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Abstract

Background/Objectives—Obesity is an important risk factor for the development of diseases 

such as diabetes mellitus, hypertension, and dyslipidemia; however, a small number of individuals 

with long-standing obesity do not present with these cardiometabolic diseases. Such individuals 

are referred to as metabolically healthy obese (MHO) and potentially represent a subgroup of the 

general population with a protective genetic predisposition to obesity-related diseases. We 

hypothesized that individuals who were metabolically healthy but significantly obese (BMI ≥35 

kg/m2) would represent a highly homogenous subgroup, with which to investigate potential 

genetic associations to obesity. We further hypothesized that such a cohort may lend itself well to 

investigate potential genotypes that are protective with respect to the development of 

cardiometabolic disease.

Subjects/Methods—In the present study, we implemented this novel selection strategy by 

screening 892 individuals diagnosed as Class 2 or Class 3 obese and identified 38 who presented 

without any manifestations of cardiometabolic disease. We then assessed these subjects for single 

nucleotide polymorphisms (SNPs) that associated with this phenotype.

Results—Our analysis identified 89 SNPs that reach statistical significance (p<1×10−5), some of 

which are associated with genes of biological pathways that influences dietary behavior; others are 
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associated with genes previously linked to obesity and cardiometabolic disease as well as 

neuroimmune disease. This study, to the best of our knowledge, represents the first genetic 

screening of a cardiometabolically healthy but significantly obese population.
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INTRODUCTION

In the United States, two of every three adults are considered obese and 1 in 20 are severely 

obese 1. A number of generally modifiable proclivities contribute to these statistics such as 

sedentary lifestyle, inadequate sleeping practices, and poor eating habits 2. Other factors that 

are less modifiable, including socioeconomic status and the availability of proper nutrition, 

also contribute 3. Additionally, some factors, which are not modifiable, including age, 

gender, and genetic background, likewise contribute 1. While the contributions of age and 

gender to the development of obesity are largely understood, the contributions of genetics 

are more complex. For instance, it is generally believed that gene-environment interactions 

are obligatory in most instances 4. Furthermore, while a few specific genetic polymorphisms 

are well documented to associate with obesity, the frequency of most are not sufficient in the 

general population to account for the observed prevalence. In fact, it is likely that polygenic 

contributions are necessary to define a genetic predisposition to the development of obesity.

The majority of studies that have investigated potential genetic predispositions to the 

development of obesity have included subjects with obesity-related comorbidities, such as 

type 2 diabetes or heart disease 5. While obesity is a known risk factor for these 

comorbidities, their presence may introduce potential confounding factors when conducting 

strict investigations into the genetic underpinnings of obesity. This is because these diseases 

may also have a genetic basis independent of obesity, as they impact the non-obese as well. 

Alternatively, these diseases may have a genetic component that may actually favor the onset 

of obesity. For those studies exclusively focused on obesity, to the best of our knowledge, 

none have specifically excluded these potentially confounding comorbidities.

It is believed that certain genetic predispositions exist that are protective with respect to 

cardiometabolic diseases. Consistent with this supposition, some individuals with long-

standing obesity do not develop these cardiometabolic diseases. This phenomenon, 

originally coined by Sims in 2001 as a metabolically normal subgroup of obese (OBMN) 6 

is now more commonly referred to as metabolically healthy obese (MHO) 7. 

Notwithstanding, the concept of MHO has been the subject of ongoing debate 8, 9. While 

those who are MHO may not present with cardiometabolic disease at the time of their 

evaluation; previous studies contend that these individuals are at increased risk of other 

adverse outcomes, such as cardiovascular disease 10. Conversely, other studies support that 

an MHO phenotype may be associated with a protective benefit. For instance, recently, 

Iglesias Molli et al. reported that MHO subjects presented similar levels of chronic 

inflammation but less insulin-resistance than obese subjects with metabolic syndrome 11.
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Although a consensus regarding the definition of MHO has not been reached, most studies 

define MHO as a body mass index (BMI) ≥ 30 kg/m2 and without the presence of metabolic 

diseases such as type 2 diabetes, dyslipidemia, or hypertension 6, 12. To the best of our 

knowledge, an MHO Class 2 or Class 3 (BMI of 35 to < 40 or BMI of 40 or higher, 

respectively) cohort has not been investigated. With this in mind, we hypothesized that such 

individuals would represent a profoundly homogenous subgroup, to investigate potential 

genetic associations to obesity. We further hypothesized that such a cohort may allow 

potential genotypes, that are protective with respect to the development of cardiometabolic 

disease, to be identified.

