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Abstract

In both within-host and epidemiological models of pathogen dynamics, the basic reproductive ratio, R0, is a powerful tool for gauging

the risk associated with an emerging pathogen, or for estimating the magnitude of required control measures. Techniques for estimating

R0, either from incidence data or in-host clinical measures, often rely on estimates of mean transition times, that is, the mean time before

recovery, death or quarantine occurs. In many cases, however, either data or intuition may provide additional information about the

dispersal of these transition times about the mean, even if the precise form of the underlying probability distribution remains unknown.

For example, we may know that recovery typically occurs within a few days of the mean recovery time. In this paper we elucidate

common situations in which R0 is sensitive to the dispersal of transition times about their respective means. We then provide simple

correction factors that may be applied to improve estimates of R0 when not only the mean but also the standard deviation of transition

times out of the infectious state can be estimated.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The basic reproductive ratio, R0, is a fundamental
concept in both within-host and epidemiological models
of pathogen dynamics. Defined as the number of secondary
infections caused by a single infectious individual in a
susceptible population, R0 is used to gauge the magnitude
of the risk associated with a novel pathogen, and to
estimate the degree of control that will be necessary to
contain an outbreak. For example, in the last several years
R0 has been a key factor in our understanding of emerging
diseases such as Severe Acute Respiratory Syndrome
(SARS) (Choi and Pak, 2003; Lipsitch et al., 2003;
Lloyd-Smith et al., 2003; Riley et al., 2003) and avian
influenza (Stegeman et al., 2004; Ferguson et al., 2005;
Longini et al., 2005), livestock diseases such as Bovine
Spongiform Encephalitus (Woolhouse and Anderson,
1997; Ferguson et al., 1999; de Koeijer et al., 2004) and
e front matter r 2006 Elsevier Inc. All rights reserved.
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Foot and Mouth Disease (Ferguson et al., 2001; Matthews
et al., 2003), as well as vector-borne disease such as Dengue
(Luz et al., 2003), Malaria (Hagmann et al., 2003; Smith
and Ellis McKenzie, 2004) and West Nile Virus (Wonham
et al., 2004; Cruz-Pacheco et al., 2005). Recent analyses of
HIV therapy (Smith, 2006), river blindness (Filipe et al.,
2005) and Escherichia coli in cattle (Matthews et al., 2006)
also rely on this important concept (see Heffernan et al.,
2005 for review).
Given precise knowledge of the probability distributions

for times in the exposed or infectious states, the mathematical
derivation of R0 is straight-forward (Diekmann and Hees-
terbeek, 2000). In practical terms, however, the estimation of
R0 from incidence or clinical data is far more difficult.
Systems of ordinary differential equations (ODEs) or other
simplifying arguments are used to derive estimates of R0 in
terms of measurable parameters (Dietz, 1975; Anderson and
May, 1991; Dietz, 1993; Mollison, 1995; Diekmann and
Heesterbeek, 2000; Hethcote, 2000; Brauer, 2002).
These estimates typically assume, however, that the

lifetimes of individuals in each state are exponentially
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Fig. 1. R0 for SARS is plotted with respect to the coefficient of variation

of the recovery time distribution for various values of the CoV of the

death time distribution (lines). For reference, the Weibull distribution is

also plotted for different values of the CoV (see insets). Parameters values:

m�1 ¼ 36days, v�1 ¼ 23:5days, w ¼ 1
5
�m� vday�1 and k ¼ 10 day�1.

The value of b is chosen so that R0 ¼ 3 (dot). See Donnelly et al. (2003)

and Lipsitch et al. (2003) for details.
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distributed. In an ODE formulation, this is a direct result
of the Markov property that each state is memoryless, that
is, the probability of making a transition to a new state
does not depend on the length of time an individual has
spent in the current state. For example, in all ODE models
the probability of death is independent of the age of the
individual or the time since infection; likewise the prob-
ability of recovery is independent of the time since
infection. (For simplicity we use the word lifetime to mean
the time spent in a single state or class such as ‘‘infected’’;
we do not restrict this word to mean the entire lifetime of
the individual.)

As noted by many others, this assumption of constant
transition probabilities is mathematically convenient, but is
often difficult to defend on biological grounds (Lloyd,
2001a–c; Heesterbeek and Dietz, 1996; Perelson and
Nelson, 1999; Nelson et al., 2004). Previous studies have
considered the effects of non-exponential lifetime distribu-
tions on the dynamics and persistence of childhood
diseases (Grossman, 1980; Keeling and Grenfell, 1997,
1998; Lloyd, 2001b,c). Non-exponential distributions have
also been used to describe the mean incubation period
(Anderson, 1988; Lui et al., 1988) and infectious period
(Blythe and Anderson, 1988; Castillo-Chavez et al., 1989;
Mittler et al., 1998; Nelson et al., 2004) of Human
Immunodeficiency Virus (HIV). For example, Lloyd
(2001a) elucidated the sensitivity of R0 to the probability
distributions describing the viral life cycle.

Unfortunately, for any practical study, the underlying
probability distributions for transition times are almost
certainly unknown. Nonetheless, in many cases the data at
hand (or practical intuition) may provide more informa-
tion than simply the mean lifetime. For example, while
death from natural causes may be assumed to be
exponential during an epidemic, recovery from the disease
is almost certainly less dispersed. If the standard deviation
of the recovery times is also known, we may be able to use
this information to derive a more accurate estimate of R0.
We might also improve our estimate of R0 if the standard
deviation is not known precisely, but is known to lie within
a certain range.

The goal of this paper is to derive improved estimates of
R0 for situations in which not only the mean, but some
understanding of the dispersal of transition times is
available to the clinical or epidemiological practitioner.
To focus this investigation, we will restrict our attention to
transition times out of the infectious state. We thus consider
a large number of processes such as natural death, death
due to disease, recovery and removal to quarantine, or for
in-host models, loss of infected cells due to natural death,
lysis, immune-mediated cell death, etc. The probability
distributions of other parameters, such as infectivity, are
also critical to disease dynamics (Nelson et al., 2004; Lloyd,
2001c) and we hope to address such issues in future work.

