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Abstract

Expansions of (CAG)n•(CTG)n trinucleotide repeats are responsible for over a dozen 

neuromuscular and neurodegenerative disorders. Large-scale expansions are typical for human 

pedigrees and may be explained by iterative small-scale events such as strand slippage during 

replication or repair DNA synthesis. Alternatively, a distinct mechanism could lead to a large-scale 

repeat expansion at a step. To distinguish between these possibilities, we developed a novel 

experimental system specifically tuned to analyze large-scale expansions of (CAG)n•(CTG)n 

repeats in Saccharomyces cerevisiae. The median size of repeat expansions was ~60 triplets, 

though additions in excess of 150 triplets were also observed. Genetic analysis revealed that 

Rad51, Rad52, Mre11, Pol32, Pif1, and Mus81 and/or Yen1 proteins are required for large-scale 

expansions, whereas proteins previously implicated in small-scale expansions are not involved. 

Based on these results, we propose a new model for large-scale expansions based on recovery of 

replication forks broken at (CAG)n•(CTG)n repeats via break-induced replication.

Introduction

Expansions of (CAG)n•(CTG)n repeats are responsible for over a dozen neuromuscular and 

neurodegenerative disorders in humans, including Huntington’s disease (HD), myotonic 

dystrophy (DM1), and numerous forms of spinocerebellar ataxia (SCA)1,2. Individuals with 

adult-onset HD typically have 40–80 (CAG)n repeats in the coding region of the HTT gene. 
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Longer CAG tracts do occur but are rare and associated with juvenile onset3. In contrast, 

individuals with DM1 commonly have hundreds of (CTG)n repeats in the 3’UTR of the 

DMPK gene, reaching up to 4000 copies in severe cases4. The molecular mechanisms of 

(CAG)n•(CTG)n (hereafter abbreviated CAG) repeat expansions have been intensively 

studied in model organisms and human cells, recapitulating many properties observed in 

human patients and pedigrees such as length-dependent increase in repeat instability2,5,6. 

CAG sequences were shown to form stable hairpins and slipped-strand DNA structures both 

in vitro and in vivo, which stall replication forks, promote replication fork reversal, and 

cause chromosomal breakage in a length-dependent manner7–9.

All models of CAG repeat expansions implicate the deleterious impact of their secondary 

structures on DNA replication, transcription, and repair processes10,11. DNA polymerase 

slippage followed by hairpin formation on the nascent DNA strand can lead to small-scale 

expansions if the hairpin persists to the next round of replication6,11. Strand slippage and 

hairpin formation can also occur during repair DNA synthesis in the course of base excision 

repair (BER)12,13, nucleotide excision repair (NER)14, and transcription-coupled repair 

(TCR)15. In all the above scenarios, expansion size is limited by slippage events that are 

normally small-scale. Thus, these models can explain large-scale expansions by the iterative 

succession of independent small-scale events. For example, oxidized DNA bases can lead to 

subsequent BER where strand displacement creates a DNA hairpin that is refractory to 

cleavage by flap endonuclease. This hairpin would then result in a single expansion, and 

many rounds of oxidation, repair, and expansions would create a “toxic oxidation cycle” to 

generate large-scale expansions13.

Most experimental systems to study CAG repeat expansions deal with relatively small-scale 

events16–20, which we define as an increase up to 20 repeats. The first selectable system in 

budding yeast deliberately looked at the instability of a short (i.e. (CAG)25) starting tract to 

simulate the change from normal to pre-mutation length alleles, as in HD16; ~10 repeats 

were added at a rate of ~105. Yeast studies for longer CAG repeats (45-to-155 units) 

consistently detected small-scale expansions that occurred at a percentile level (~1%)17. 

Altogether, these yeast systems enabled powerful genetics analysis of small-scale repeat 

expansion, establishing the importance of replication fork integrity, chromatin remodeling, 

specialized helicases, and nuclear localization of the repeat8,21–25.

In a Drosophila experimental system, the scale of repeat expansions was even smaller: the 

majority of events were additions of just one or two repeats to a long (CAG)270 tract18. In 

mice, much longer CAG repeats were required to show disease phenotypes than in humans. 

