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Objective: To evaluate the potential association between the genetic variants in miRNA

processing genes (RAN, XPO5, DICER1, and TARBP2) and susceptibility to type 2

diabetes mellitus (T2DM) and its vascular complications, as well as to further investigate

their interaction with environmental factors in type 2 diabetes.

Methods: We conducted a case-control study in genotyping of five polymorphic loci,

including RAN rs14035, XPO5 rs11077, DICER1 rs13078, DICER1 rs3742330, and

TARBP2 rs784567, in miRNA processing genes to explore the risk factors for T2DM

and diabetic vascular complications. Haplotype analyses, interactions of gene-gene and

interactions of gene-environment were performed too.

Results: We identified a 36% decreased risk of developing T2DM in individuals

with the minor A allele in DICER1 rs13078 (OR: 0.64; 95%CI: 0.42–0.95; P: 0.026).

The AA haplotype in DICER1 was also associated with a protective effect on

T2DM compared with the AT haplotype (OR: 0.63; 95%CI: 0.42–0.94; P-value:

0.023). T2DM patients with the TT+TC genotype at RAN rs14035 had a 1.89-fold

higher risk of developing macrovascular complications than patients with the CC

genotype (OR: 1.89; 95%CI: 1.04–3.45; P-value: 0.037). We also identified two

three-factor interaction models. One is a three-factor [DICER1 rs13078, body mass

index (BMI), and triglyceride (TG)] interaction model for T2DM (OR: 5.93; 95%CI:

1.25–28.26; P = 0.025). Another three-factor [RAN rs14035, hypertension (HP),

and duration of T2DM (DOD)] interaction model was found for macrovascular

complications of T2DM (OR = 41.60, 95%CI = 11.75–147.35, P < 0.001).
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Conclusion: Our study provides new evidence that two single nucleotide

polymorphisms (SNPs) of the miRNA processing genes, DICER1 and RAN, and their

interactions with certain environmental factors might contribute to the risk of T2DM and

its vascular complications in the southern Chinese population.

Keywords: T2DM, vascular complication, miRNA processing gene, polymorphism, interaction, RAN gene,

DICER1 gene

INTRODUCTION

Diabetes mellitus (DM) is a chronic disease that occurs when
there are increased levels of blood glucose because the body is
unable to produce any or enough of the hormone insulin or use
insulin effectively (1). According to the International Diabetes
Federation (IDF) report, there were 4.25 billion people with
diabetes in 2017, and the number of diabetes patients will increase
to 6.29 billion globally by 2040 (2). In 2017, more than 4 million
people died because of diabetes and diabetic complications,
which means that worldwide, a patient died every 8 s because
of diabetes (2). The total global healthcare expenditure due to
DM was estimated at 727 billion dollars in 2017 (3). As the most
populous and largest developing country in the world, China has
the highest number of diabetes patients worldwide (114.4 million
in 2017) (2). The number of diabetes patients soared from 4.8
million in 1980 to 39.8 million in 2007 (4).

T2DM as the most common type of diabetes, accounts
for approximately 90% of diabetes cases and is affected
by both environmental factors and genetic factors (5–7).
Type 2 diabetes mellitus is a long-term metabolic disorder
characterized by damage to insulin secretion and sensitivity,
resulting in hyperglycemia (8, 9), which can lead to the
development of diabetic vascular complications, such as diabetic
nephropathy, peripheral artery disease (PAD) and coronary heart
disease (CHD) (2, 10, 11). Risk factors for diabetic vascular
complications include lifestyle (such as smoking and drinking),
duration of diabetes, age of onset and genetic factors, etc. (12, 13).

MicroRNAs (miRNAs) are a class of short, single-strand,
non-coding, and endogenous RNA molecules of 21–23 nts in
length (14). Although miRNAs constitute at most 3% of the
human genome, it has been reported that approximately one-
third of human genes were regulated by miRNAs (15, 16).
Recently, the evidences that series of miRNAs were related
to the T2DM and diabetic vascular complication, have been
proved by several studies (17), such as miR-200 family (18),
miR-124a (19), miR-21-5P (20), and miR-125a-3P (20). RAS-
related nuclear protein (RAN), exportin 5(XPO5), DICER1, and
TARBP2, which are known as microRNA processing enzyme,
are the key to complete the biosynthesis of mammalian miRNAs
(21, 22). First, RNA II polymerase transcribed miRNAs into long
precursors called pri-miRNAs, which are cleaved in the nucleus
to release a stem loop intermediate about 60–70 nt, known as the
miRNA precursor hairpin (pre-miRNA). Secondly, XPO5 and
RAN export the pre-miRNA from the nucleus to the cytoplasm.
And the DICER1 and TARBP2 further cooperatively dice the pre-
miRNA into a double-stranded, short miRNA duplex (23, 24).