In the present study, we screened 892 individuals classified as either Class 2 or 3 obese and 

identified 38 who presented without any manifestations of metabolic diseases. When the 

MHO cohort was compared to 32 lean healthy controls, we identified 89 SNPs that reach 

statistical significance. In spite of the small sample size of the study cohort, our highly 

specific selection criteria allowed us to identify novel polymorphisms in obesity-related 

biological pathways, previously implicated in larger obese genetic studies. Our data provides 

additional validation of these previous studies as well as identifies novel obesity-related 

candidate genes.

MATERIALS AND METHODS

Ethics statement

This study was conducted under the guidelines of the Declaration of Helsinki. All subjects 

provided written informed consent before participation under a protocol approved by the 

University of Nevada, Reno, Institutional Review Board (Protocol # 2013B027).

Study subjects

Subjects for this study were recruited from patients who visited the Wellness and Weight 

Management Clinic and Internal Medicine Clinic at the University of Nevada, Reno, 

between 2009 and 2012. Cases and controls were generally matched with respect to age 

(Table 1). In order to remove any confounding variables that resulted from gender bias, we 

elected to include only females in our study. Potential participants were phenotyped using a 

clinical algorithm to identify cases with the following characteristics: self-identified as 

European American (Caucasian), female, at least 40 years old, BMI ≥ 35 kg/m2, with 

normal blood pressure, normal fasting plasma glucose (less than 100 mg/dL), and a desirable 

fasting lipid panel based on Adult Treatment Panel III recommendations 13. Potential 

participants who, at any time, had used antidiabetic, lipid-lowering, or antihypertensive 

drugs were excluded. Participants with a past history of diabetes mellitus, hypertension, 

metabolic syndrome, coronary artery disease (angina, myocardial infraction, abnormal 

cardiac stress test), thyroid dysfunctions, Cushing’s disease, polycystic ovary disease, 

bulimia/anorexia, and family history of premature coronary artery diseases were also 

excluded. Any potential subjects with a history of diet-associated weight loss within six 

months of enrollment were further excluded. Additionally, all participants were non-smokers 

(current or past history of smoking) and all subjects self-reported their diet as “regular”. 

Lastly, all obese subjects reported as having been obese their entire adult life.
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Sample size justification

Following the study of Smith et al. 14, that reported 64 statistically significantly associated 

SNPs of effect size (allelic odds ratio) ranging between 0 and 15.7, this study enrolled 38 

cases and 32 controls. Post hoc power computations using the QUANTO v. 1.24 power 

calculator 15 indicate that the 89 SNPs reported here have at least 80% power to detect effect 

sizes (allelic odds ratios) as small as 2.8, depending on minor allele frequencies (MAFs) of 

these SNPs and the genetic model used. It is noteworthy that the log-additive model is the 

least conservative in these calculations. MAF values ranged from 0.043 to 0.50 in this set of 

89 SNPs. QUANTO was set to compute power of allelic associations based on the additive, 

recessive, and dominant models of MAFs between 0.043 and 0.50, significance level alpha = 

0.05 and population prevalence 0.351%, following power calculations of similar studies 
16, 17. Results from these calculations are available in Supplementary Table 1 and the 

corresponding odds ratio at each allele frequency are highlighted for clarity.

Our control subjects were comprised of healthy, self-identified European-American females, 

at least 40 years of age with a BMI ≤ 24.9 kg/m2. In addition, the control subjects who 

underwent any form of weight loss treatment, including lifestyle interventions, medications, 

or surgery, were excluded. Anthropometric measurements (weight and height) and blood 

pressure were obtained using calibrated, professional clinical instruments in the respective 

clinics described above. Laboratory testing (fasting lipid panel, fasting blood glucose) was 

performed at nationally standardized, CLIA (Clinical Laboratory Improvement 

Amendments) certified laboratories as part of routine patient care. A list of the study 

subjects’ clinical characteristics is presented in Table 1.