We use the concept of ‘‘competing processes’’ to identify
situations in which R0 is sensitive to the dispersal of
transition times. We then use the two most common
lifetime distributions—the Weibull and the Gamma (see
the Appendix)—to derive correction factors for R0, based
on both the mean and the standard deviation of the
appropriate lifetimes. The correction factor is modest
ðp30%Þ when one of the competing processes is exponen-
tially distributed, but approaches 200% when both
processes are narrowly dispersed and have similar means.
We motivate this study by first discussing several recent
examples from the literature.
2. Recent estimates of R0 are sensitive to lifetime

distributions

SARS: The estimation of R0 for SARS received
considerable attention (Donnelly et al., 2003; Lipsitch
et al., 2003; Lloyd-Smith et al., 2003; Riley et al., 2003;
Nishiura et al., 2004). Lipsitch et al. (2003) used an SEIR
approach to derive R0 ¼ b=ððmþ vþ wÞð1� qÞÞ, where w is
the mean daily rate at which infectious cases who are not in
quarantine are detected and isolated, q is the fraction of
persons contacted but not infected by an infectious person,
b ¼ kb where k is the baseline daily number of contacts per
capita and b is the probability of transmission per contact
between a susceptible and an infectious, m is the per capita
death rate due to disease and v is the per capita recovery
rate.
Fig. 1 shows the sensitivity of R0 to the CoV of the

recovery and death time distributions; we chose the value
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Fig. 2. (a) R0 for the epidemiological spread of HIV is plotted with respect

to the CoV of the transition time to AIDS. The dot denotes the case when

these transition times are exponentially distributed; the distribution is

described by a Weibull distribution with shape parameter r and mean 1=v

(see text for details). All other lifetime distributions are assumed to be

exponential. v ¼ 0:083 year�1 (Blower et al., 2001), m ¼ 0:032 year�1

(Blower et al., 2001) and rb ¼ 0:23 year�1 individual�1 such that R0 for

the ODE model is 2 (Blower and McLean, 1994; Valesco-Hernandez et al.,

2002). (b) The initial growth rate r0 for the in-host HIV model is plotted as

a function of the CoV of the Weibull distribution of cell death times

(dotted line); both uninfected and infected cells were assumed to have the

same shape parameter although different means. Here r0 is the solution to

Eq. (23) when bðtÞ ¼ kQ and f ðtÞ ¼
R t

r¼0 e�ðuþbx0Þrbe�ðsðt�rÞÞr dr, when

s ¼ aGð1þ 1=rÞ. The dots and error bars give r0� one standard error of

the mean as computed by Monte Carlo simulation (see Heffernan and

Wahl, 2005). Parameters values: l ¼ 100 cells m l�1 day�1, d ¼ 0:1 day�1,
b ¼ 0:0032day�1, a ¼ 0:5 day�1, Q ¼ 0:05, k ¼ 62:5day�1 and u ¼

3day�1 (Perelson and Nelson (1999); Wahl and Nowak (2000); Smith

and Wahl (2004)).
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of b such that R0 ¼ 3, the mean value estimated by Lipsitch
et al. (2003), when lifetimes are distributed exponentially
(dot). These estimates of R0 are consistent with the range
2:2oR0o3:6 reported in the literature. We find that R0 is
quite sensitive to the dispersal of the relevant distributions.

HIV epidemiology: R0 for the epidemiological spread of
HIV has also been derived from ODE models. For
example, Hyman and Li (2000) derive R0 ¼ rb=ðmþ vÞ,
where b is the transmission probability per contact and r is
the contact rate. The parameter v gives the rate of
progressing to AIDS, while m gives the rate at which
individuals are removed from the infectious compartment
by other causes, for example, ceasing to be sexually active.
The contact rate for individuals who have progressed to
AIDS is assumed to be negligible; HIV is no longer
transmitted at this stage.

As an ODE formulation, this model assumes that the
rate of progressing to AIDS is independent of the time
since infection. In Fig. 2(a) we demonstrate the sensitivity
of R0 to this assumption. Again we plot R0 versus the CoV
of a Weibull distribution of transition times to AIDS; the
dot gives the case when these times are exponentially
distributed.

HIV immunology: R0 is also central to the quantitative
study of within-host HIV dynamics. The basic model of in-
host infection consists of a set of ODEs that describe the
interactions between susceptible cells, x, infected cells, y,
and infectious virions v (Ho et al., 1995; Wei et al., 1995;
Perelson et al., 1996; Nowak and May, 2000):

dx

dt
¼ l� dx� bxv,

dy

dt
¼ bxv� ay,

dv

dt
¼ Qky� bxv� uv. ð1Þ

Susceptible cells are produced at a constant rate with mean
l from a pool of precursor cells and die with rate d. Virions
are budded with rate k and have probability Q of being
infectious. Infectious virions can infect healthy cells via
mass action dynamics where b describes the efficacy of this
process. Infected cells die with rate a and virions are
cleared at rate u.

The basic reproductive ratio for this system depends on
f ðtÞ, the probability that an infectious virion budded at
time zero produces an infected cell that is still alive at time
t. In terms of the underlying distributions we see that:

f ðtÞ ¼

Z t

r¼0

ûðrÞb̂ðrÞâðt� rÞ dr

¼ ðûb̂Þ � âðtÞ, ð2Þ

where ûðrÞ denotes the probability that the virion is still in
circulation at time r, ĝðrÞ denotes the rate at which a virion,
which has existed for time r, infects and âðt� rÞ is the
probability that an infected cell lives to be age t� r.
Convolution is denoted by �. Substituting into Eq. (22) (see
Appendix A.2) with bðtÞ ¼ kQ and assuming that û, ĝ and â

are distributed exponentially, we find that R0 ¼ kQbx0=
ðaðbx0 þ uÞÞ, where x0 is the mean number of uninfected
cells at the uninfected equilibrium.
Eqs. (2) and (22) may also be used, however, when any of

the underlying distributions are non-exponential. As an
example, we consider the case when cell death time
distributions are less dispersed than exponential, while
all other processes are exponentially distributed. It is
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Fig. 3. (Top panel) The effective infectious period is plotted versus the

mean of distribution B, 1=b when B is exponentially distributed. It is

assumed that A is exponentially distributed with mean 1=a. Three different

scenarios are highlighted: when b5a (left inset), a ¼ b (middle inset, dot)

and bba (right inset). (Bottom panel) The effective infectious period is

plotted versus the CoV of distribution B with mean 1=b when B is

described by a Weibull distribution (solid line) and a Gamma distribution

(dash dot line). It is assumed that A is exponentially distributed with mean

1=a ¼ 1=b. Three different scenarios are highlighted for B: less dispersed

than exponential (left inset), exponential (middle inset) and more dispersed

(right inset).
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straight-forward to demonstrate through Eq. (22) that the
basic reproductive ratio is insensitive to this change.
However, the initial growth rate of the virus strongly
depends on these cell lifetime distributions, as demon-
strated in Fig. 2(b). This point will be taken up again in
Section 4.