Last, the double-stranded miRNA is preferentially incorporated
into RNA-induced silencing complex, targeting endogenous
mRNA silencing (25, 26). Therefore, if the expression and
structure of these miRNA processing proteins have been altered
in the biosynthesis of mammalian miRNAs, it would directly
impact the biosynthesis of mature miRNAs and further change
the function and structure of miRNAs (21, 22) (Figure 1).

A variation in a single nucleotide is called a single nucleotide
polymorphism (SNP) that occurs in polymorphisms of the
genomic DNA sequence, and is the simplest form of DNA
variation among individuals and might affect the expression
and function of genes (27). It has been reported that SNPs
are associated with the development of type 2 diabetes mellitus
and its vascular complications (28–30). GWAS (genome-wide
association studies) have identified over 80 SNPs were closely
related to type 2 diabetes mellitus (31–34). In addition, GWAS
also identified over 20 SNPs related to the various chronic T2DM
complications (e.g., diabetic nephropathy, diabetic retinopathy,
diabetic cardiopathy and diabetic painful neuropathy) (35).
RAN rs14035, DICER1 rs3742330, and DROSHA rs10719 are
located in the 3′-UTR, which may disturb the function of these
miRNA processing proteins by impacting the binding site of
their miRNAs, resulting in dysregulation in processing of related
gene expression and impact the biosynthesis of related proteins
(36–39). We hypotheses that the SNPs in miRNA processing
genes may impact the susceptibility to T2DM and its vascular
complications by disrupting the structure, binding sites, or
processing of miRNA (40, 41). To our knowledge, few studies
evaluated the potential association between the risk of T2DM
and its vascular complications and specific SNPs in miRNA
processing genes. Thus, the aim of our study is investigating the
effects of variations in miRNA processing genes, RAN (rs14035),
XPO5 (rs11077), DICER1 (rs3742330 and rs13078), and TARBP2
(rs784567), as well as their interactions with environmental
factors on T2DM and its vascular complications in a Southern
Han Chinese population.

METHODS

Study Subjects
This case-control study included a total of 1,275 unrelated Han
Chinese Southern residents in Guangzhou. A total of 743 T2DM
subjects were inpatients of the Endocrinology Departments of
the First Affiliated Hospital of Jinan University in Guangzhou
from September 2011 to January 2018, and all patients were
diagnosed using the 2003 American Diabetes Association
criteria (42). Patients with impaired glucose tolerance and
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FIGURE 1 | Summarize of the biosynthesis process of miRNA and the function of miRNA processing Gene and enzyme.

type 1 diabetes mellitus were excluded from the study. During
the same period, a total of 532 healthy control individuals
without a family history of diabetes and with normal fasting
glucose were also randomly recruited to match T2DM patients
by sex and age (±5 years). Before participating in the study,
all of the included individuals agreed and signed informed
consent, and the study protocol was approved by the Ethics
Committee of Medical School at Jinan University. Within
the 743 included T2DM patients, 46, 96, 108, and 227 cases
were diagnosed with T2DM with other complications, micro-
macrovascular complications, macrovascular complications,
and microvascular complications, respectively, while 266
cases were categorized into T2DM without any complication.
According to the 8th edition IDF Diabetes Atlas (2) and Gregg
et al. (43), macrovascular complications included coronary
artery disease (CAD), resulting in myocardial infarction or
stenocardia, and peripheral artery disease (PAD), leading
to diabetic encephalopathy and cerebral infarction, whereas
microvascular complications are retinopathy, neuropathy
and nephropathy. Micro-macrovascular complications were
defined as presenting with both macrovascular microvascular
and complications.

Selection of SNPs
We determined the targeted SNPs of
RAN/XPO5/DICER1/TARBP2 were through an electronic search
of the HapMap database based on the genotype information
of Han Chinese in Beijing, China. And, the tarSNPs were
determined based on the following criteria: (1) the minor allele
frequency (MAF) of SNPs >5%; (2) pairwise tagging with
r2 ≥ 0.8; and (3) P-value of Hardy-Weinberg > 0.001. Five SNPs
were identified, RAN rs14035, XPO5 rs11077,DICER1 rs3742330
and rs13078, and TARBP2 rs784567. Finally, five target SNPs
were selected for further analysis. The detailed information of
the five tarSNPs, including alleles, MAFs, genes locations, the
result of Hardy-Weinberg equilibrium and call rate, is shown in
Table S1. However, rs14035 in the RAN gene did not meet the
Hardy-Weinberg equilibrium (P < 0.05). Therefore, the further
analyses of the polymorphism associations within T2DM group
and health control group excluded rs14035 in the RAN gene.

DNA Extraction and Genotyping
A QIAmp Blood DNA Mini Kit (Qiagen, Hilden, Germany)
was used to extract the genomic DNA from peripheral whole
blood samples. A Sequenom MassARRAYiPLEX Gold analyzer
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(Sequenom, Life Technologies, Shanghai) was used to genotype
the five selected SNPs. MassARRAY Assay Design 3.1 software
were used to design PCR conditions and primers (Table S1).