Single nucleotide polymorphism analysis

DNA was extracted from approximately 2 ml of saliva, collected using the Oragene®DNA 

500 Saliva Collection Kit (DNA Genotek Inc., Ottawa, ON, Canada) according to the 

manufacturer’s instructions. SNPs were identified using the Affymetrix Genome-Wide SNP 

Array 6.0 according to methods previously described by us 17.

Data analysis

The Affymetrix Genome-Wide Human SNP Array 6.0 was used to identify potential 

associations of 905,027 SNPs with the MHO diagnosis. Affymetrix CEL files were first 

processed using the Corrected Robust Linear Model with maximum Likelihood 

Classification (CRLMM) genotyping algorithm using the R package crlmm 18. Standard 

quality control measures were used to assess the chip and sample reliability. Specifically, 

only SNPs having a minor allele frequency of at least 3.5% in our sample set were 

considered (193,184 SNPs were excluded due to having a minor allele frequency less than or 

equal to 3.5%). All SNPs were examined for low call rates (below 95%), and none were 

excluded because of this. All samples were verified to have an SNP call rate of 95% or 

greater, and sample genders were verified with heterozygosity of the X chromosome. A total 

of 1,836 markers were excluded because their genotype frequencies were inconsistent with 

Hardy-Weinberg equilibrium (Chi-Squared FDR values with p<0.2). There were 710,007 

SNPs on the array passing this standard quality control protocol across all 70 samples.
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Three single-location association tests were performed on these 710,007 SNPs. A genome-

wide test for association was performed on each SNP via a simple logistic regression and 

computation of the p-value of the likelihood ratio test upon comparison with the null model 
19. As the mode of inheritance is currently unknown in obesity, the study was based on the 

codominant (additive) model, which represents the most general model available 20. 

Association was also performed using the log-additive, recessive, dominant, and 

overdominant genetic models. The p-values of the likelihood ratio test were adjusted for 

multiple testing using the False Discovery Rate (FDR) method (Figure 1) 21. Both raw and 

adjusted p-values are shown in Supplementary Table 2. SNPs with association tests resulting 

in any of the five models with a raw p-value of p<1×10−5 were selected for further study. 

These values correspond to the eligibility criteria of published SNPs in the NHGRI-EBI 

Catalog of published genome-wide association studies [https://www.ebi.ac.uk/gwas/docs/

methods].

Additionally, a simple Chi-squared hypothesis test (two degrees of freedom) for association 

between the three possible genotypes of each SNP and the disease trait was also performed 

on each of the 710,007 SNPs, which we refer to here as the genotypic association test. Next, 

a standard Fisher’s exact test (one degree of freedom) was performed on the allelic 

distribution between cases and controls of each SNP. A standard, conservative genomic 

control method was used to test and control for the overall inflation of the allelic association 

test statistic (inflation factor γ= 1.03) 22.

SNP positions are consistent with the 2013 human genome assembly (GRCh38/hg38) and 

are assigned to a gene if the respective SNP is within 40 kb of the gene 23. SNPs that are not 

within 40 kb of any gene are referred to as intergenic in our tables 23.

RESULTS

Identification of SNPs that associate with MHO

Of the 710,007 candidate SNPs that passed quality control measures, 89 statistically 

significant SNPs were identified to associate with our MHO cohort (Supplemental Table 2). 

In order to assess the possibility that these SNPs were associated with a predisposition to the 

development of obesity or cardiometabolic disease, we conducted a manual search of the 

medical literature and databases of genotypes, phenotypes, and protein function. Our search 

determined that 12 genes that were associated with our significant SNPs were also 

associated with obesity or metabolic disease (Table 2). For example, two SNPs were 

identified in the 3-prime untranslated region of RTP4; the chemosensory receptor 

chemosensory transporter protein 4 (p =3×10−8 and p =5×10−6). RTP4 expression has been 

reported to be predictive of future hypertension incidence in type 2 diabetic patients 24. 

Additionally, we identified an intron variant of the Potassium Voltage-Gated Channel 

Subfamily Q Member 1 gene (KCNQ1) that associated with the MHO phenotype 

(p=1×10−5). Several studies have reported KCNQ1 polymorphism associations for obesity, 

type 2 diabetes, or cardiovascular risk 25, 26.