Note that we have not considered any change in the
infection time of an infectious virion since this case is not

included in our restricted focus on distributions of
transition times out of the infected state only. We likewise
do not explore the delay between the infection of a cell and
virion production (Herz et al., 1996; Culshaw and Ruan,
2000; Nelson and Perelson, 2002; Dixit and Perelson,
2004).

3. Correction factors for competing processes

3.1. Competing processes

It is clear that changes to the mean times associated with
transitions out of the infectious state(s) directly affect R0.
The fact that R0 is also sensitive to the shapes of these
distributions, even if the mean is unchanged, is also
relatively well-known (see Diekmann and Heesterbeek,
2000).

In the previous examples we found that R0 sensitively
depends on the shape of the distribution for the progres-
sion to AIDS. Likewise, for the SARS example, changes in
the death time distribution affected R0. However, the shape
of the death time distribution for infected cells had no
effect on R0 for in-host HIV infection. This can be
explained using the concept of competing processes. For
SARS, individuals leave the infected state either through
recovery or death; recovery and death are competing, in
this sense, to end the infectious period. In the epidemio-
logical model of HIV, the infectious period ends if
individuals progress to AIDS, or if they cease to be
sexually active. In the in-host HIV model, however, the
death of an infected cell is not in competition with another
process.

We define the ‘‘effective infectious period’’, L, as the time
for which an individual remains infectious, irrespective of
the process by which the individual leaves this compart-
ment. When two (or more) processes are in competition to
end the effective infectious period, not only the mean but
the entire shape of the probability distribution for each
process will affect the mean of L, and thus affect R0.

Mathematically, consider two renewal processes which
have transition times given by random variables A and B

with means 1=a and 1=b, respectively. The probability
distribution of A gives the distribution of times at which an
infectious individual would leave the infectious compart-
ment through process A; likewise for B. We assume that the
two processes are independent, which is already implied in
the system of differential equations. We also assume that
the two processes are ‘‘competing’’, by which we mean
that an infectious individual will leave the infectious
compartment through one and only one of the two
processes. In this case the survival probability, the
probability that an individual is still in the infectious
compartment at time t, can be written as

f ðtÞ ¼ probðminðA;BÞ4tÞ

¼ probððA4tÞ \ ðB4tÞÞ

¼ probðA4tÞ � probðB4tÞ, ð3Þ

since A and B are independent. Thus, f ðtÞ is simply the
product of the tail distributions for A and B. The effective
infectious period is then found by simply integrating f ðtÞ

from zero to infinity.
Fig. 3 plots the effective infectious period, L versus the

mean of B, when both A and B are exponentially
distributed and the mean of A is fixed (top panel). The
insets show examples of the two distributions when b5a
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(far left), a ¼ b (middle) and bba (far right). When a ¼ b

(closed circle), L is given by 1=ð2aÞ. When the means of the
two distributions are very different (at the extremes to the
left and right), L is dominated by one process and
approaches either 1=a or 1=b. When a and b are of the
same magnitude, however, the effective infectious period
will be sensitive to both distributions.

In the bottom panel we therefore examine the case when
a ¼ b more closely. We now let the CoV of B vary, while A

is exponentially distributed. B is described either by a
Weibull distribution (solid line) or a Gamma distribution
(dash dot line). When the CoV of B is 1, which corresponds
to an exponential distribution, L ¼ 1=ð2aÞ (dot, middle
inset). When the CoV is greater than 1, L decreases. When
the CoV is less than 1 such that B is less dispersed than
exponential (see left inset), L increases toward a plateau.
For the Gamma distribution this asymptotic value of L is
given by

lim
k!1

1

a
1�

k

k þ 1

� �k
 !

¼
1� e�1

a
, (4)

where k is the shape parameter, denoting the number of
stages in the Gamma distribution. We also note that if aab

(not shown), a similar limit is obtained, with L!

ð1=aÞð1� e�a=bÞ as the CoV of B narrows. For the Weibull
distribution with shape parameter r, it is straight-forward
to demonstrate that the same limits are approached as
r!1. In fact as demonstrated in the figure, the Weibull
and Gamma distributions give only slightly different
effective infectious periods for the same CoV.
3.2. Correction factors

We have found that the effective infectious period, and
thus R0, is sensitive not only to distribution means but also
to distribution shapes when two or more processes
‘‘compete’’ to end the infectious period, and when the
mean times for the competing processes are of the same
order of magnitude. As discussed previously, methods for
estimating R0 from incidence or clinical data typically
assume that all the underlying processes are exponentially
distributed. In the following section, we derive more
accurate estimates for R0, assuming that one or both of
the competing processes are non-exponentially distributed.

Rather than re-deriving R0 for a number of models (SIR,
SEIR, vector etc.), we report a ‘‘correction factor’’, f: the
ratio of R0 when the lifetimes are non-exponentially
distributed to the value R0 that would be calculated
assuming exponential lifetimes. Where possible we report f
as a function of the CoV of the relevant distribution; in
many cases we are able to derive limiting values of f as this
distribution narrows. We also find that f can approach this
asymptotic limit very quickly, and simple formulae can be
used to correct estimated values of R0, or to gauge
the sensitivity of R0 to dispersion in the underlying
distributions.
Throughout the following section we again assume that
two renewal processes compete to end the infectious
period. The transition times for these processes are given
by random variables A and B, with means 1=a and 1=b,
respectively. As stated previously, we assume throughout
this derivation that other processes involved in the
infection time course (for example, entering the infectious
state) occur at constant rates. This implies, in particular,
that infectiousness is constant throughout the infectious
period, such that R0 may be written as R0 ¼ bL, where L is
the effective infectious period and the transmission rate b is
constant. We are then able to estimate f as the ratio of the
true value of effective infectious period, L, to the value of L

predicted by an ODE model, 1=ðaþ bÞ.