Statistical Analysis
The demographic data and clinical characteristics of the included
individuals are presented as the mean ± S.D. or number
(percentage). The Shapiro-Wilk test was performed to identify
the normality of the included demographic data and clinical
characteristics in each comparison group (Tables S2–S5). For
continuous variables with normal distribution, the t-test and
ANOVAwere performed on them, otherwise the non-parametric
test (Kruskal-Wallis test andMann-Whitney test) was conducted.
For categorical variable, the χ2-test was performed. The logistic
regression with different genetic model (codominant, dominant,
and recessive models) was performed to calculate the ORs and
95% confidence intervals (CI) for estimating risk (44). Hardy-
Weinberg equilibrium (HWE) of each SNP in the control group
was calculated by χ2 statistics. All the above statistical analyses
were performed by SPSS software v.22.0 (SPSS, Inc.).

The MDR (multifactor dimensionality reduction) software
(45) was used to performed to identified the best model of
gene-gene interaction models and gene-environment interaction
models of the five selected SNPs. The environmental factors we
included in MDR were age, gender, BMI (body mass index),
TG (triglyceride), TC (total cholesterol), LDL (low density
lipoprotein), HDL (high density lipoprotein), FBG (fasting
blood glucose), post-prandial blood glucose, HbA1c, duration
of T2DM, patients with family history of diabetes, former
smoking, current smoking, current smoking, current drinking,
and patents with hypertension. SHEsis, an online software
(http://analysis.bio-x.cn/myAnalysis.php), was used to identified
the effects of haplotype frequencies on T2DM and its vascular
complications (46–48).

RESULT

Population Characteristics
The baseline population characteristics of all included individuals
are presented in Table 1. In comparison with healthy controls,
the patients in T2DM group had higher levels of body mass
index (BMI), triglyceride (TG), fasting blood glucose (FBG),
GPT (glutamic-pyruvic, transaminase), serum creatinine, and
blood uric acid but lower levels of low-density lipoprotein (LDL)
and high-density lipoprotein (HDL), when compared with
healthy controls. In comparison with T2DM patients without
any complications, all T2DM patients with microvascular
complications, macrovascular complications and micro-
macrovascular complications had higher average age, longer
duration of T2DM, and high levels of serum creatinine, but
they had lower estimated glomerular filtration rate (eGFR) and
GPT levels. Additionally, in comparison with T2DM patients
without any complications, hypertension was more prevalent
in T2DM patients with vascular complications (macrovascular,
microvascular, and micro-macrovascular complications). And
T2DM patients with macrovascular complications included a
larger number of former smokers (Table 2).

TABLE 1 | The baseline population characteristics of healthy controls and T2DM

patients.

Characteristics Healthy controls

(N = 532)

T2DM patients

(N = 743)

P-value

Age (years) 61.82 ± 13.05 61.06 ± 13.18 0.3851

Gender (Male/Female) 251/280 359/384 0.7121

BMI (kg/m2) 21.96 ± 2.60 24.24 ± 3.32 <0.001**1

Triglyceride (mmol/L) 1.35 ± 0.78 2.10 ± 1.85 <0.001**1

Total cholesterol

(mmol/L)

5.16 ± 0.88 5.09 ± 3.28 0.5761

LDL (mmol/L) 3.08 ± 0.79 2.89 ± 1.18 0.001**1

HDL (mmol/L) 1.51 ± 0.34 1.13 ± 0.40 <0.001**1

Fasting blood glucose

(mmol/L)

5.25 ± 0.74 9.40 ± 4.69 <0.001**1

Glutamic-pyruvic

transaminase (IU/L)

19.87 ± 9.80 28.22 ± 36.27 <0.001**1

Serum creatinine

(umol/L)

74.16 ± 16.22 84.08 ± 80.12 0.001**1

Blood uric acid (umol/L) 337.93 ± 85.84 363.62 ± 120.46 <0.001**1

Post-prandial blood

glucose (mmol/L)

NA 15.81 ± 5.88 NA

HbA1c (%) NA 9.03 ± 2.59 NA

Fasting C-peptide

(ng/ml)

NA 1.50 ± 1.28 NA

Post-prandial 1 h

C-peptide (ng/ml)

NA 2.99 ± 3.04 NA

Post-prandial 2 h

C-peptide (ng/ml)

NA 3.84 ± 3.99 NA

eGFR (mL/min) NA 76.22 ± 21.22 NA

Duration of diabetes

(years)

0 7.74 ± 6.65 NA

Patients with family

history of diabetes

[n (%)]

NA 157 (21.13%) NA

Former smoking [n (%)] NA 31 (4.17%) NA

Current smoking [n (%)] NA 124 (16.70%) NA

Current drinking [n (%)] NA 64 (8.63%) NA

Patients with

Hypertension [n (%)]

NA 271 (36.47%) NA

**P < 0.001.
∆the P-value of χ2-test; the P-values of Mann-Whitney test.

BMI, bodymass index; LDL, low density lipoprotein; HDL, high density lipoprotein; HbA1c,

glycated hemoglobin.