Similarly to yeast, mice predominantly displayed small-scale expansions during both 

intergenerational transmissions and in somatic tissues13,26. An exception is the curiously 

small-sized humanized DM1 mice carrying 430 to >1000 CAG repeats, which exhibit jumps 

in excess of hundreds of repeats during intergenerational transmission27. Hairpin formation 

and the role of replication on CAG repeat instability has been confirmed in human cells28,29. 

Additionally, large-scale expansions were recovered from a very long starting tract of 800 

repeats30. Yet in such experimental systems, extensive genetic analyses remain challenging.
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Given the lack of experimental systems to detect large-scale CAG expansions, it is 

impossible to ascertain whether they occur via a distinct mechanism, or result from the 

sequential accumulation of small-scale expansions. Previous studies of large-scale 

expansions of (GAA)n•(TTC)n and (ATTCT)n•(AGAAT)n repeats in a yeast system led us to 

propose a template-switching model for large-scale expansion during DNA replication31,32. 

Genetic analysis of these large-scale events revealed dramatic differences with small-scale 

CAG repeat expansions studied by others. It remained unclear whether differences in scale 

of expansions, repeat sequences, or experimental model system accounted for these 

differences.

To address this problem, we established a new system to detect and analyze large-scale CAG 

expansions in S. cerevisiae. The median size of repeat expansions in this system was ~60 

triplets, while additions in excess of 150 triplets were also observed. Our genetic analysis 

revealed that Rad51, Rad52, Mre11, Pol32, Pif1 and Mus81 or Yen1 proteins are required 

for large-scale expansions, whereas proteins previously implicated in small-scale expansions 

are not involved. These results point to a mechanism that is distinct from small-scale CAG 

expansions, which is based on the recovery of replication forks broken at (CAG)n•(CTG)n 

repeats by the interplay between break-induced replication and broken fork repair. Thus, 

large-scale CAG expansions could a represent a striking example of genome instability 

arising from break-induced replication machinery.

Results

Large-scale CAG repeat expansions can be recovered in budding yeast

To investigate large-scale CAG expansions, we capitalized on a system previously developed 

in the lab to study GAA repeats33. This system relies on the well-characterized GAL1 
promoter, where the distance (i.e. spacer) between the upstream activating sequence 

(UASGAL) and TATA box (PGAL) is constrained such that transcriptional activation no 

longer occurs when the spacer is too long34. We cloned CAG repeats into this spacer, 

upstream of the forward-selection marker CAN1. These constructs were then integrated into 

chromosome III, ~1 kb away from the replication origin ARS306 (Fig. 1A, S1, S2).

Our starting strain contained a selectable cassette with 140 (CAG)n repeats, corresponding to 

a mild disease-size repeat in myotonic dystrophy (DM1), which undergoes large-scale 

expansions during intergenerational transmission. The CAG sequence was positioned on the 

lagging strand template for DNA replication because the CTG orientation is known to be 

deletion-prone35,36. We reasoned that if a large-scale expansion (which we designate as >20 

repeats) occurred during non-selective growth, the increased spacer distance would preclude 

expression of CAN1. This would permit colony formation on plates containing canavanine, a 

toxic analog of arginine, in the presence of galactose (Figure 1A).

The rate of large-scale CAG expansions was determined in fluctuation test experiments, with 

non-selective growth occurring on either glucose or galactose. The length of CAG repeats in 

individual CanR clones was then determined by single colony PCR (Fig. 1B, S3). The rate of 

large-scale (CAG)140 expansion corresponded to 1.4 × 10−5 per replication when cells were 
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pre-grown on galactose and 10-fold lower (1.0 × 10−6) when pre-grown on glucose (Fig. 

1C).

The number of added (CAG)n tracts was determined and plotted for each CanR clone (Fig. 