3.3. One process is exponentially distributed

In this section we assume that only random variable A is
exponentially distributed. For example, it may be natural
to assume that the recovery distribution is less dispersed
than exponential, while the natural death rate is roughly
constant over the time course of the infection. (In the latter
case the correction factor would be modest, however,
because the means of the two distributions are usually quite
different.) Removing infectious individuals to quarantine is
another process which competes with recovery and is more
likely to have a mean of the same order of magnitude.
Assume that A is exponentially distributed and B is

either described by a Gamma distribution or a Weibull
distribution. If B is described by a Gamma distribution
with k stages, the effective infectious period can be found
by integrating Eq. (3):

L ¼
1

a
1�

bk

bk þ a

� �k
 !

(5)

and thus the correction factor is

f ¼
aþ b

a
1�

bk

bk þ a

� �k
 !

. (6)

If a ¼ b, which can be used to approximate the case when a

and b are similar, this factor reduces to

f ¼ 2 1�
k

k þ 1

� �k
 !

. (7)

Of course in practice we are unlikely to have in hand an
estimate of k. Recall, however, that the CoV of the Gamma
distribution is given by C ¼ 1=

ffiffiffi
k
p

. Thus if C can be
estimated, we can write the correction factor as

f ¼
aþ b

a
1�

b

bþ aC2

� �C�2
 !

. (8)

It is also quite useful to note that, in analogy with Eq. (4),

lim
k!1

f ¼
aþ b

a
1� e�a=b
� �

, (9)
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Fig. 4. The correction factor is plotted versus the CoV of distribution B

and the ratio of means b=a when B is described by a Gamma distribution.

It is assumed that A is exponentially distributed with mean 1=a.
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which reduces to f ¼ 2ð1� e�1Þ � 1:26 if a ¼ b. In practice
this limit is approached very quickly as the distribution of
B becomes less dispersed, as shown in Fig. 4. As a practical
example, assume as in an ODE model that the rate at
which individuals are moved to quarantine is independent
of the time since infection, with a mean time of about 1
week. If we know in addition that the recovery time is 1
week �2 days, the CoV is about 0.3, and f is within about
2% of the limit given in Eq. (9). The approximation is even
better if the CoV is smaller than 30%.

Fig. 4 plots the correction factor for different ratios of
the distribution means, assuming B is described by a
Gamma distribution. We see that f decreases with the CoV
of B for all values of b=a. Note that f is maximized at � 1:3
when b=a ¼ 1:79. This can be found numerically by solving
ea=b ¼ 1þ ða=bÞ þ ða=bÞ2, which is obtained by differentiat-
ing Eq. (9).

If B is assumed to be a Weibull distribution with shape
parameter r we obtain:

f ¼ ðaþ bÞ

Z 1
0

e�ððbt=rÞGð1=rÞÞr�at dt, (10)

where GðxÞ is the Gamma function. This can only be solved
numerically, however results (not shown) are extremely
close to those illustrated in Fig. 4 for the Gamma
distribution.

3.4. Neither process is exponentially distributed

In many cases, it may be more realistic to assume that
neither of the processes in competition are distributed
exponentially. For example, both recovery and death due
to disease typically depend on the time that a host has been
infected. The correction factor for such cases is more
complex. If A and B are described by Weibull distributions
with shape parameters ra and rb, respectively, we find

f ¼ ðaþ bÞ

Z 1
0

e�ððat=raÞGð1=raÞÞ
ra�ððbt=rbÞGð1=rbÞÞ

rb
dt. (11)

Similarly, when A and B are Gamma distributions with
shape parameters ka and kb we find

f ¼ ðaþ bÞ

Z 1
0

1�

Z t

0

akaðakaxÞka�1e�akax

GðkaÞ

 !

� 1�

Z t

0

bkbðbkbxÞkb�1e�akbx

GðkbÞ

 !
dt. ð12Þ

Both of these expressions must be determined numerically.
These expressions can be simplified considerably, how-

ever, if the shapes of the two distributions are known to be
similar. Recall, for example, that a shape parameter r ¼ 3
in the Weibull distribution corresponds to a distribution
that is roughly Gaussian, with a CoV of around 30–40%. If
processes A and B can be approximated by Weibull
distributions with the same shape parameter r, we find

f ¼
aþ b

ðar þ br
Þ
1=r

. (13)

This allows for three further simplifications: when, in
addition to the shapes, the means of the two processes are
roughly equal ða � bÞ we find f � 2ðr�1Þ=r. If the means
differ but the CoV is small (say less than about 30%), we
can take the limit as r!1 to find f � ðaþ bÞ=maxða; bÞ.
Finally, if the means are similar and the CoV is small, we
have f � 2. These results are summarized in Table 1.
Although it may seem unlikely that the two relevant
distributions would have exactly the same shape, the
assumption that both shapes have a CoV of less than 30%
may be met in many cases.
Similarly, if A and B can be approximated by Gamma

distributions with different means but the same shape
parameter k, the correction factor is

f ¼ ðaþ bÞ
1

a
þ

1

b
�
ðabÞk�1

ðaþ bÞ2k�1

Gð2kÞ

GðkÞGðk þ 1Þ

 

� H ½�k; 1�; k;�
b

a

� �
þH ½�k; 1�; k;�

a

b

� �
� 1

� ��
,

ð14Þ

where Hða; b; c;xÞ is the generalized hypergeometric func-
tion. Although this expression is still unwieldy, when a � b

this reduces nicely to

f � 2 1� 21�2k Gð2kÞ

kGðkÞ2

� �
, (15)

since Hð½�k; 1�; k;�1Þ ¼ 0. Once again although k may not
be known, we can substitute k ¼ 1=C2, where C is the CoV
of the distribution, to find f as a function of the CoV.
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Table 1

Approximations to the correction factor, f, for competing processes A

and B with means 1=a and 1=b, respectively

f B Weibull ðrÞ B narrow

/ when a � b or Gamma ðCÞ ðCoVp30%Þ

A exponential aþ b

a
1�

b

bþ aC2

� �C�2
 !

aþ b

a
ð1� ea=bÞ

2 1�
1

1þ C2

� �C�2
 !

2ð1� e�1Þ

A, B non-exponential ðaþ bÞðar þ brÞ�1=r aþ b

maxða; bÞ
same shape 2ðq�1Þ=q, or

2 1� 21�2k Gð2kÞ

kGðkÞ2

� �
2

C gives the CoV of the non-exponential distribution; for the Gamma

distribution k ¼ 1=C2.

Entries in bold are simplifications for the case a ¼ b.