In contrast to the aforementioned examples, which were previously associated with 

increased risk of obesity or metabolic disease, we also observed a significant polymorphism 
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in the Inter-Alpha-Trypsin Inhibitor Heavy Chain Family Member 5 gene ITIH5. Anveden et 

al. reported that ITIH-5 is highly expressed in adipose tissue and is increased in obesity, but 

is down regulated after weight loss 27. Therefore, an ITIH5 polymorphism that decreases 

transcription may represent a protective phenotype with respect to metabolic disease. We 

also observed three SNPs in the TOX High Mobility Group Box Family Member 2 gene, 

TOX2. TOX2 is a putative transcriptional activator involved in the hypothalamo-pituitary-

gonadal system. SNPs in TOX2 have been reported to associate with increased, as well as 

decreased, diastolic blood pressure. Other obesity-related genes are presented in Table 2.

Two significant SNPs were identified in our study have been reported to associate with 

human disease. The SNP rs984430 is an intron variant in the Neurotrophic Receptor 

Tyrosine Kinase 2 gene (NTRK2). Polymorphisms in this gene have been identified as a 

genetic risk factor for the development of severe obesity 28 and this specific SNP was 

identified as a risk factor for depression 29. The other SNP (rs9736016) is an intergenic 

variant between the chemokine (C-X-C motif) receptor 5 and the DEAD (Asp-Glu-Ala-Asp) 

box helicase 6 (CXCR5 and DDX6, respectively) and is identified as a risk factor for 

multiple sclerosis 30.

Multiple SNPs in proximity to specific genes

In order to identify genotypic differences and patterns in regions near an SNP or SNPs of 

statistical significance, we utilized the Open Source plotting tool, GenotypePlotter, which 

was specifically designed to view genotypic patterns of cases and controls simultaneously as 

well as to organize both phased and unphased chromosomes in regions around potential 

causative SNPs of interest 17. GenotypePlotter uses a novel clustering scheme to organize 

samples into similar patterns based on their genotypes across a region, providing a user-

friendly overview of differences between cohorts. After organizing the samples over a 

selection of SNPs, genotypes are portrayed in different colors to represent a type of 

heatmap: red cells indicate sample genotypes that are homozygous with respect to the minor 

allele for that SNP; blue cells indicate sample genotypes that are homozygous with respect 

to the major allele; and yellow cells represent heterozygous genotypes. GenotypePlotter was 

developed by coauthor Schlauch and is available upon request.

Of the 89 statistically significant SNPs, 31 were observed to be in proximity to at least one 

other SNP of the same gene or intergenic region, across twelve different loci, suggesting 

these genes or chromosomal regions may have special relevance. For example, Figure 2 

presents a 50 kb region containing seven statistically significant SNPs on chromosome 6 

(rs9295227, rs9458896, rs6928576, rs6902153, rs10945918, rs7748991 and rs9356148). 

Figure 3 presents three SNPs (rs2245221, rs2737214, and rs2737215), within 500 base pairs 

of each other, on chromosome 8, in an intronic region of the Transcriptional Repressor 

GATA Binding 1 (TRPS1), and three SNPs (rs766622, rs6065690 and rs6093921) were 

observed within 3 kb of each other on chromosome 20 in an intronic region of TOX2 (Figure 

4). Eight additional regions were observed to have at least two SNPs in proximity to each 

other (Supplementary Table 3; colored region).
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DISCUSSION

The purpose of this study was to identify novel polymorphisms that contribute to a 

predisposition to the development of obesity. We also investigated our unique MHO cohort 

to potentially identify candidate polymorphisms that may represent a protective genotype to 

the development of cardiometabolic disease. Although our sample size was relatively small 

for a genome wide association study (GWAS), if one considers the selectivity of our 

screening process, the power of this method adequately compensates for the small sample 

size.

