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ABSTRACT

DNA microarray technology provides a promising
approach to the diagnosis and prognosis of tumors
on a genome-wide scale by monitoring the expression
levels of thousands of genes simultaneously. One
problem arising from the use of microarray data is
the difficulty to analyze the high-dimensional gene
expression data, typically with thousands of variables
(genes) and much fewer observations (samples),
in which severe collinearity is often observed. This
makes it difficult to apply directly the classical stat-
istical methods to investigate microarray data. In this
paper, total principal component regression (TPCR)
was proposed to classify human tumors by extracting
the latent variable structure underlying microarray
data from the augmented subspace of both independ-
ent variables and dependent variables. One of the
salient features of our method is that it takes into
account not only the latent variable structure but also
the errors in the microarray gene expression profiles
(independent variables). The prediction performance
of TPCR was evaluated by both leave-one-out and
leave-half-out cross-validation using four well-known
microarray datasets. The stabilities and reliabilities of
the classification models were further assessed by
re-randomization and permutation studies. A fast
kernel algorithm was applied to decrease the compu-
tation time dramatically. (MATLAB source code is
available upon request.)

INTRODUCTION

Improvements in cancer classification have been of great
importance in cancer treatment. It is difficult to distinguish

tumors, which have similar histopathological appearance
but different clinical course and response to therapy, by the
traditional cancer diagnostic methods that are based primarily
on morphological appearance of tumors (1). DNA microarray
technology provides a powerful approach to the diagnosis and
prognosis of various tumors on a genome-wide scale. By
simultaneously monitoring the expression of thousands of
genes in cells to obtain quantitative information about the
complete transcription profile of cells, microarray technology
makes tailored therapeutics to specific pathologies possible
(1–4). Despite the usefulness of microarray technology, ana-
lyzing and understanding the obtained data has been a complex
and challenging task. Microarray data analysis methods can be
categorized roughly into unsupervised learning, including
various clustering techniques such as self-organizing map
(5) and hierarchical clustering (6), and supervised learning,
including various classification and prediction techniques
(7,8). Some recent applications of supervised learning techni-
ques include molecular classification of acute leukemia (1),
classification of human cancer cell lines (9), support vector
machine classification of cancer tissue samples (10), classify-
ing cancers using artificial neural networks (11), mapping of
the physiological state of cells and tissues and identification of
important genes using Fisher discriminant analysis (12), tumor
classification by polychotomous discrimination and quadratic
discriminant analysis after dimension reduction using prin-
cipal component analysis (PCA) or partial least squares (PLS)
(13), PCA disjoint models for cancer classification (14), multi-
class tumor classification by discriminant PLS and assessment
of classification models (15), classification by incorporating
PLS within the interactively re-weighed least square steps for
multinomial or binary logistic regression (16) and classifica-
tion using PLS with penalized logistic regression (17).

DNA microarray gene expression data are usually charac-
terized by thousands of variables (genes) with much fewer
observations (samples), resulting in a high degree of multi-
collinearity. This makes it difficult or even impossible to apply
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directly classical statistical methods to the analysis of
microarray data. To tackle this kind of collinearity problems,
latent variable methods, such as PCA (18) and PLS (19), have
been developed to reduce the dimensionality of gene expres-
sion data and mitigate the collinearity. These methods assume
that the independent variables (gene expression profiles)
are inherently located in a low-dimensional linear subspace,
i.e. they have an intrinsic latent variable structure. PCA
attempts to find a set of orthogonal principal components
(linear combinations of original independent variables) to
account for the maximum variations in independent variables
(18). Since the information about the sample classification
provided by dependent variable (class membership) is not
taken into account in the extraction of the principal compo-
nents in PCA, the performance of PCA in classification or
prediction may not be satisfactory. And this is one of the
reasons why PLS was developed several decades ago to pro-
vide a better performance in calibration and prediction than
PCA (19). In addition, it is well-known that microarray experi-
ments are influenced by many potential sources of variation/
error and these kinds of variability can be roughly classified
into three categories: biological variation (genetic or environ-
mental factors, pooled or non-pool), technical variation (dur-
ing extraction, labeling and hybridization) and measurement
error (signal detection, etc.) (20–22). These kinds of variability
have been analyzed using the ANOVA model to determine the
sources and magnitudes of error/variation in gene expression
profiles (22–25). However, in classification or prediction using
microarray data, most of the statistical methods (e.g. PCA
and PLS) relating the gene expression profiles, X-independent
variables, to other information of interest, Y-dependent vari-
ables (e.g. tumor type or survival time), do not account for
errors in the independent variables, which is one of the import-
ant characteristics of measured data. To tackle these problems
mentioned above, a novel method, total principal component
regression (TPCR), is proposed to not only incorporate the
information of the dependent variables into the construction
of latent structure but also take into account the errors in
both independent variables and dependent variables. A salient
feature of TPCR is that it extracts the latent structure from
the augmented subspace of both independent and dependent
variables, using a weighted least square fitting. This enables
the proposed method to construct latent variables approxim-
ating optimally the actual latent structure and eliminate the
collinearity to a certain degree.