1D). For pre-growth on both galactose and glucose, the median size of large-scale 

expansions corresponded to ~60 repeats. Remarkably, for both growth conditions, we 

observed multiple clones that had added in excess of 150 repeats, which more than doubles 

the starting length of CAG repeats. We sequenced the expanded repeats of 21 CanR clones 

and found that the CAG tracts were pure and did not contain any large insertions that could 

account for the increased PCR product size (Table S1). Additionally, 18 out of 19 sequenced 

CanR clones with (CAG)n expansions did not contain any point mutations in CAN1, while 

the remaining clone had a silent mutation in the CAN1 ORF. We also constructed a strain 

carrying a cassette with a shorter (CAG)93 repeat tract. The expansion rate for the (CAG)93 

repeat was an order of magnitude lower (3.0 × 10−7 on glucose and 5.7 × 10−7 on galactose) 

than for (CAG)140 (Fig. 1C), highlighting that the likelihood of large-scale expansions in 

yeast increases with starting tract length and mimicking the genetic anticipation 

phenomenon observed in human pedigrees.

Notably, the rate for large-scale expansions of the (CAG)140 run was considerably lower 

than the rate of small-scale expansions previously determined for similar size CAG tracts17. 

To determine how frequently small-scale expansions occurred in our experimental system, 

we grew our strain with (CAG)140 repeats under non-selective conditions followed by 

analyzing the repeat’s length by single colony PCR. Similar to the previous data, we 

observed relatively high frequencies of small-scale expansions in strains grown on either 

glucose or galactose (~1.0%), and even higher frequencies of contractions, particularly on 

galactose (17.5% versus 5.3% on glucose) (Table S2).

Genetic control of large-scale CAG repeat expansions is distinct from small-scale 
expansion

Using our selectable system, we took a candidate gene approach to identify genes involved 

in large-scale CAG expansions. Srs2 is a DNA helicase that has been shown to unwind CAG 

repeats in vitro37. Also, eliminating Srs2 function resulted in an increased rate of small-scale 

expansions8,21. We reasoned that if large-scale expansions observed by us result from 

multiple small-scale events, Srs2 deletion would similarly show an increased expansion rate 

in our experimental system. However, we saw no effect of srs2Δ on large-scale CAG 

expansions (Fig. 2A).

Mismatch repair (MMR) proteins have been shown to affect CAG expansions in several 

experimental systems38. Msh2–Msh3 (MutSβ) typically binds to long insertion or deletion 

loops to promote repair, but in the context of CAG repeats, Msh2–Msh3 promotes 

expansions. Analysis of MMR proteins using a yeast system for detecting small-scale 

expansions found that msh3Δ reduced, whereas msh6Δ increased, CAG expansion rate39. In 

contrast, we observed no difference in the rates of large-scale expansions between various 

MMR deficient strains as compared to wild-type (Fig. 2B).
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Genetic control of large-scale CAG repeat expansions implicates genes required for 
homologous recombination and specifically the break-induced replication pathway

The role of homologous recombination (HR) in CAG repeat expansion has been studied in 

several yeast systems, indicating differing results that may reflect distinct aspects of CAG 

repeat instability. Eliminating Rad51 and Rad52 proteins had no effect on expansion rate of 

short tracts of (CAG)13 or (CAG)25 repeats16,21. Chromosomal fragility and expansions of 

(CAG)70 run were enhanced by loss of these recombination proteins40. However, in mutant 

backgrounds where (CAG)70 expansions were elevated, this increase was dependent on HR 

proteins8,40. In contrast, large-scale expansions of GAA and ATTCT repeats were not 

affected by loss of Rad51 or Rad52. Strikingly, we found that the rate of large-scale CAG 

expansion was reduced 32-fold in the rad52Δ mutant and 5-fold in rad51Δ compared to the 

wild type strain (Fig. 2A), implicating a role for HR in this process.

HR encompasses double-strand break repair (DSBR), synthesis-dependent strand annealing 

(SDSA), and break-induced replication (BIR), all of which require end-resection by the 

MRX (Mre11-Rad50-Xrs2) complex41. Inactivating Mre11 diminishes large-scale 

expansions of CAG repeats 10-fold (Fig. 2A). DSBR and BIR repair two-ended or one-

ended DNA breaks, formation of which may require resolution of a double or single 

Holliday junction, respectively. We tested single and double knockouts of the resolvase 

genes MUS81 and YEN1 and found that only the double mutant showed a decrease in 

expansion rate (Fig. 2B), thus indicating an overlapping role for these proteins in resolving 

Holliday junctions associated with the formation of large-scale CAG repeat expansions.