A BMI is a ratio of an individual’s weight-to-height and is customarily calculated by 

dividing one’s weight (in kilograms) by the square of one’s height (in meters). Recent 

guidelines from the U.S. Centers for Disease Control and Prevention (CDC) and the World 

Health Organization define a healthy BMI range as 18.5 to 24.9 kg/m2. These guidelines 

define overweight range as a BMI of 25.0 to 29.9 kg/m2 and obesity as a BMI over 30.0 

kg/m2. CDC guidelines further subdivide obesity into three categories: Class 1: BMI of 30 to 

< 35; Class 2: BMI of 35 to < 40; and Class 3: BMI of 40 or higher. In the present study, we 

investigated subjects who presented with either Class 2 or Class 3 obesity (mean BMI of 

42.9±6.2) and who also met the added criteria of being MHO (Table 1).

As of 2010, it was estimated that approximately 27.2% of the U.S. population was obese 

with a BMI>30, whereas 3.7% were severely obese (Class 3) with a BMI>40 31. Because the 

prevalence of a female Caucasian MHO cohort with a BMI>40 not been previously reported, 

we estimated the prevalence as follows: Although the vast majority of our cases had 

BMI>40, a small number had BMI between 35 and 40 and thus our inclusion criteria were 

set at BMI>35 (actual mean BMI was 42.9±6.2). Flegal et al. estimates the prevalence for 

Caucasian females between the ages of 40 and 59 years to have a BMI > 35 as 15.6% and 

for BMI>40 as 7.3% 32. Thus, a conservative estimate for the prevalence of Caucasian 

females in our cohort with mean BMI 42.9 is 7.3%. It was necessary to screen 892 Class 2 

Caucasian individuals to identify 38 MHO Caucasian females for this study. As 38/890 = 

4.27%, we estimated the prevalence of metabolically healthy but severely obese individuals 

(BMI>40) in the general US female Caucasian population as 0.315% using Bayes Theorem: 

P(MHO|BMI>40) = P(MHO ∩ BMI>40)/P(BMI>40). Thus, P(MHO ∩ BMI>40) = (.0427)(.

073) = .00351or 0.351%. Consequently, if one were to conduct a GWAS that included 

subjects who were merely obese, it would be necessary to include over 12,000 obese 

subjects in order to capture 40 severely obese MHO subjects. This calculation is not meant 

to be a rigorous power analysis, but to underscore the rigor of our selection method in 

identifying a very specific subset of the obese.

In our study, we identified 89 SNPs that reached statistical significance. In order to identify 

candidate SNPs in genes that may lead to a predisposition to obesity or those that may be 

protective from the development of obesity-related metabolic disease, we conducted a 

manual search of the medical literature and databases of genotypes, phenotypes, and protein 

function. Our search determined that 12 genes associated with significant SNPs were also 

associated with obesity or cardiometabolic disease (Table 2). For instance, we identified two 

significant SNPs in the (chemosensory) receptor transporter protein 4 gene, RTP4. The 
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product of this gene facilitates trafficking and expression of some G-protein coupled 

receptors and promotes functional expression of the bitter taste receptor TAS2R1633. 

Although RTP4 has not been previously associated with obesity or metabolic disease, 

variation in the bitter-taste receptor genes have been linked to obesity 34, altered glucose and 

insulin homeostasis35, and circulating levels of thyroid hormones 36. We also observed three 

SNPs in the TOX High Mobility Group Box Family Member 2 gene, TOX2. Previous 

studies have reported that the expression of TOX2 is associated with regulation of the 

transcription factor TBX21 37. Although such an association is indirect, other studies have 

reported a lack of TBX21 expression in the context of obesity. For instance, Stolarczyk et el. 

reported that TBX21-deficient mice are fatter but more insulin sensitive than their wild-type 

counterparts 38, suggesting that decreased TBX21 expression may be associated with obesity 

on a metabolically healthy background. Therefore, polymorphisms that lead to deceased 

TOX2 expression may indirectly influence obesity via a TBX21-dependent mechanism; 

however, the TOX2 polymorphisms identified in the present study will need to be evaluated 

at the expression level in order to support such an assertion.