The bold in the table means statistically significant (P < 0.05).

XPO5 rs11077, TARBP2 rs784567, DICER1 rs13078, and
rs3742330 met the requirement of the HWE in healthy
controls. However, RAN rs14035 deviated from HWE in healthy
controls (Tables S2, S3).

Association Between T2DM and
XPO5/DICER1/TARBP2 Polymorphisms
We identified the effects of XPO5, DICER1, and TARBP2 SNPs
on T2DM. As presented in Table 2, there was a significant
association between rs13078 in theDICER1 gene and a decreased
risk of developing T2DM under the allelic mode (A vs. T: OR:
0.64; 95CI%: 0.42–0.95; P: 0.026), suggesting that individuals
carrying the A allele had a 36% lower risk of developing
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TABLE 2 | The baseline population characteristics of T2DM subgroups.

Characteristics T2DM without

complication

(n = 266)

T2DM with

microvascular

complicationsa

(n = 227)

P-value T2DM with

macrovascular

complicationsa

(n = 108)

P-value T2DM with

microvascular-

macrovascular

complicationsa

(n = 96)

P-value

Age (years) 56.73 ± 13.15 60.57 ± 12.59 <0.007**∧ 66.98 ± 10.76 <0.001**∧ 68.62 ± 10.94 <0.001**∧

Gender (Male/Female) 125/141 104/123 0.7981 60 / 48 0.1331 42 / 54 0.5851

BMI (kg/m2) 24.26 ± 3.34 24.23 ± 3.33 0.920∧ 24.39 ± 3.27 0.746∧ 24.45 ± 3.23 0.666∧

Triglyceride (mmol/L) 2.27 ± 2.25 2.07 ± 1.71 0.657∧ 1.92 ± 1.23 0.168∧ 1.92 ± 1.02 0.135∧

Total cholesterol (mmol/L) 5.24 ± 4.65 5.33 ± 2.80 0.747∧ 4.65 ± 1.28 0.133∧ 4.74 ± 1.28 0.489∧

LDL (mmol/L) 2.89 ± 0.96 3.12 ± 1.52 0.531∧ 2.64 ± 1.01 0.065∧ 2.77 ± 0.94 0.999∧

HDL (mmol/L) 1.12 ± 0.28 1.16 ± 0.33 0.219∧ 1.18 ± 0.70 0.254∧ 1.08 ± 0.35 0.294∧

Fasting blood glucose (mmol/L) 9.46 ± 4.19 9.87 ± 4.73 0.999∧ 8.99 ± 5.92 0.287∧ 8.41 ± 4.03 0.155∧

Glutamic-pyruvic transaminase (IU/L) 34.71 ± 53.69 25.90 ± 20.00 0.021*∧ 24.23 ± 24.53 0.005*∧ 20.45 ± 14.56 <0.001**∧

Serum creatinine (umol/L) 66.20 ±

33.66

100.45 ±

126.52

0.001*∧ 79.07 ±

32.44

<0.001**∧ 103.08 ±

72.53

<0.001**∧

Blood uric acid (umol/L) 348.00 ±

114.23

371.61 ±

134.08

0.591∧ 364.83 ±

113.47

0.753∧ 382.94 ±

108.93

0.013*∧

Post-prandial blood glucose (mmol/L) 15.60 ± 5.90 16.06 ± 5.98 0.435∧ 15.46 ± 5.63 0.838∧ 15.01 ± 4.77 0.347∧

HbA1c (%) 8.95 ± 2.53 9.16 ± 2.63 0.420∧ 8.56 ± 2.20 0.194∧ 8.58 ± 2.33 0.250∧

Fasting C-peptide (ng/ml) 1.58 ± 1.38 1.41 ± 1.08 0.360∧ 1.61 ± 1.23 0.991∧ 1.51 ± 1.20 0.990∧

Post-prandial 1 h C-peptide (ng/ml) 3.30 ± 3.88 2.93 ± 2.59 0.658∧ 3.04 ± 2.24 0.577∧ 2.86 ± 2.20 0.697∧

Post-prandial 2 h C-peptide (ng/ml) 4.22 ± 5.18 3.58 ± 3.27 0.117∧ 4.22 ± 3.68 0.979∧ 3.95 ± 2.81 0.678∧

eGFR (mL/min) 85.72 ± 17.97 73.16 ± 21.26 <0.001**∧ 73.19 ± 19.51 <0.001**∧ 64.59 ± 21.56 <0.001**∧

Duration of diabetes (years) 5.55 ± 5.45 7.86 ± 6.54 0.001*∧ 9.44 ± 6.50 <0.001**∧ 10.99 ± 6.78 <0.001**∧