0 1 2 3 4 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CoV

C
or

re
ct

io
n 

F
ac

to
r 

(φ
)

CoV
1

0.1

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

CoV

C
or

re
ct

io
n 

F
ac

to
r 

(φ
)

CoV
1

0.1

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CoV

C
or

re
ct

io
n 

F
ac

to
r 

(φ
)

 

b/a=1

2

3
4
5

Fig. 5. The correction factor is plotted versus the CoV of distributions A

and B when A and B are both described by Weibull distributions with

means 1=a and 1=b, respectively. The panels illustrate cases when the ratio

of means changes: b=a ¼ 1 (top panel), b=a41 (middle panel). Note that

the correction factor determined when boa is symmetric to the case when

b4a. In the bottom panel we plot the correction factor when A and B have

similar shapes for different ratios of b=a.
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Fig. 5 plots the correction factor, determined numeri-
cally, versus the CoV of A and B when A and B are both
described by Weibull distributions but do not have the
same shape. In the top panel the distribution means are
the same, b ¼ a; in the middle panel b4a. In each case the
correction factor decreases as the CoVs of A and B

increase. Note once again that the limit for small CoV gives
a good approximation for f whenever the CoV is less than
about 30%.

In the bottom panel we plot the correction factor for the
analytically simpler case when the distributions have
similar shapes. We take the ratio of the means, b=a to be
between 1 and 5. Again we see that f is very close to its
limiting value ðaþ bÞ=maxða; bÞ whenever the CoV is small.
The larger b=a is, the more quickly this very simple limit is
approached. Results for the Gamma distribution (not
shown) were once again almost indistinguishable.

4. Discussion

Our main results are summarized in Table 1. We find
that simple closed-form expressions for the correction
factor are available when one of two competing processes is
described by an exponential distribution, while the other
has a measurable CoV or can be assumed to have a CoV
less than about 30% (first row of Table 1). If neither
competing process is distributed exponentially, simple
approximations are only possible when the two processes
have roughly the same shape, although their means may of
course differ (second row). The bold entries in the table
give even simpler results for the case when the two
competing processes have similar means. In the limiting
case when the processes have similar means and similar
shapes, we see that the correction factor approaches 2 as
the shapes of the distributions narrow.

These derivations assume that any non-exponential
distributions can be approximated by either a Gamma or
a Weibull distribution, and that some knowledge of the
dispersal of the distribution about its mean is available. We
found very little difference in the effective infectious period
when either a Gamma or Weibull was assumed (see Fig. 3).
Interestingly, each of these distributions had analytical
advantages, and reduced to simple closed-form expressions
in different cases. We thus include results from both
distributions in Table 1 where appropriate.
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Fig. 6. Infectious HIV virions budded per unit time, assuming two

contrasting distributions for the death times of infected cells. The death

time distribution of infected cells is given by a Weibull distribution with

shape parameters 1 (exponential, dashed line) and 3 (� normal, solid line).

The area under each curve is the same i.e. R0 is the same, but r0 changes.

Parameters values are the same as in Fig. 2.
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The formulae we derive are applicable to situations in
which two processes compete to end the infectious period.
Examples in epidemiology include death due to disease,
recovery, natural death and quarantine; for in-host models,
examples include the loss of infected cells due to natural
death, lysis, or immune-mediated cell death. These
formulae apply both to models with direct transmission
from one host to another e.g. SARS, or to vector models
where the pathogen is carried between hosts e.g. malaria. It
is also straightforward to apply the correction factors
provided here to situations in which more than two
processes are in competition (as in the SARS example,
Fig. 1).

The dispersal of lifetimes involved in entering the
infectious state may also affect R0. For an SEIR model,
a slightly different correction factor can be easily derived
for transitions into the infected state from the exposed
state. Likewise for a virus or other types of in-host
pathogens, the transition from one infected state to another
may involve transitions both out of and into an infected
state. For example, in the in-host model of HIV, the
infection of a cell is a transition out of the infectious state
for a virion, but it also represents a transition into the
infected state for an infected cell. These situations suggest
clear avenues for future work. In future we also hope to
relax the assumption that the transmissibility of the disease
is constant throughout the infectious period.

We would also like to discuss, briefly, the effects of
lifetime distributions for ‘‘non-competing’’ processes. For
example, in Section 2 we found that lifetime distribution
for the infected cells did not affect R0. This is because the
death of infected cells is not in competition with any other
process. Nonetheless, solving system (1) for the infected
equilibrium we find

x̄ ¼
x0

R0
,

ȳ ¼
lðR0 � 1Þ

aR0
,

v̄ ¼
dðR0 � 1Þ

b
,

R0 ¼
kQbx0

au
, ð16Þ

where x0 is the initial number of uninfected T-cells (Nowak
and May, 2000; Lloyd, 2001a). If, instead, we assume that
the death time distributions for the uninfected and infected
cells are distributed as arbitrary distributions d̂ðtÞ and âðtÞ

with means 1=d and 1=a, respectively, the infected
equilibrium is given by

x̄ ¼
x0

R0
,

ȳ ¼
bx0v̄

aR0
,

R0 ¼
kQbx0

au
ð17Þ
and

l
Z 1
0

e
�
R s

0
d̂ðtÞ dt�bv̄s

ds ¼
x0

R0
. (18)

Thus, we find that the infected equilibrium will change even
though R0 is not affected when the death of infected cells is
non-exponentially distributed. We also find that if x̄ and x0

are known, R0 can be directly calculated from disease data
irrespective of this distribution. If the distributions of
competing processes are non-exponential, however, the
relationship between R0 and the infected equilibrium will
change.
For non-competing processes, the initial growth rate r0

may be sensitive to lifetime distributions even though R0 is
unaffected, as shown in Fig. 2. Fig. 6 plots the time
distribution of infectious virions budded from a single
infected cell (bðtÞf ðtÞ from Eq. (22)) when the distribution
of cell lifetimes is exponential (dashed line) or approxi-
mately Gaussian (solid line). In both cases the area under
the curve is the same, and thus R0 does not change. When
lifetimes are Gaussian-distributed, however, the infected
cells bud the same number of virions in a shorter period of
time, thus increasing the initial growth rate (Fig. 2(b)). In
this case, the conventional set of differential equations (1)
allows us to obtain the correct value for the basic
reproductive ratio, but does not model the initial growth
rate or subsequent dynamics accurately.
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Like the infected equilibrium, r0 can be determined from
disease data for many infectious pathogens, and this value
can be used to determine R0 (see Hethcote and Tudor,
1980; Nowak and May, 2000; Lipsitch et al., 2003; Lloyd,
2001a–c for examples). We note that this method for
estimating R0 is not robust in the presence of non-
exponential lifetime distributions for either competing or
non-competing processes.
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Appendix A

A.1. Probability distributions

The Weibull distribution, first introduced by Wallodi
Weibull to model failure times in reliability applications
(Weibull, 1951), is one of the most widely used distribu-
tions in survival analysis. The Weibull distribution is also a
natural model for lifetime (survival) probabilities in many
instances, as it models waiting times until a critical event
occurs.