METHODS

Total principal component regression

The basic goal of various projection or dimension-reduction
approaches, for example PCA (18) and PLS (19), is to project
the observations (samples) from the high-dimensional vari-
ables (genes) space to a low-dimensional subspace spanned
by several linear combinations of the original variables, in
order to satisfy a certain criterion. PCA attempts to find a set
of orthogonal principal components to explain as much vari-
ance as possible in independent variables (X). The perform-
ance of PCA in classification may not be satisfactory from
the predictive point of view, because there is no guarantee that
the principal component representing the large variance in

X should necessarily be the component strongly related to
dependent variables (Y). To solve this problem, the informa-
tion of dependent variables should be taken into account
during the construction of orthogonal components. One way
to do so is to maximize the sample covariance between the
linear combination of dependent variables and the orthogonal
component of independent variables, which is the essence of
PLS (15,26,27), as shown by the objective criterion of PLS:

w, cf g = argmax
wTw¼1

cTc¼1

cov2 Xw, Ycð Þ 1

where w and c denote the weight vectors of X and Y, respect-
ively. It has been proved that w and c are related to the
following eigenvalue problems (26,27):

XTYYTXw = aw

YTXXTYc = ac 2

where a is the maximum eigenvalue and the weight vectors w
and c can thus be calculated as the first left and right singular
vector of XTY, respectively.

Another simple way to make use of the information of
dependent variable would be to construct the orthogonal com-
ponents, rather than only from the subspace of X, from the
augmented subspace of both X and Y, that is, finding a low-
dimensional subspace to best fit the subspace spanned by both
X and Y, which is one of the motivations of TPCR.

In classical regression/prediction models, the independent
variables are usually assumed to be non-stochastic, in other
words, there is no error in the independent variables or at least
the error is negligible. However, it is well-known that various
variation/error may be introduced during a multi-step micro-
array experiment and these kinds of variation/error are usually
not negligible. In order to account for errors in both independ-
ent variables and dependent variables, the error-in-variables
(EIV) model (28–32) was used in this paper:

Y = eYY + EY 3

X = eXX + EX 4eYY = eXXB 5

where eXX and eYY denote the systematic or unobservable true
values for independent variables XN·P and dependent variables
YN·M, respectively; EX, EY represent the random error matrices
whose rows are assumed to be independently, identically dis-
tributed (i.i.d) with common mean vector 0 and common cov-
ariance matricess2

XIP ands2
YIM (IP and IM denote appropriate

identity matrices), respectively; B is a P ·M matrix. Equation 5
implies an assumption of the EIV model, i.e. there exists a linear
functional relationship between the systematic or true values of
X and Y (29,30,32). In the case of microarray data analysis, in
our opinion, the errors in the independent variables (gene
expression profiles) may include the random fluctuations intro-
duced by microarray technology itself, including measurement
error and/or technical variation, while the biological variation
(the true difference in gene expression) is embedded in the
systematic part of independent variables.