A single SNP was identified in the Potassium Voltage-Gated Channel Subfamily Q Member 

1 gene, KCNQ1. Several investigators have reported associations between KCNQ1 and 

obesity, as well as obesity-related metabolic diseases including diabetes mellitus, type 2 

diabetes, and reduced insulin release39, 40. As a final example, we observed an SNP in the 

Inter-Alpha-Trypsin Inhibitor Heavy Chain Family Member 5 gene, ITIH5. Significant 

correlations between BMI and mRNA expression have been reported for ITIH5. For 

instance, Anveden et al. reported that ITIH-5 expression in human adipose tissue is 

increased, suggesting that an SNP that results in decreased transcription may represent a 

protective genotype with respect to the development of obesity27.

All of the SNPs identified in our study were observed in non-coding regions in their 

respective gene or intergenic regions. Nevertheless, it is accepted that SNPs residing within 

introns, or those upstream or downstream of genes, also have the capacity to be causal 41, 42. 

Indeed, Farh et al. implemented a fine-mapping algorithm to analyze GWAS data sets for 21 

autoimmune diseases and showed that approximately 90% of all causal SNPs map to 

noncoding regions 43. They also reported that only 10–20% of causal SNPs directly alter 

recognizable transcription factor binding motifs. Additional, studies will be necessary to 

determine if the SNPs identified in this study lead to altered transcription of their respective 

genes, and thus are causal.

In this study, we identified nine regions with two statistically significant SNPs in proximity 

to specific genes, two with three statistically significant SNPs and one with seven 

statistically significant SNPs. For example, the LOC107986666, which contained seven 

statistically significant SNPs, represents an uncharacterized RNA gene affiliated with the 

non-coding RNA class. Although the probability of seven SNPs being found to be 

statistically significant in a relatively small region is remote, the identification of multiple 

SNPs within a single gene that are associated with disease is not without precedence. 

Indeed, multiple SNPs within the RNASEL gene are associated with prostate cancer 44 and 

several SNPs in the CDKN2B and ANRIL genes are associated with cardiovascular disease 
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45. Notwithstanding, functional characterization of this gene will be required before the 

significance of this SNP can be determined.

Simple Mendelian inheritance, resulting from changes of a single gene, is observed in some 

instances of obesity; however, these occurrences are rare. For instance, mutations in the gene 

that encodes the melanocortin 4 receptor (MC4R) are a cause of autosomal dominant obesity 
46. The melanocortin 4 receptor plays an essential role in energy homeostasis and somatic 

growth. With a prevalence of 1.0–2.5% in those with a BMI>30, it is the most commonly 

known genetic predisposing to obesity 46. Polymorphisms in the first intron of the alpha-

ketoglutarate dependent dioxygenase gene (FTO) are also commonly associated with 

increased body mass index and risk of obesity47. Notwithstanding, we did not observe any 

polymorphisms for these genes in our study cohort. One potential reason for this is that our 

subjects were specifically selected to exclude any individuals with cardiometabolic disease. 

In addition to a predisposition to obesity, polymorphisms in MC4R and FTO are also 

associated with cardiometabolic diseases, including type 2 diabetes and elevated 

triglycerides 48, 49. This observation suggests that our results implicate an alternative, and 

perhaps more complicated, mechanism; possibly the results of polygenetic influences.

Although we identified SNPs in several genes associated with metabolic disease or a 

predisposition to the development of obesity, all but two of the statistically significant SNPs 

observed in our study were novel with respect to human disease. One of these SNPs 

(rs984430) is an intron variant in the Neurotrophic Receptor Tyrosine Kinase 2 gene 

(NRTK2) and is associated with depression and obesity 28, 29. The other (rs9736016) is an 

intergenic variant between the chemokine (C-X-C motif) receptor 5 and the DEAD (Asp-

Glu-Ala-Asp) box helicase 6 (CXCR5 and DDX6, respectively), and was identified by the 

International Multiple Sclerosis Genetics Consortium as one of 48 new non-MHC variants 

associated with multiple sclerosis at a genome-wide significance level 30. It is noteworthy 

that a number of genes we found to contain significant SNPs have also been associated with 

neurological function. For instance, Suzuki et al. reported that FSTL4 negatively regulates 

brain derived neurotrophic factor (BNDF) maturation 50, and KCNQ1 levels have been 

shown to affect neuronal action potentials 51. Further studies will be necessary to definitively 

ascertain any potential connection between neurological function and predisposition to 

obesity or cardiometabolic disease.