We employ the two parameter Weibull distribution:

PðxÞ ¼ srðsxÞr�1e�ðsxÞr , (19)

where r is the shape parameter of the distribution and
s ¼ ð1=mÞGð1þ 1=rÞ is the scale parameter. Here GðxÞ is
the gamma function and m is the mean of the distribution.
Intuitively, this gives the distribution of times until a
critical event occurs, such as cell death, the clearance of an
infection or the transition from exposed to infectious. If
r41 the failure rate is increasing, that is, the probability
that an individual will leave the state increases over time; if
ro1 the failure rate is decreasing and if r ¼ 1 the failure
rate is constant. A shape parameter of one corresponds to
an exponential distribution and a shape parameter of three
corresponds to a distribution that is approximately
Gaussian. The CoV for the Weibull distribution with

shape parameter r is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1þ 2=rÞ=Gð1þ 1=rÞ2 � 1

q
.

The Gamma distribution is also used to model failure
times in reliability applications. We use the two parameter
Gamma distribution given by the following:

PðxÞ ¼
lðlxÞk�1e�lx

GðkÞ
, (20)

where l�1 ¼ m=k is a scale parameter, 1=m is the mean and
k is the shape parameter. This distribution, like the
Weibull, includes the exponential distribution when k ¼ 1.

The Gamma distribution is not as widely used as the
Weibull distribution in reliability analysis, but it is
commonly used to describe stages of infection in epidemic
models since it is simply a sum of exponential distributions;
the sums of independent and identically distributed
exponential random variables have a Gamma distribution.
The Gamma distribution, unlike the Weibull, cannot be
used to approximate a normal distribution. The CoV for
the Gamma distribution with shape parameter k is equal
to 1=

ffiffiffi
k
p

.

A.2. The basic reproduction ratio, R0

Consider a large population and let f ðaÞ be the
probability that a newly infected individual remains
infectious for at least time a. This is called the survival
probability. Also, let bðaÞ denote the average number of
newly infected individuals that an infectious individual will
produce per unit time when infected for total time a. Then,
R0 is given by

R0 ¼

Z 1
0

bðaÞf ðaÞ da. (21)

See Heesterbeek and Dietz (1996) for a detailed description
of this equation and a historical overview.
The definition of f ðaÞ must be extended for cases in

which a series of states are involved in the ‘‘reproduction’’
of an infected individual. For example, in within-host viral
dynamics, an infectious virion produces an infected cell
which produces more infectious virions; this complete cycle
must be taken into account in our derivation of R0. One
approach is to define f ðaÞ in this case as

f ðaÞ ¼

Z a

0

probðinfectious virion produced at time

0 exists at time tÞ

� probðinfectious virion of age t infects a cellÞ

� probðinfected cell lives to be age a� tÞ dt,

ð22Þ

and bðaÞ is simply the average number of infectious virions
produced by a cell which has been infected for time a. Note
that this extension to the R0 concept is typically assumed in
epidemiology and HIV dynamics (see Heffernan et al.,
2005, for review), but differs from the standard Next
Generation Approach (Diekmann et al., 1990; Diekmann
and Heesterbeek, 2000; van den Driessche and Watmough,
2002).
A.3. The initial growth rate, r0

While the basic reproductive ratio gives the overall
number of new infections per infected individual, it gives
no measure of when these infections occur. In contrast r0
gives the number of new infections per infected individual
per unit time, in a susceptible population (Heesterbeek and
Dietz, 1996).
Using the survival probability f ðaÞ, as derived above, we

propose that r0 can be determined by solving the following
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renewal equation:

yðtÞ ¼

Z t

0

yðt� sÞbðsÞf ðsÞ dsþ dðtÞ. (23)

Here yðtÞ denotes the incoming rate of new infected
individuals, or the incoming rate of individuals to state 1
of an infection cycle, at time t. Eq. (23) thus implies that
new infections at time t are produced by new infections at
time t� s which are still infectious s time units later. The
dðtÞ term is a Dirac delta function, and is necessary because
we wish to determine r0 after the instantaneous input of
one infectious individual at time 0.

Conveniently, Eq. (23) is in the form of a convolution
integral, which lends itself to solution by a Laplace
transform. Taking the Laplace transform of both sides
we obtain Y ðoÞ ¼ Y ðoÞF ðoÞ þ 1, where F ðoÞ and Y ðoÞ
denote the Laplace transforms of bðsÞf ðsÞ and yðtÞ,
respectively. Isolating Y ðoÞ and taking the inverse Laplace
transform we find that

yðtÞ ¼L�1
1

1� F ðoÞ

� �
. (24)

Thus, the initial growth rate r0 can be found by
determining the largest exponent in the inverse Laplace
transform for yðtÞ.

References

Anderson, R.M., 1988. The epidemiology of HIV infection: variable

incubation plus infectious periods and heterogeneity in sexual activity.

J. R. Stat. Soc. Ser A 155, 6698.

Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans:

Dynamics and Control. Oxford University Press, Oxford.

Blower, S.M., McLean, S.R., 1994. Prophylactic vaccines, risk behaviour

change and the probability of eradicating HIV in San Francisco.

Science 265, 1451–1454.

Blower, S.M., Koelle, K., Kirschner, D.E., Mills, J., 2001. Live attenuated

HIV vaccines: predicting the tradeoff between efficacy and safety.

Proc. Natl. Acad. Sci. 98 (6), 3618–3623.

Blythe, S.P., Anderson, R.M., 1988. Distributed incubation and infectious

periods in a model of the transmission dynamics of the human

immunodeficiency virus (HIV). IMA J. Math. Appl. Med. Biol. 5,

1–19.