Family history of diabetes [n(%)] 56 (21.05%) 54 (19.49%) 0.4671 18 (16.67%) 0.3351 18 (18.75%) 0.6951

Former smoking [n(%)] 10 (3.76%) 5 (2.20%) 0.3301 10 (9.26%) 0.045*1 4 (4.17%) 0.8651

Current smoking [n(%)] 43 (21.13%) 37 (23.79%) 0.9681 17 (21.13%) 0.919 15 (15.1%) 0.9015

Current drinking [n(%)] 23 (8.65%) 18 (6.50%) 0.7741 8 (7.41%) 0.694 10 (10.42%) 0.606

Patients with Hypertension [n(%)] 40 (15.04%) 78 (28.16%) <0.001**1 75 (69.44%) <0.001**1 68 (70.83%) <0.001**1

avs. T2DM patients without any complication; *P < 0.05, **P < 0.001.
∆the P-value of χ2-test and Bonferroni correction; ∧the P-values of Kruskal-Wallis test and Bonferroni correction.

BMI, body mass index; LDL, low density lipoprotein; HDL, high density lipoprotein; HbA1c, glycated hemoglobin; eGFR, estimated glomerular filtration rate.

The bold in the table means statistically significant (P < 0.05).

T2DM than those carrying the T allele. However, there were
no significant differences between T2DM under the allelic and
codominant, dominant, recessive models, and other SNPs.

Association Between T2DM Vascular
Complication and
RAN/XPO5/DICER1/TARBP2
Polymorphisms
The effects of RAN, XPO5, DICER1, and TARBP2 SNPs on
diabetes progression were further analyzed. We found that
rs14035 in the RAN gene was associated with T2DM with
macrovascular complications (Tables 3, 4). In comparison with
T2DM patients with the CC genotype, T2DM patients carrying
TT+CT genotypes at rs14035 had 1.89-fold higher risk of
suffering T2DM macrovascular complications (TT+CT vs. CC:
OR: 1.89; 95%CI: 1.04–3.45; P: 0.037). However, we did not
find that the rest of target SNPs in XPO5, DICER1, and
TARBP2 genes were associated with the susceptibility of T2DM
vascular complications.

Association Among T2DM, T2DM Vascular
Complications, Gene-Environment, and
Gene-Gene Interaction
To explore the association among gene-environment interaction,
T2DM and its vascular complications, MDR analysis was
conducted to analysis the five SNPs in the RAN, XPO5, DICER1,
and TARBP2 genes as well as environment factors (Table S4).
The best gene-environmental interactionmodel on T2DM and its
macrovascular complications were identified (DICER1 rs13078,
BMI and TG; RAN rs14035, DOD and HP), with a significant
TBA value and the highest CVC value (Table 5). The risk
analysis of the three-way interaction in the model was also
performed (Table S5). As shown in Figure 2, in comparison
with the reference group (wild-type rs13078, normal BMI, and
normal TG), the individuals with all three factors (mutation of
rs13078, high BMI, and high TG) exhibited a 5.93-fold higher
possibility of developing T2DM (OR: 5.93; 95%CI:1.25–28.26;
P: 0.025). Figure 3 shows that the individuals with mutation of
RAN rs14035, DOD more than 5 years and hypertension had a
40.60-fold higher possibility of suffering diabetic macrovascular
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TABLE 3 | Association of XPO5, DICER1, and TARBP2 polymorphisms with T2DM.

Gene SNP Model Genotype Case Control OR (95%CI) P-value

XPO5 rs11077 Codominanta TT 643 455 1.00 (Ref)

GG 0 1 NA NA

TG 100 76 0.88 (0.59–1.32) 0.876

Dominanta GG+TG 100 77 0.88 (0.59–1.31) 0.521

Recessivea TT+TG 743 531 1.00 (Ref)

GG 0 1 NA NA

Allelicb T 1386 986 1.00 (Ref)

G 100 78 0.91 (0.67–1.24) 0.557

DICER1 rs13078 Codominanta TT 698 480 1.00 (Ref)

AA 2 0 NA NA

TA 43 52 0.61 (0.36–1.03) 0.064

Dominanta AA+TA 47 52 0.66 (0.39–1.11) 0.115

Recessivea TT+TA 741 532 1.00 (Ref)

AA 2 0 NA NA

Allelicb T 1439 1012 1.00 (Ref)

A 47 52 0.64 (0.42–0.95) 0.026*

DICER1 rs3742330 Codominanta AA 323 209 1.00 (Ref)

GG 92 60 1.02 (0.65–1.64) 0.910

AG 328 263 0.86 (0.64–1.16) 0.330

Dominanta GG+AG 420 323 0.89 (0.67–1.19) 0.433

Recessivea AA+AG 651 472 1.00 (Ref)