To discriminate between the distinct pathways of HR, we looked at the role of Pol32 - a non-

essential subunit of polymerase δ that is required for BIR42, and much less for other 

branches of HR. In BIR, DNA synthesis occurs in the context of a displacement loop (D-

loop), potentially to the end of the chromosome. Remarkably, eliminating POL32 reduced 

the expansion rate 15-fold (Fig. 2A). Following end resection and strand invasion during 

BIR, Pif1 helicase stimulates DNA synthesis. We observed a strong (10-fold) reduction of 

expansion rate for pif1Δ and a more modest decrease for the pif1-m2 mutant43, which 

eliminates nuclear activity while maintaining function in the mitochondria. (Fig. 2A, S1). 

The smaller effect of the pif1-m2 allele may be due to residual Pif1 activity in the nucleus, 

which has been reported previously for other BIR assays44,45. Knock out of REV3 gene, 

encoding for DNA polymerase zeta, showed only a 2-fold decrease in CAG expansion rate, 

indicating that the role of Pol32 and Pif1 in large-scale CAG expansion is not primarily 

dependent on translesion synthesis (Fig. S4).

Large-scale CAG repeat expansions are a replication-dependent event associated with 
replication fork stalling

In eukaryotes, BIR was most extensively characterized in budding yeast in the context of an 

irreparable one-ended double strand break (DSB) generated by HO endonuclease41,46 or 

chromosome fragmentation47. Because these events were almost exclusively repaired in G2 

phase, the D-loop could be involved in DNA synthesis to the end of the chromosome. 

Though a remarkable feat, repair of the broken chromosome comes at a cost given the high 

mutagenicity of BIR synthesis48. BIR was proposed to repair one-ended DSBs resulting 
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from replication fork breakage, as well. However, recent work investigating this subject 

concluded that while repair of the one-ended DSB uses error-prone Pol32-dependent 

synthesis initially, its scope is limited owing to the arrival of a converging replication fork 

followed by Mus81 or Yen1-dependent D-loop cleavage, referred as Broken Fork Repair 

(BFR)49. Thus, the trade-off between BIR and BFR repair pathways depends on the 

proximity or activity of a convergent replication origin.

To test whether large-scale CAG repeat expansions occur during S-phase in our system, we 

treated cells with low doses of camptothecin, a topoisomerase I inhibitor, which triggers 

replication fork breakage in S-phase, as well as hydroxyurea to increase replication fork 

stalling and collapse. We found that both treatments increased (over 3-fold) the rate of large-

scale CAG expansion (Figure 3A).

Previous studies have convincingly demonstrated that long CAG repeats promote replication 

fork stalling, breakage, and the formation of joint molecules consistent with recombination 

intermediates8,9. To confirm whether replication fork stalling and breakage occur in our 

CAG system, we looked for accumulation of the γ-H2AX histone variant – a marker for 

both fork stalling and DSB repair50,51 - at our repetitive run during S-phase. Using ChIP 

analysis, we indeed saw enrichment of γ-H2AX at the (CAG)140 repeat, which peaked 40 

minutes following release into S-phase from alpha factor arrest (Figure 3B).

Discussion

Our results clearly show that the genetic control of large-scale CAG expansions is different 

from the genetic control of small-scale CAG expansions. Most importantly, the role of 

principal players in break-induced replication (BIR), the Pol32 subunit of DNA polymerase 

delta and Pif1 helicase in large-scale CAG expansions, was never before observed for CAG 

or other expandable repeats.

Based on these results, we propose a comprehensive model of large-scale CAG repeat 

expansions. We believe that large-scale expansions of long CAG tracts are rooted in their 

ability to form stable hairpin structures during DNA synthesis, which ultimately leads to 

replication fork stalling8,24 (Fig. 4A,B). Such stalling, including at various triplet repeats, 

was previously shown to cause fork reversal52,53 (Fig. 4C). Isomerization of the resulting 

four-way junction (chicken-foot structure) will lead to the formation of a Holliday junction 

(Fig. 4D), whose resolution by proteins such as Mus81 or Yen1 would result in a one-ended 

DSB (Fig. 4E). Alternatively, endonucleases could act directly on the hairpin structure at the 

stalled fork to create a one-ended DSB (Fig. 4B).