Brauer, F., 2002. Basic ideas of mathematical epidemiology. In: Castillo-

Chavez, C., van den Driessche, P., Kirschner, D., Yakubu, A-A.

(Eds.), Mathematical Approaches for Emerging and Reemerging

Infection Diseases: An Introduction. The IMA Volumes in Mathe-

matics and its Applications, vol. 125. Springer, New York, pp. 31–65.

Castillo-Chavez, C., Cooke, K., Huang, W., Levin, S.A., 1989. On the role

of long incubation periods in the dynamics of acquired immunodefi-

ciency syndrome (AIDS). J. Math. Biol. 27, 373–398.

Choi, B.C.K., Pak, A.W.P., 2003. A simple approximate mathematical

model to predict the number of severe acute respiratory syndrome

cases and deaths. J. Epidemiol. Commun. 57 (10), 831–835.

Cruz-Pacheco, G., Esteva, L., Montano-Hirose, J.A., Vargas, C., 2005.

Modelling the dynamics of West Nile Virus. Bull. Math. Biol. 67,

1157–1172.

Culshaw, R.V., Ruan, S., 2000. A delay-differential equation model of

HIV infection of CD4 T-cells. Math. Biosci. 165, 27–39.

de Koeijer, A., Heesterbeek, H., Schreuder, B., Oberthür, R., Wilesmith,

J., van Roermund, H., de Jong, M., 2004. Quantifying BSE control by

calculating the basic reproduction ratio R0 for the infection among

cattle. J. Math. Biol. 48, 1–22.
Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical Epidemiology of

Infectious Diseases: model Building, Analysis and Interpretation.

Wiley, New York.

Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J., 1990. On the definition

and the computation of the basic reproduction ratio R0 in models for

infectious diseases. J. Math. Biol. 35, 503–522.

Dietz, K., 1975. Transmission and control of arbovirus diseases. In:

Ludwig, D., Cooke, K.L. (Eds.), Epidemiology. Society for Industrial

and Applied Mathematics, Philadelphia, pp. 104–121.

Dietz, K., 1993. The estimation of the basic reproduction number for

infectious diseases. Stat. Methods Med. Res. 2, 23–41.

Dixit, N.M., Perelson, A.S., 2004. Complex patterns of viral load decay

under antiretroviral therapy: influence of pharmacokinetics and

intracellular delay. J. Theor. Biol. 226, 95–109.

Donnelly, C.A., Ghani, A.C., Leung, G.M., Hedley, A.J., Fraser, C.,

Riley, S., Abu-Raddad, L.J., Ho, L.-M., Thach, T.-Q., Chau, P.,

Chan, K.-P., Lam, T.-H., Tse, L.-Y., Tsang, T., Liu, S.-H.,

Kong, J.H.B., Lau, E.M.C., Ferguson, N.M., Anderson, R.M.,

2003. Epidemiological determinants of spread of causal agent of

severe acute respiratory syndrome in Hong Kong. Lancet 361,

1761–1766.

Ferguson, N.M., Donnelly, C.A., Woolhouse, M.E.J., Anderson, R.M.,

1999. Estimation of the basic reproduction number of BSE: the

intensity of transmission in British cattle. Proc. R. Soc. London B 266,

23–32.

Ferguson, N.M., Donnelly, C.A., Anderson, R.M., 2001. The foot and

mouth epidemic in Great Britain: pattern of spread and impact of

interventions. Science 292, 1155–1160.

Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S.,

Meeyai, A., Iamsirithaworn, S., Burke, D.S., 2005. Strategies for

containing an emerging influenza pandemic in Southeast Asia. Nature

437, 209–214.

Filipe, J.A.N., Boussinesq, M., Renz, A., Collins, R.C., Vivas-Martinez,

S., Grillet, M.E., Little, M.P., Basanez, M.G., 2005. Human infection

patterns and heterogeneous exposure in river blindness. Proc. Natl.

Acad. Sci. USA 102, 15265–15270.

Grossman, Z., 1980. Oscillatory phenomena in a model of infectious

diseases. Theor. Popul. Biol. 18, 204–243.

Hagmann, R., Charlwood, J.D., Gil, V., Conceicao, F., do Rosario, V.,

Smith, T.A., 2003. Malaria and its possible control on the Island of

Principe. Malar. J. 2(15), published online 2003 June 18.

Heesterbeek, J.A.P., Dietz, K., 1996. The concept of R0 in epidemic

theory. Stat. Neerl. 50, 89–110.

Heffernan, J.M., Wahl, L.M., 2005. Monte Carlo estimates of natural

variation in HIV infection. J. Theor. Biol. 236, 137–153.

Heffernan, J.M., Smith, R., Wahl, L.M., 2005. Perspectives on the basic

reproductive ratio. J. R. Soc. Interface 2 (4), 281–293.

Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev.

42 (4), 599–653.

Hethcote, H.W., Tudor, D.W., 1980. Integral equation models for

endemic infectious diseases. J. Math. Biol. 9, 37–47.

Herz, A.V.M., Bonhoeffer, S., Anderson, R.M., May, R.M., Nowak,

M.A., 1996. Viral dynamics in vivo: limitations on estimates of

intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA 93,

7247–7251.

Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M.,

Markowitz, M., 1995. Rapid turnover of plasma virions and CD4

lymphocytes in HIV-1 infection. Nature 373, 123–126.

Hyman, J.M., Li, J., 2000. An intuitive formulation for the reproductive

number for the spread of diseases in heterogenous populations. Math.

Biosci. 167, 65–86.

Keeling, M.J., Grenfell, T., 1997. Disease extinction and community size:

modeling the persistence of measles. Science 275, 65–67.

Keeling, M.J., Grenfell, T., 1998. Effect of variability in infection period

on the persistence and spatial spread of infectious diseases. Math.

Biosci. 147, 207–226.

Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L.,

Gopalakrishna, G., Chew, S.K., Tan, C.C., Samore, M.H.,



ARTICLE IN PRESS
J.M. Heffernan, L.M. Wahl / Theoretical Population Biology 70 (2006) 135–145 145
Fisman, D., Murray, M., 2003. Transmission dynamics and control of

sever acute respiratory syndrome. Science 300, 1966–1970.

Lloyd, A.L., 2001a. The dependence of viral parameter estimates on the

assumed viral life cycle: limitations of studies of viral load data. Proc.