In summary, to the best of our knowledge, the present study is the first to investigate 

severely obese subjects who present without metabolic disease. Using an ultra-high density 

SNP genotyping array, we screened cases and controls to identify 89 potential loci that 

associate with obesity or obesity-related metabolic disease. The SNPs identified and 

reported here may help direct future research efforts in a more specific manner by 

identifying biological pathways and genes that may be associated with, the development of 

obesity or that are protective with respect to the development of metabolic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of genome-wide association raw p-values. The horizontal line corresponds to 

single SNP associations with p-values of p=1×10−5.
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Figure 2. 
A genotypic organization of 32 controls (first 32 columns) and 38 MHO cases (last 38 

columns) on chromosome 6 between 163,712,118 and 163,772,486, containing the 

LOC107986666 gene. This region contains seven SNPs found to be statistically significantly 

associated with the MHO cohort. The first seven cases show a haplotypic pattern not shared 

by the control cohort: the red cells represent the homozygous genotype of the minor allele. 

The light blue cells denote the homozygous genotype of the major allele. Also of note is the 

rather distinct region that the last eight control samples share. These are relatively large 

haplotypic regions not typically shared between many individuals. The color bar, directly to 

the left of the heat map, shows the intragenic and near-gene nature of most of the SNPs in 

the region.
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Figure 3. 
A genotypic organization of 32 controls (first 32 columns) and 38 MHO cases (last 38 

columns) on chromosome 8 between 115,612,652 and 115,613,480 containing the TRPS1 
gene. The distinct genotypic pattern shared by the ten cases is seen in only three controls.
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Figure 4. 
A genotypic organization of 32 controls (first 32 columns) and 38 MHO cases (last 38 

columns) on chromosome 20 between 44,045,208 and 44,042,793, containing the TOX2 
gene. The genotypic pattern shared by the three MHO cases at the top left of the second 

panel does not occur in any of the controls.
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Table 1

Clinical characteristics of study subjects

Cases (mean±SD) Controls (mean±SD) p-value*

Age 51.1±7.4 53.1±8.8 0.37

Height (cm) 163.0±7.2 166.2±6.8 0.08

Weight (kg) 115.0±19.5 62.1±6.4 7.90×10−13

BMI (kg/m2) 42.9±6.4 22.4±1.8 3.90×10−13

Systolic blood pressure (mmHg) 123.3±8.7 117.0±10.5 0.014

Diastolic blood pressure (mmHg) 75.8±9.0 70.1±6.2 0.002

Fasting blood glucose (mg/dL) 92.3±11.0 89.2±6.7 0.17

Total Cholesterol (mg/dL) 192.6±32.8 191.1±24.3 0.80

HDL-cholesterol (mg/dL) 58.6±17.7 70.8±16.2 0.02

LDL-cholesterol (mg/dL) 109.7±28.4 105.1±23.6 0.63

Triglycerides (mg/dL) 127.0 ±45.6 80.2±26.9 2.30×10−6

*
Non-parametric t-tests were performed on all variables to be consistent, as some were not representative of a normally distributed dataset. Note 

that although there are statistically significant differences in blood pressure, HDL cholesterol, and triglyceride levels, the differences are from the 
clinical perspective minor and in part due to the small sample size. All subjects meet the criteria for normal blood pressure and lipid panel as per 
ATPIII and have fasting glucose less than 100 mg/dL.
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Table 2

Genes with significant SNPs that are associated with obesity or metabolic disease

Gene Gene associations with Obesity/Metabolic Phenotype Ref.

DPYD Associated with syndromic obesity 31

KLHL6 Associated with acute insulin response to glucose 32

RTP4 Associated with future incidence of hypertension; regulates bitter taste receptor 24, 33

PCDH7 Associated with waist-to-hip ratio on total cholesterol 34

FSTL4 Associated with increased risk of stroke 35

CSMD1 Associated with metabolic syndrome 36

ITIH5 Expression correlates with body mass index 37

KCNQ1 Associated with type 2 diabetes 38, 39

NBEA Associated with body mass index 40

TOX2 Associated with increased diastolic BP 40

BBX Associated with type 1 diabetes mellitus 41

NTRK2 Associated with obesity and depression 28, 29
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