The one-ended DSB would be subject to end resection by the MRX complex, creating a 3’-

single stranded DNA (ssDNA) tail stabilized both by proteins (RPA and Rad51) as well as 

hairpin formation of the repetitive sequence (Fig. 4F). To restart the replication fork, the 

one-ended DSB will invade the sister chromatid and create a D-loop (Fig 4G). Since this 

one-ended DSB occurs within a long repetitive run, it would tend to invade its repetitive 

counterpart out-of-register. Indeed, out-of-register invasion has been previously proposed as 

a mechanism of CAG repeat instability. However, these studies involved artificially induced 
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two-ended DSBs54 or DSBs generated during meiotic recombination55. Notably, in our 

model, hairpin formation on the ssDNA portion of the repeat tract would exacerbate this out-

of-register invasion potentially explaining the bias for repeat expansions observed during 

intergenerational transmissions in human pedigrees. The convergent replication origin 

(ARS307) is ~30 kb away in our experimental system. Thus, it would take just ~10 minutes 

for the converging fork to reach the stall site. Consequently, BIR would only progress over a 

relatively short distance past the break (Fig. 4H). After its collision with the converging fork, 

a single Holliday junction would need to be resolved to separate the newly synthesized DNA 

molecule, which would have accumulated extra CAG repeats in the nascent DNA strand 

equivalent to the out-of-register invasion step. Mus81, Yen1, or the two proteins together 

could act at this step in addition to its earlier role in Holliday junction resolution of the 

isomerized four-way junction. Thus, the genetic control of large-scale expansions of CAG 

repeats has characteristics of both BIR and BFR.

Intriguingly, the proposed mechanism of large-scale CAG repeat expansion is distinct from 

mechanisms described for small-scale expansions of short CAG tracts. In those cases, loss of 

RAD51 or RAD52 genes had little, if any, effect on the rate of (CAG)25 expansions16,21. A 

likely explanation for this difference is that long CAG tracts are more susceptible to fork 

stalling and DNA breakage than the shorter ones. Supporting this reasoning, it was recently 

found that expanded CAG repeats are more likely than unexpanded repeats to localize to the 

nuclear periphery during S-phase of the cell cycle22. This observation could point to the 

repair of one-ended DSB, as proposed by us, at a nuclear pore.

Additionally, our genetic analysis of large-scale expansions of a different trinucleotide 

repeat, (GAA)n, was inconsistent with HR, BIR, and BFR pathways, but implied template-

switching during DNA replication as a mechanism for expansions31. While fork stalling at 

long GAA runs, similarly to CAG runs, results in DSB formation56, we believe that the 

difference in expansion pathways could be due to the triplex-forming potential of the GAA 

repeat, which would hide ssDNA formed upon end-resection from the HR machinery.

Note that the proposed mechanism has underlying similarities with microhomology-

mediated break-induced replication (MMBIR) pathway, which was brought forth to explain 

copy number variation and chromosomal rearrangements in humans57 and budding yeast58. 

Our data add large-scale expansions of CAG repeats as another striking example of genome 

instability arising from BIR and BFR, highlighting the fundamental importance of these 

processes in DNA damage repair, albeit at the expense of repeat instability and mutagenesis.

