The improved results are depicted in Fig. 5.
The obtained MAPE for Fibonacci sequence is 3.0263%,
while for partition sequence is 8.2235%.

3.3 Application to Real-Life Data

In order to see how the proposed technique performs on real-
life data, here it is applied to daily covid-19 cases in India
considered from January 30, 2020 to September 7, 2020 [38].
Therefore, the dataset spans 221 points (which is insuffi-
cient for ML algorithms to perform well). It is seen that
machine learning algorithms converge much faster with fea-
ture scaling than without it. Additionally, scaling would help
not to saturate too fast like in the case of sigmoid activation
in neural networks. Since the proposed algorithm has been
driven by Nelder—-Mead method, monotonic transformation
like scaling seems to provide improved results. Within the
dataset, “New Cases Smoothed” feature column is consid-
ered and preprocessed by removing null values and applying

. . . . __ x—mean(x)
standardization by considering Xgq = Vel These data
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Fig. 3 Comparative plots of prediction for linear and exponential functions obtained using proposed technique, ARIMA and Holt—Winters;
demonstrating better accuracy of the proposed method
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Fig.4 Plots of accuracy versus predicted for the two sequences without preprocessing
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Fig.5 Plots of accuracy versus predicted for the two sequences with preprocessing
are treated as y_given, while x_given is normalized as The proposed technique is applied on this dataset to arrive

[1/3, len(data)/3] with a step of 1/3 for scaling down input  at a prediction; then, reversing the preprocessing step gives
and prevent overshooting and thereby achieve better training  the final plot of actual versus predicted as shown in Fig. 6.
performance and accurate prediction results. Evidently, it is a good fit with MAPE of 8.6810% and RMSE
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Fig.6 Plot of actual versus predicted for daily covid-19 cases in India
for a period of 221 days

of 0.0458. Since we can compare with the actual dataset
here, there was no need to compare with other techniques.
Since the model has only one tunable parameter o * so it is
really fast to train and lightweight as it can be stored in 64-
bit/128-bit floating point representations. In fact, immense
work has emerged in the last year on specifically this topic.
The objective here was to show that our technique can learn
unprecedented variation in data. This was partially evident
from the prediction of sinusoidal functions as well, but this
example further strengthens our claim.

4 Conclusion

This paper proposes a forecasting approach where the prin-
ciple of the classical naive method and average (expectation)
method are probabilistically modified and simultaneously
employed to predict, where a crucial parameter of the dis-
tribution is estimated through loss minimization from past
data. Although this paper employs Nelder—-Mead algorithm
for optimization, other techniques are also promoted for the
reader to pursue. The proposed technique converges in every
considered scenario within fraction of seconds to produce
the forecast. It is rigorously tested for several functions and
sequences of different nature and growth rates. The pro-
posed method is compared with other popular techniques
like ARIMA and Holt—Winters. In fact, it is also applied
to covid-19 data to demonstrate that the technique is adapt-
able to unprecedented variations. This work encourages the
application of probability and optimization to the field of
forecasting.
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