GG 92 60 1.11 (0.72–1.72) 0.633

Allelicb A 974 681 1.00 (Ref)

G 512 383 0.93 (0.79–1.10) 0.421

TARBP2 rs784567 Codominanta GG 734 500 1.00 (Ref)

AA 0 0 NA NA

GA 8 12 0.53 (0.19–1.45) 0.213

Dominanta GA+AA 8 12 0.53 (0.19–1.45) 0.213

Allelicb G 1476 1012 1.00 (Ref)

A 8 12 0.46 (0.19–1.12) 0.080

*P < 0.05.
aAdjusting BMI, body mass index; LDL, low density lipoprotein; HDL, high density lipoprotein; and TG, triglyceride.
bOR, P-value were from χ2-tests and adjusted no variable.

The bold in the table means statistically significant (P < 0.05).

complications when compared with the reference group (wild-
type RAN rs14035, DOD <5 years and without hypertension)
(OR: 41.60; 95%CI:11.75–147.35; P < 0.001). However, no other
gene-environment interactions were identified for T2DM and
T2DM vascular complications.

However, no gene-gene interaction was found to be associated
with the increase risk of T2DM and its vascular complications
using MDR analysis.

Association Among T2DM, Its Vascular
Complications, and DICER1 Haplotype
Frequencies
The two SNPs (rs3742330 and rs13078) constitute a haplotype
block spanning 3 kb of the DICER1 gene (Figure 3). We
conducted a haplotype analysis among the DICER1 gene, T2DM
and T2DM vascular complications. As shown in Table S6,
compared with the highest frequency haplotype AT, the

haplotype AA was significantly related to a lower risk of T2DM
(OR: 0.63; 95%CI: 0.42–0.94; P: 0.023).

DISCUSSION

Alterations in the miRNA machinery play important roles in the
pathogenesis of a variety of disorders (49), which may account
for abnormal profiles of miRNA in various diseases. Recently,
more andmore studies have provided evidence that alterations in
miRNA machinery may result in dysregulation or upregulation
of miRNAs in diabetes (40, 50, 51). In our study, a significant
0.64-fold decrease was found in the A allele frequency atDICER1
rs13078 in T2DM patients than healthy individuals in the allelic
model, suggesting that individuals carring the A allele at DICER1
rs13078 had a decreased possibility of developing T2DM than
those carrying the T allele. Additionally, we also identified a
protective effect of the AA haplotype in DICER1.
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TABLE 4 | Association of RAN, XPO5, DICER1, and TARBP2 polymorphisms with vascular complications of T2DM.

Gene SNP Model Genotype Microvascular complications

vs. T2DM alone

Macrovascular complications

vs. T2DM alone

Micro-macrovascular

complications vs. T2DM alone

OR (95CI%) P-value OR (95CI%) P-value OR (95CI%) P-value

RAN rs14035 Codominanta CC 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

TT 0.8 (0.32–2.04) 0.635 2.24 (0.7–7.21) 0.177 0.81 (0.15–4.42) 0.800

CT 1.3 (0.83–2.02) 0.258 1.83 (0.97–3.46) 0.066 1.61 (0.85–3.06) 0.152

Dominanta TT+CT 1.21 (0.8–1.83) 0.390 1.89 (1.04–3.45) 0.037* 1.5 (0.81–2.78) 0.209

Recessivea CC+CT 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

TT 0.75 (0.3–1.89) 0.533 1.86 (0.59–5.82) 0.292 0.7 (0.13–3.79) 0.674

Allelicb C 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

T 1.07 (0.77–1.48) 0.689 1.33 (0.90–1.96) 0.157 1.08 (0.71–1.66) 0.710

XPO5 rs11077 Codominanta TT 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

TG 1.32 (0.77–2.27) 0.318 0.62 (0.25–1.52) 0.292 0.99 (0.4–2.46) 0.968

Dominanta GG+TG 1.32 (0.77–2.27) 0.318 0.62 (0.25–1.52) 0.292 0.99 (0.4–2.46) 0.968

Allelicb T 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

G 1.26 (0.78–2.04) 0.345 0.69 (0.34–1.42) 0.310 0.86 (0.43–1.74) 0.679

DICER1 rs13078 Codominanta TT 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

TA 1.36 (0.61–3.01) 0.457 2.08 (0.6–7.16) 0.250 2.21 (0.63–7.81) 0.221

Dominanta AA+TA 1.19 (0.55–2.58) 0.662 1.78 (0.54–5.89) 0.349 2.21 (0.63–7.81) 0.221