Could BIR account for CAG repeat expansions observed in human patients? While it is too 

early to say, we believe that it is an attractive model for large-scale expansions in dividing 

cells. In contrast, somatic instability was reported to result from cumulative small 

mutations59, making mechanisms such as toxic oxidation cycles more likely. Though the 

timing of expansion in human cases is unclear, it is possible that CAG-induced replication 

fork stalling and subsequent repair might occur during cell divisions of early embryonic 

development or during division of spermatogonial stem cells, which are exciting areas of 

future investigation. Thus, the price of BIR to repair DNA damage at long CAG repeats may 

contribute to the development and severity of human genetic disease.
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Online Methods

Plasmids

CAG repeats were obtained from pGL2-CTG14060. The repeats were cut out with AvrII and 

SfoI and initially cloned into a pYES3-TET644 derivative (described as (GAA)0
61, which 

had been cut with BsaBI and an engineered AvrII site. This plasmid was used as template for 

generating a PCR product (primers JK109 and JK110) containing CAG repeats with NcoI 

and NotI handles. The PCR product was cloned into pYes3-G4G1C1-T150-GAA10033, 

which had been cut with NcoI and NotI to remove the GAA repeats. As this construct did 

not allow selection of large-scale CAG repeat expansions, the length of the “spacer” was 

increased using PCR products with NcoI handles generated from the bacterial tetracycline 

resistance gene (Forward JK161 with reverse JK162, JK163, or JK164). The plasmid used in 

the present study for analyzing large-scale expansion of (CAG)140 is pYes3-G4G1C1-Fori-

CAG140-tetbal1-rev (799 bp). For analyzing (CAG)93, a plasmid containing contracted 

CAG repeats and a longer fragment from the tetracycline resistance gene was used, pYes3-

G4G1C1-Fori-CAG93-tetbal2-rev (708 bp). The repeat’s integrity in these constructs was 

verified by plasmid sequencing using primers FlankL and CanF. A no repeat control plasmid 

was constructed by cloning a PCR fragment from the tetracycline resistance gene (primers 

JK161 and JK165) into the NcoI and SphI sites of pYes3-G4G1C1-T150-GAA100, which is 

called pYes3-G4G1C1_Fori_tet340. All bacterial cloning steps were carried out in the 

Escherichia coli SURE2 strain (Agilent). Primers are available in Table S3.

Yeast strains

All strains in this study are isogenic to Saccharomyces cerevisiae wild-type (WT) strain 

CH1585 (MATa, leu2-Δ1, trp1-Δ63, ura3–52, his3–200), an S288c-related haploid strain 

used in our previous studies31. For transformation into the CH1585 can1::KanMX strain33, 

the construct was digested from the plasmid using SwaI. Transformants were selected on 

synthetic complete media lacking tryptophan. The cassette is positioned ~1 kb downstream 

of ARS306 replacing SGD coordinates 75594–75641 on chromosome III. Correct 

integration was verified by PCR (primers TrpsF and 36aR or A36bF and CanF). Integrity of 

CAG repeat length was verified by PCR and Sanger sequencing using primers FlankL and 

CanF.

Gene knockouts were constructed using a PCR-based method for direct gene replacement 

with pAG32 (HphMX4) or pAG25 (NatMX4)62 used as template for PCR. Yeast strains are 

available in Table S4.

Fluctuation assay and calculation of rates

Colonies were grown on rich media containing glucose (YPD) or galactose (YPGal) for 72 

hours. Individual colonies were suspended in 0.2–1 mL sterile water, serially diluted, and 

plated on synthetic complete media containing galactose and canavanine [2% galactose, 

0.67% yeast nitrogen base, 0.2% drop-out mix synthetic minus arginine (US Biological 

D9518), 2% agar, and canavanine sulfate (Sigma C9758)] as well as on YPD media for 

determination of total cell number. Non-selective growth was on galactose for all knockout 

and mutant strains unless noted otherwise. The standard concentration of canavanine used 
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was 60 µg/mL. 120 and 200 µg/mL concentrations were also used to minimize background 

colony growth for some strains/conditions as noted in the text. For each experiment, at least 

12 independent colonies were grown, though colonies that had an initial contraction or small 

expansion were excluded from the analysis. All rates are determined from at least 9 

independently grown cultures with verified ((CAG)140 or (CAG)93) starting length. Colonies 

on YPD was counted on Day 3. CanR colonies were counted on Day 4 for 60 or 120 µg/mL 

and Day 5 for 200 µg/mL canavanine concentration. PCR was performed on all or at least 8 

CanR clones from each plate to determine CAG repeat length. The total number of expanded 

clones by PCR or the number of CanR clones multiplied by the total frequency of expanded 

clones by PCR was used to determine expansion rates. Rates and 95% confidence intervals 

were calculated using the Ma-Sandri-Sarkar maximum likelihood estimator (MSS-MLE) 

method with correction for plating efficiency determined as z-1/zln(z), where z is the 

fraction of the culture analyzed63. The average number of viable cells grown on YPD (Nt) 

was used in all calculations.