Suppose the systematic or true values of the independent
variables under observation is actually driven by a set of unob-
servable latent variables, i.e. they lie in a lower dimensional
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linear subspace spanned by the latent variables, then we can
define a column-wise orthonormal matrix TN·K (K < P and
TTT = I, where superscript T denotes the transpose of a
matrix), whose columns provide the basis for the subspace
of both eXX and eYY:eXX = TG 6eYY = eXXB = TGB = TF 7

where GK·P and FK·M are the corresponding loading mat-

rices for eXX and eYY, respectively. T can be seen as the common

latent structure for both eXX and eYY. On substitution of Equations 6
and 7 into the previous EIV model, we obtain the EIV latent
variable model (33–35):

Y = TF + EY 8

X = TG + EX 9

The assumption behind this model is that there is a linear
functional or structural relationship between the systematic
or true part of X and Y and this relationship can be linked
by a set of unobservable underlying latent variables T (33–35).
Note that just like the assumption of ordinary least squares is
not strictly complied with in practical applications, although
the i.i.d. assumption about the error structure in the TPCR
model may not be rigorously valid in some cases, it should
not degrade the performance of this model too much if the
violation is not too severe. It is worthy to point out that a model
taking into account the error information in the independent
variable, even if incomplete, would provide more insight into
the realistic characteristics and structure of data and better
performance than those incorporating no such information.
And the violation of this assumption may be corrected partially
by some preprocessing techniques such as transformation and
scaling.

A criterion for solving this EIV latent variable model is:

min
T,G,F
TTT¼I

kX � TGk2
F

s2
X

+
kY � TFk2

F

s2
Y

 !
10

where kMkF denotes the Frobenius norm of a matrix, that is,
kMkF = [tr(MMT)]1/2.

To deal with the error in both independent variables and
dependent variables, let meta parameter l (>0) be:

l2 =
s2

X

s2
Y

11

Then Equation 10 can be rewritten as

min
T,G,F
TTT¼I

kX � TGk2
F + l2kY � TFk2

F

� �
12

¼ min
T

min
G

kX � TGk2
F + l2

min
F
kY � TFk2

F

� �
13

Noting that TTT is the projection matrix, it is easy to see
from least square analysis (36–38) that:

kX � TGk2
F > kX � TTTXk2

F 14

kY � TFk2
F > kY � TTTYk2

F 15

Thus, Equation 13 is equivalent to

min
T

kX � TTTXk2
F + l2kY � TTTYk2

F

� �
16

¼ min
T

k X � TTTX,lY � lTTTY
� 	

k2
F 17

¼ min
T

kA � TTTAk2
F 18

¼ min
T

k I � TTT
� 	

Ak2
F 19

where A is the N · (P + M) augmented matrix of X and Y, that
is, A = (X, lY).

Noting that (I�TTT) stands for the N · N projection matrix,
which projects on the orthogonal complement of the subspace
spanned by T, Equation 19 can be minimized when T is the
first K largest principal component for the augmented matrix A
(18). Let the singular value decomposition (SVD) of A be

A = U�VT 20

where left singular vectors U = (u1, . . . , uN) 2 RN·N with
UTU = IN; right singular vectors V = (v1, . . . , v(P+M)) 2
R(P+M)·(P+M) with VTV = I(P+M), � is a diagonal matrix con-

taining singular values. Then let T be the first K columns of U:

T = u1, . . . , uKð Þ 21

Thus the estimates of eXX and eYY can be obtained by:

X̂X = TTTX 22

ŶY = TTTY 23

The regression coefficients estimated using TPCR are
given by

BTPCR = TTX
� 	þ

TTY 24

where superscript + denotes the generalized inverse of a matrix.