Allelicb T 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

A 0.92 (0.466–1.84) 0.819 0.64 (0.24–1.74) 0.377 0.72 (0.27–1.96) 0.521

DICER1 rs3742330 Codominanta AA 1.00 (Ref) – 1.00 (Ref) – 1.00 (Ref) –

GG 0.99 (0.55–1.81) 0.973 0.63 (0.25–1.55) 0.308 0.65 (0.27–1.62) 0.352

AG 0.85 (0.56–1.29) 0.425 0.88 (0.48–1.6) 0.654 0.71 (0.38–1.32) 0.269

Dominanta GG+AG 0.88 (0.6–1.3) 0.512 0.81 (0.46–1.43) 0.461 0.69 (0.39–1.24) 0.214

Recessivea AA+AG 1.09 (0.62–1.89) 0.787 0.67 (0.29–1.58) 0.356 0.78 (0.33–1.83) 0.555

GG 1.00 (Ref) – 1.00 (Ref) – 1.00 (Ref) –

Allelicb A 1.00 (Ref) – 1.00 (Ref) – 1.00 (Ref) –

G 1.02 (0.78–1.32) 0.894 0.83 (0.59–1.16) 0.270 0.86 (0.80–1.22) 0.394

TARBP2 rs784567 Codominanta GG 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

AA 1.19 (0.55–2.58) 0.662 1.95 (0.09–44.24) 0.678 NA –

Dominanta GA+AA 1.19 (0.55–2.58) 0.662 1.95 (0.09–44.24) 0.678 NA –

Allelicb G 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

A 1.57 (0.32–10.75) 0.703 0.82 (0.02–10.2) 0.703 NA NA

*P < 0.05.
aAdjusting age, duration of type 2 diabetes and hypertension.
bP-value were from χ2-tests and adjusted no variable.

The bold in the table means statistically significant (P < 0.05).

TABLE 5 | The gene-environment interaction model using MDR analysis for T2DM and its vascular complications.

Group Model CVC TBA P-value

T2DM vs. Healthy controls rs13078*BMI*TG 10/10 0.6496 0.014*

T2DM with macrovascular complication vs. T2DM alone rs14035*HP*DOD 10/10 0.7771 0.025*

*P < 0.05.

CVC, cross validation consistency; TBA, testing balance accuracy; BMI, body mass index; TG, triglyceride.

DICER1, which situate in chromosome 14q32.13, contains
1922 amino acids in humans, encoding an approximately 218
kDa RNase III endonuclease (21, 52). The DICER1 enzyme
is responsible for the processing of gene-encoded pre-miRNAs
into mature miRNAs, and it plays a key role in the highly

conserved cellular pathway (52). DICER1 is also well known to
be an important component in the oncogenic process of several
cancers, such as breast cancer (53), hepatocellular carcinoma
(54), lung cancer (55), and ovarian cancer (56). In metabolic
diseases, Noren Hooten et al. (57) hypothesized that alterations
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FIGURE 2 | Risk analysis of gene-environment interaction Model: DICER1 rs13078, BMI, TG. The reference group is the interaction of wild-type for rs13078, normal

BMI and normal TG. The OR value is presented in the figure. *P < 0.05 and **P < 0.001.

FIGURE 3 | Risk analysis of gene-environment interaction for T2DM with macrovascular complications Model: RAN rs14035, DOD, HP. The reference group is the

interaction of wild-type for rs14035, duration of T2DM <5 years and without hypertension. The OR value is shown in the figure. *P < 0.05 and **P < 0.001.

of the levels of DICER1 gene may play an important role
in organismal aging and the upregulation of expression of
DICER1 gene may provide us a new pharmacotherapeutic

approaches for age-related disease, such as T2DM. Furthermore,
it has been demonstrated that different levels of expression
of microRNAs were identified in exosomes isolated from the
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serum and in the blood of healthy control individuals compared
with patients with T2DM, hypercholesterolemia or metabolic
syndrome (58, 59). It has been reported that the site of
DICER1 rs13078 located in the 3′-UTR of the DICER1 gene
and might be an important component in the expression
process of the DICER1 gene by influencing the miRNAs binding
site, which might impact the DICER1 enzyme’s function by
DICER1 gene regulation and sequentially impact the expression
of microRNAs (52, 60, 61). Additionally, rs13078 genetic
variants in DICER1 have been reported to be related to other
diseases, such as gestational hypertension (62) and larynx
cancer (63).