18 out of 19 sequenced CanR clones with (CAG)n expansions did not contain any point 

mutations in CAN1.

Single colony PCR to determine expansion size and generate products for sequencing

Genomic DNA was isolated from CanR clones using a previously described method64. Cells 

were resuspended in 1.5 µL of 0.5 mg/mL lyticase solution [0.9 M Sorbitol, 0.1 M EDTA 

(pH 7.4)] in microplates, incubated at 37°C for 15 min, then resuspended in 50 µL of water. 

The samples were incubated at 100°C for 5 min and centrifuged at 2,500 × g for at least 2 

min. For PCR analysis of CAG repeat length, reactions included 1× Green GoTaq reaction 

buffer (M7911, Promega), 0.16 mM dNTP mix, 0.8 µM of each primer, 0.5 units of Taq 

DNA polymerase (SibEnzyme or Thermo Scientific), and 1 µL of the DNA supernatant in a 

12.5 µL total reaction volume. Primers JK316 and JK317 result in a 544 bp product for 

(CAG)140. Primers JK318 and JK319 result in a 625 bp product for (CAG)140 (Figure 1B). 

Primers JK153 and JK171 result in a 462 bp product for (CAG)140 and 321 bp (CAG)93. 10 

µL PCR products were run on 1.5% agarose in 0.5× TBE alongside 50 bp and 100 bp DNA 

ladders (NEB). PCR products were sized using TotalLab Quant software for 1D DNA gels.

The same PCR method was used to generate products for sequencing the CAG repeats 

(FlankL and CanF) or the CAN1 gene (JK167 and JK168, JK169 and JK170). PCR products 

were Exo-SAP treated (Affymetrix) and sequenced by Eton Bioscience or University of 

Chicago Sequencing Core).

Chromatin immunoprecipitation

Strain YJK146 containing (CAG)140 and the no repeat control YJK154 was analyzed by 

chromatin immunoprecipitation (ChIP) using antibodies recognizing phosphorylated H2A 

Serine129 (ab15083, Abcam). This modification has been referred to as γ-H2AX in yeast65. 

Yeast were grown to an O.D. of ~0.8 in YPGal, arrested in G1 using alpha factor, then 

washed twice with water and released into YPGal. 50 mL cultures of 0, 20, 40, 60, and 90 

minute time points were cross-linked with 1% formaldehyde for 15 minutes at room 

temperature, and quenched with glycine. Cells were lysed mechanically with 0.5 mm glass 
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beads. The chromatin-containing cell suspension was sonicated to yield sheared DNA in the 

range of approximately 100–1500 bp. Antibody bound DNA was immunoprecipitated (IP) 

using Protein G Dynabeads (Invitrogen). Samples were analyzed by quantitative PCR using 

QuantStudio 6 (Applied Biosystems). Relative quantities of IP and input DNA were 

determined using a standard curve for primers at the CAG locus as well as non-enriched 

control, ACT1. IP/input values for the CAG locus is normalized to ACT1. The graph shows 

the fold-enrichment of the CAG strain compared to the no repeat control strain.

Statistical methods

Rates of expansion and 95% confidence intervals (error bars) were calculated based on 

distribution of expanded clones in at least 9 independent cultures (number depends on clones 

found to have the correct starting repeat length) using the Ma-Sandri-Sarkar maximum 

likelihood estimator with a correction for sampling and plating efficiency. Median and 

interquartile values are reported in Figure 1D. ChIP timepoints were analyzed by one-way 

ANOVA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Large-scale CAG repeat expansions can be recovered and analyzed in budding yeast
(A) Experimental system to study large-scale CAG repeat expansions. In the starting strain, 

the distance between the upstream activating sequence (UASGAL) and TATA box promoter 