Fast kernel EVD algorithm for wide data

The speed and time of calculations have always been the
practical and important problems in the implementation of
algorithm or method in multivariate data analysis. Microarray
dataset typically consists of thousands of variables and less
than 100 samples (P 
 N). For such ‘wide’ data (39), the com-
putation time needed for matrix decomposition using classical
SVD algorithm (e.g. in MATLAB: [U, S, V] = svd (A), where
svd is the build-in function to calculate the singular vectors,
U and V, and singular values S) may be pretty long. The
situation becomes even worse when cross-validation is applied
to evaluate the methods, which is the typical case in tumor
classification. Therefore, an efficient and fast algorithm is
needed to calculate the singular vectors from microarray data.

Since the kernel matrix AAT contains the same information
(e.g. eigenvalues) as the covariance matrix ATA while the size
of AAT (N · N) is much smaller than that of AN·(P+M) and
(ATA)(P+M)·(P+M) (P 
 N), it would be much faster to cal-
culate the left singular vectors or eigenvectors U from
(AAT)(N·N) by eigenvalue decomposition (EVD) than from
AN·(P+M) by SVD (39).
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Thus, the modified fast kernel EVD algorithm to calculate
T is:

U, S
2

h i
= eig AAT

� 	
25

T = u1, . . . , uKð Þ; the first K columns of U 26

where eig is the build-in function of MATLAB to calculate
eigenvectors and eigenvalues of a matrix, U denotes the eigen-
vectors of AAT or the singular vectors of A and S2 is a diagonal
matrix containing eigenvalues of AAT (S contains the singular
values of A).

TPCR for discrimination

When TPCR is used for classification, the matrix of dependent
variables (Y) contains the information about the class member-
ships, with element yik = 0 or 1 (i = 1, . . . , N; k = 1, . . . , M;
where N and M is the number of samples and the number
of tumor classes, respectively). If the i-th sample belongs to
class k, then yik = 1, otherwise yik = 0.

The prediction of dependent variables on a new set of
samples is made by:

Ynew = XnewBTPCR 27

where Xnew is the gene expression profiles for the new set of
samples, and Ynew is the predicted values for these samples.
The identity of the class membership of each new sample
(each row in Ynew) is assigned as the column index of the
element with the largest predicted value in this row.

Meta parameter l
As stated above, the relative magnitude of errors in the
independent variables and dependent variables is given by
meta parameter l in TPCR model. It is important to choose
the appropriate l to obtain the best prediction performance.
Considering two extreme cases for l (>0):

(i) If l = 0, i.e. s2
x = 0, which means no error is considered

in X matrix, then the augmented matrix A = (X, lY) = X;
therefore, T will be the principal components of X itself.
In other words, the TPCR model degenerates to the clas-
sical principal component regression (PCR) model in
this extreme case. Note that no information about Y is
taken into account in the construction of latent variable
in this case.

(ii) If l is very large, the variation of the columns of lY
would be much larger than that of the columns of X in
the augmented matrix A. In this case, the major principal
components T will come largely from lY, since the
PCA always projects to the directions showing the largest
variation. Therefore, the prediction performance of T for
the new sample Xnew will be poor.

The choice of l depends on the experience about the data and
the computation power available. In practice, the optimal meta
parameter l (>0) is chosen from an appropriate set according
to leave-one-out cross-validation (LOOCV) procedure.

Gene selection

Variable (gene) selection is important for the successful
analysis of gene expression data since most of the genes do

not provide useful information for classification, and including
all of them in the modeling process will degrade the perform-
ance of the model. Therefore, non-informative genes should be
removed before building a classification model. There exist
different approaches for gene selection such as neighborhood
analysis (1), significance analysis of microarrays (40), Wilks’
lambda (12), t-score and critical score (13,41) and classifier
feedback approach (14).

In this paper, the sum of squared correlation coefficients
between gene expression and each of the dependent variables
is used to select the genes for analysis (15). For example, the
g* = 100 genes are taken as the first 100 genes with the largest
values of sum of squared correlation coefficients.