In the association analysis between diabetic vascular
complications and SNPs, we found that T2DM patients who
carried TT+TC genotype of rs14035 in RAN gene had a 1.89-
fold increased risk of developing macrovascular complications
compared with those with the CC wild-type genotype. RAN
rs14035 is also located in the 3′-UTR of the RAN gene at
chr12:130876696 (64). The RAN enzyme as the member of
the Ras superfamily of GTPases, plays a key component in
the translocation of pre-miRNAs from the nucleus to the
cytoplasm through the nuclear pore complex (65). RAN-GTP
is depleted as a result of RAN guanine nucleotide exchange
factor inhibition, and pre-miRNA export is greatly reduced,
indicating that miRNA transport is mediated by a RAN-GTP-
binding export receptor (66). These data not only suggest
that mutations in RAN might play an important role in
pathology-related changes in the transport and expression
of miRNA but also imply that polymorphisms of the RAN
gene might also be related to the biosynthesis and translation
of miRNAs. Vorpahl et al. (67) suggested that inhibition or
modulation of RAN-GTPase-activating protein expression
might be sufficient to attenuate the vascular proliferative
response following vascular injury. Additionally, RAN-GTPase
signaling might also be essential for postnatal pancreatic islet
development and glucose homeostasis (68). It has been reported
that a significant upregulation of circulating miR-126 has been
detected in patients with angina and acute myocardial infarction,
while downregulation of miR-126 has been detected in plasma
from patients with cancer, diabetes or heart failure (58, 59).
Moreover, it has been reported that circulating miR-126-3p,
which may be a reliable biomarker of physiological endothelial
senescence in elderly subjects with normoglycemia, underlies a
mechanism that may be disrupted in elderly patients with DM
(69). These studies give evidence the rs14035 polymorphism in
RAN might be related to the occurrence and deterioration of
the macrovascular complications of T2DM by regulating the
expression level of RAN.

Recently, it has been reported that the susceptibility of type
2 diabetes mellitus and vascular complications of T2DM could
be affected by various factors, including interactions between
various environmental factors and the different polymorphisms
(10). An MDR analysis was conducted to further investigate
the multiple-factor, higher-order interaction of T2DM and
the vascular complications of T2DM. The best three-factor
interaction model among DICER1 rs13078, BMI (body mass
index) and TG (triglyceride), suggested that rs13078 in DICER1

more likely interacts with overweigh and high TG to increase
the possibility of developing T2DM. This outcome is consistent
with the analysis of the clinical data between healthy control
individuals and T2DM patients which showed that T2DM
patients had significantly higher BMI and TG than healthy
controls. Shai et al. (70) and Astrup et al. (71) also supported
that individuals with abnormal lipid metabolism (high TG, TC,
HDL, and low HDL) had a higher risk of developing T2DM.
It has also been reported that BMI above normal weight level
has been demonstrated to be one of the risk factors of T2DM
and its complications (71–73). Moreover, our interaction results
were supported by the synergistic effect and individual effect that
overweight, increased triglyceride, high LDL and low HDL are
associated with T2DM risk (74). In addition, another best three-
factor interaction model (RAN rs14035, with hypertension and
more than 5 years of T2DM duration) was also identified to
be related to the increased risk of macrovascular complications
of T2DM. Hypertension is known as one of the independent
risk factors of T2DM (75). Moreover, the coexistence of
hypertension and diabetes will significantly increase the risk of
developing cardiovascular complications of DM, which means
that hypertension may be an important risk factor for diabetic
macrovascular complications (76, 77). According to the ADA
guidelines, with the increase in the duration of diabetes, the risk
of developing diabetic vascular complications will significantly
increase (78). Many studies also supported that the duration of
diabetes played an important role in developing diabetic vascular
complications (79, 80). However, our study is the first time
we found these two interaction models in T2DM and diabetic
macrovascular complications, thus further studies with larger
population samples are needed.

Similarly, there might be more environmental factors, such as
diet behavior, passive smoke exposure and PM2.5, which might
also modify the effects of genetic variants on the susceptibility
of T2DM and its vascular complications (72, 73). For example,
the study by Eze et al. demonstrated the interaction between
long-term PM10 and gene polymorphisms at IL6-572 on T2DM
(81). Therefore, more environmental factors could be included in
further studies on interaction.

Our study has several limitations. First, the sample in the study
was not very large, which might restrict the ability to explore
weaker associations among T2DM, vascular complications of
T2DM and SNPs. Second, the basic characteristics of the included
individuals collected were not very comprehensive. Several
clinical characteristics were not collected, such as the actual
values of systolic and diastolic blood pressure. In addition, we
should also includemoremeaningful environmental factors, such
as diet, PM10 and passive smoke, in our analysis. Therefore,
more large and well-designed investigation is needed to support
our findings.

As far as we know, this is the first study to investigate
the association of these five polymorphisms (rs14035 in RAN,
rs11077 in XPO5, rs13078 in DICER1, rs3742330 in DICER1
and rs784567 in TARBP2) with the risk of T2DM and its
vascular complications. Our findings offer us the first evidence
that rs13078 in DICER1 is related to a reduced risk of T2DM
and that RAN rs14035 is relevant to an increased risk of
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macrovascular complication of T2DM in southern Chinese
population. Additionally, our results also demonstrate two
feasible interactions,DICER1 rs13078, BMI and TG in T2DMand
RAN rs14035, hypertension and duration of T2DM in diabetic
macrovascular complications. Our study may provide a new clue
of epidemiology about the importance of miRNA processing
genes (RAN, XPO5, DICER1, and TARBP2) in type 2 diabetes
mellitus and diabetic vascular complications.
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