R. Soc. London B 268, 847–854.

Lloyd, A.L., 2001b. Destabilization of epidemic models with the inclusion

of realistic distributions of infectious periods. Proc. R. Soc. London B

268, 985–993.

Lloyd, A.L., 2001c. Realistic distributions of infectious periods in

epidemic models: changing patterns of persistence and dynamics.

Theor. Popul. Biol. 60, 59–71.

Lloyd-Smith, J.O., Galvani, A.P., Getz, W.M., 2003. Curtailing transmis-

sion of severe acute respiratory syndrome within a community and its

hospital. Proc. R. Soc. London B 270, 1979–1989.

Longini, I.M., Nizam, A., Xu, S.F., Ungchusak, K., Hanshaoworakul,

W., Cummings, D.A.T., Halloran, M.E., 2005. Containing pandemic

influenza at the source. Science 309, 1083–1087.

Lui, K.J., Darrow, W.W., Rutherford, G.W., 1988. A model-based

estimate of the mean incubation period for AIDS in homosexual men.

Science 240, 1333–1335.

Luz, P.M., Codeco, C.T., Massad, E., Struchiner, C.J., 2003. Uncertain-

ties regarding dengue modeling in Rio de Janeiro, Brazil. Mem. Inst.

Oswaldo Cruz. 98 (7), 871–878.

Matthews, L., Haydon, D.T., Shaw, D.J., Chase-Topping, M.E., Keeling,

M.J., Woolhouse, M.E.J., 2003. Neighbourhood control policies and

the spread of infectious diseases. Proc. R. Soc. London B 270,

1659–1666.

Matthews, L., Low, J.C., Gally, D.L., Pearce, M.C., Mellor, D.J.,

Heesterbeek, J.A.P., Chase-Topping, M., Naylor, S.W., Shaw, D.J.,

Reid, S.W.J., Gunn, G.J., Woolhouse, M.E.J., 2006. Heterogeneous

shedding of Escherichia coli O157 in cattle and its implications for

control. Proc. Natl. Acad. Sci. USA 103, 547–552.

Mittler, J.E., Sulzer, B., Neumann, A.U., Perelson, A.S., 1998. Influence

of delayed viral production on viral dynamics in HIV-1 infected

patients. Math. Biosci. 152, 143–163.

Mollison, D. (Ed.), 1995. Epidemic Models: Their Structure and Relation

to Data. Cambridge University Press, Cambridge.

Nelson, P.W., Perelson, A.S., 2002. Mathematical analysis of delay

differential equation models of HIV-1 infection. Math. Biosci. 179,

73–94.

Nelson, P.W., Gilchrist, M.A., Coombs, D., Hyman, J.M., Perelson, A.S.,

2004. An age-structured model of HIV infection that allows for

variations in the production rate of viral particles and the death rate of

productively infected cells. Math. Biosci. Eng. 1, 267–288.

Nishiura, H., Patanarapelert, K., Sriprom, M., Sarakorn, W., Sriyab, S.,

Ming Tang, S., 2004. Modelling potential responses to severe acute

respiratory syndrome in Japan: the role of initial attack size,
precaution, and quarantine. J. Epidemiol. Commun. Health 58,

186–191.

Nowak, M.A., May, R.M., 2000. Virus Dynamics. Oxford University

Press, Oxford.

Perelson, A.S., Nelson, P., 1999. Mathematical analysis of HIV-1

dynamics in vivo. SIAM Rev. 41, 3–44.

Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho,

D.D., 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell

lifespan, and viral generation time. Science 271, 1582–1585.

Riley, S., Fraser, C., Donnelly, C.A., Ghani, A.C., Abu-Raddad, L.J.,

Hedley, A.J., Leung, G.M., Ho, L.-M., Lam, T.-H., Thach, T.Q.,

Chau, P., Chan, K.-P., Lo, S.-V., Leung, P.-Y., Tsang, T., Ho, W.,

Lee, K.-H., Lau, E.M.C., Ferguson, N.M., Anderson, R.M., 2003.

Transmission dynamics of the etiological agent SARS in Hong Kong:

impact of public health interventions. Science 300, 1961–1966.

Smith, D.L., Ellis McKenzie, F., 2004. Statistics and dynamics of malaria

infection in Anopheles mosquitoes. Malar. J. 3, hhttp://www.malar-

iajournal.com/content/3/1/13i.

Smith, R.J., 2006. Adherence to antiretroviral HIV drugs: how many

doses can you miss before resistance emerges? Proc. R. Soc. London B

273, 617–624.

Smith, R.J., Wahl, L.M., 2004. Distinct effect of protease and reverse

transcriptase inhibition in an immunological model of HIV-1

infections with impulsive drug effects. Bull. Math. Biol. 66, 1259–1283.

Stegeman, A., Bouma, A., Elbers, A.R., de Jong, M.C., Nodelijk, G., de

Klerk, F., Koch, G., van Boven, M., 2004. Avian influenza A virus

(H7N7) epidemic in The Netherlands in 2003: course of the epidemic

and effectiveness of control measures. J. Infect. Dis. 190, 2088–2095.

Valesco-Hernandez, J.X., Gershengorn, H.B., Blower, S.M., 2002. Could

widespread use of combination antiretroviral therapy eradicate HIV

epidemics? The Lancet Infect. Dis. 2, 487–493.

van den Driessche, P., Watmough, J., 2002. Reproduction numbers and

sub-threshold endemic equilibria for compartmental models of disease

transmission. Math. Biosci. 180, 29–48.

Wahl, L.M., Nowak, M.A., 2000. Adherence and drug resistance:

predictions for therapy outcome. Proc. R. Soc. London B 267, 835–843.

Wei, L.M., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A.,

Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H.,

Saag, M.S., Shaw, G.M., 1995. Viral dynamics in HIV-1 infection.

Nature 373, 117–122.

Weibull, W., 1951. A statistical distribution function of wide applicability.

J. Appl. Mech. 18, 293–297.

Wonham, M.J., de-Camino-Beck, T., Lewis, M.A., 2004. An epidemio-

logical model for West Nile virus: invasion analysis and control

applications. Proc. R. Soc. London B 271, 501–507.

Woolhouse, M.E.J., Anderson, R.M., 1997. Understanding the epide-

miology of BSE. Trends Microbiol. 5, 421–424.

http://www.malariajournal.com/content/3/1/13
http://www.malariajournal.com/content/3/1/13