(PGAL) allows transcription of the forward selection marker CAN1, which encodes an 

arginine permease. Large-scale expansions will result in CanR clones. Bar above the CAG 

repeats indicate product of single colony PCR used for determination of repeat length. (B) 

Agarose gel showing PCR amplification of CAG repeat length for CanR clones. Arrow 

points to the initial length of (CAG)140. Only expanded clones are used to calculate 
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expansion rates. Asterisks in lanes 2, 3, 5, 6, and 7 indicate expanded clones. (C) Rate of 

expansion (per cell per division) for (CAG)140 and (CAG)93, for non-selective growth on 

glucose and galactose. Rates and 95% confidence intervals (error bars) were calculated 

based on distribution of expanded clones in at least 10 independent cultures using the Ma-

Sandri-Sarkar maximum likelihood estimator with a correction for sampling and plating 

efficiency. (D) Distribution of repeats added to (CAG)140 for non-selective growth on 

glucose and galactose. The median number of repeats added is 61.7 repeats (interquartile 

range 30.7–85.3) for glucose and 68.3 repeats (interquartile range 48.0–95.7) for galactose.
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Figure 2. Genetic control of large-scale CAG repeat expansions
Effect of different gene knockouts on the large-scale expansion rate of (CAG)140 pre-grown 

on galactose. (A) 60 µg/mL canavanine concentration and (B) 200 µg/mL canavanine 

concentration. Rates of expansion and 95% confidence intervals (error bars) were calculated 

based on distribution of expanded clones in at least 9 independent cultures using the Ma-

Sandri-Sarkar maximum likelihood estimator with a correction for sampling and plating 

efficiency. Dashed line designates 3-fold decrease from wild-type. Numbers above the 

dashed line show fold decrease compared to wild-type.
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Figure 3. Large-scale CAG repeat expansions are a replication-dependent event associated with 
replication fork stalling and collapse
(A) Effect of 10 µg/mL camptothecin and 50 mM hydroxyurea treatment on large-scale 

expansion rate of (CAG)140 pre-grown on galactose. Rates of expansion and 95% confidence 

intervals (error bars) were calculated based on distribution of expanded clones in at least 9 

independent cultures using the Ma-Sandri-Sarkar maximum likelihood estimator with a 

correction for sampling and plating efficiency. Numbers above the confidence intervals 

reflect fold increase over the wild-type. Canavanine concentration was used at 120 µg/mL. 

(B) Enrichment of γ-H2AX at the (CAG)140 locus following release from alpha factor arrest 

by chromatin immunoprecipitation and quantitative PCR. The mean and range are plotted 
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for each time point. P = 0.054 by one-way ANOVA comparison of all time points for γ-

H2AX at PGAL.
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Figure 4. Model of large-scale CAG repeat expansions
(A) Replication fork progression proceeds through the repetitive region. In this experimental 

system, CAG is on the lagging strand template (red) and CTG is on the leading strand 

template (blue). Closed circles denote 5’ end of template strand, and closed arrows denote 3’ 

end of nascent strand. (B) Stable hairpin formation on exposed single-stranded DNA. Gray 

arrow denotes potential site of endonuclease cleavage, which could then directly proceed to 

F. (C) Replication fork reversal. (D) Four-way junction from C isomerizes to form a 

Holliday junction, which can be cleaved by resolvase proteins (gray arrows). (E) A one-

ended double strand break is subject to 5’ to 3’ resection (dotted line), resulting in single-

stranded repetitive sequence. (F) The single-stranded repetitive sequence is coated by RPA, 

then Rad51 (dark gray circles) and forms stable hairpin structure(s). (G) Out-of-register 

invasion results in formation of a D-loop. A left-ward moving convergent replication fork 

shows the leading strand (green) and lagging strand (yellow) emanating from the adjacent 

replication origin. (H) Pol32-dependent DNA synthesis continues, further extending D-loop 

progression. (I) The D-loop converges with the left-ward moving replication fork resulting 

in a Holliday junction, which needs to be resolved (gray arrows). (J) The nascent DNA 
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strand (bottom) would have accumulated extra CAG repeats equivalent to the out-of-register 

invasion step resulting in a large-scale expansion.
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