Assessment of prediction method by leave-one-out
and leave-half-out CV

LOOCV has become a standard procedure to evaluate the
performance of various classification methods in microarray
data analysis. Note that when gene selection or dimension
reduction is used together with LOOCV procedure, a common
mistake made in tumor classification using microarray gene
expression profiles, was to perform gene selection or dimen-
sion reduction before CV loop. However, such incomplete
LOOCV procedure is well known to be substantially biased
and prone to generating spuriously good results since the
information about all the samples is used for gene selection
or dimension reduction before the CV loop (15,42–44). In
this paper, the complete LOOCV (the gene selection and
dimension reduction within the CV loop) was applied.

LOOCV is nearly unbiased, but often with unacceptably
high variability, especially for dataset with small number of
samples (45–48), implying that it may give unreliable good
prediction results due to the effect of high variance/variability,
especially when the number of samples is small (just like
ordinary least square may give unreliable result due to the large
variance if there exists severe collinearity in the data, even if it
is unbiased). External validation can provide some protection
against over-fitting caused by LOOCV, but there may not be
enough samples for external test, especially for microarray
data analysis (due to the relatively expensive cost, etc.). In
this case, a re-randomization study, leave-half-out cross-
validation (LHOCV), provides an alternative approach to eval-
uate the prediction method more realistically (14,15,41,48).
Briefly, the whole datasets, including original training and test
dataset, are pooled together and split randomly (half/half) into
a new training dataset and a new test dataset; the randomly
generated training dataset is used to derive a classification
model (select genes, reduce dimension and calculate regression
coefficients) that is then applied to classify the corresponding
new test dataset. This LHOCV procedure is repeated 100 times
(splitting the pooled dataset randomly for 100 times) to avoid
chance factor.

RESULTS AND DISCUSSION

Acute leukemia data

The well-known leukemia dataset was measured by Golub et al.
(1) using Affymetrix high-density oligonucleotide microarray
containing probes for 6817 human genes and has become a
benchmark for the evaluation of various cancer classification
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algorithms. The original training dataset consisted of 38 bone
marrow samples from acute leukemia patients, including 19
B-cell acute lymphoblastic leukemia (B-ALL), 8 T-cell acute
lymphoblastic leukemia (T-ALL) and 11 acute myeloid
leukemia (AML). The original independent (test) dataset
consisted of 24 bone marrow and 10 peripheral blood samples
(19 B-All, 1 T-ALL and 14 AML). The gene expression data
was log transformed and centered to have mean zeros across
samples during the cross-validation process.

The original 38 training samples and 34 test samples were
pooled together and then classified by TPCR using LOOCV
with g* = 50, 100, 200, 500 and 1000 genes selected (l was
taken from the values: 0, 0.001, 0.01, 0.1, 1–20 with interval of
1, 40–100 with interval of 20, 200, 1000, 10 000 and 100 000 in
this paper) and the results are shown in Table 1. One ALL
sample (#17; error rate 1.39%; l = 19) was misclassified by
TPCR. In our previous study (15), discriminant PLS (D-PLS)
was used to classify the same dataset using the same gene
selection method and resulted in at least 2 (2.78%) misclassi-
fications. This dataset was also analyzed by Nguyen and Rocke
(13) using polychotomous discrimination and quadratic dis-
criminant analysis together with dimension reduction by PCA
or PLS and at least 8 (11.1%) and 3 (4.2%) samples were
misclassified using PCA and PLS for dimension reduction,
respectively (from A2 procedure; note that both A0 and A1
procedures are incomplete LOOCV and should not have been
used to compare with our results).

Hereditary breast cancer data

The gene expression profiles of primary breast tumor samples
from seven carriers of the BRCA1 mutation, eight carriers of
the BRCA2 mutation and seven patients with sporadic cases of
breast cancer were monitored with a microarray of 6512 cDNA
clones of 5361 genes and a total of 3226 genes were selected
for analysis (49). The gene expression data were centered
to have mean zeros across samples during cross-validation
process.

Classification results based on TPCR using LOOCV are
presented in Table 2 and at the best, four samples were mis-
classified (error rate 18.18%, l = 9), which is better than the
best result (22.7%, 5 misclassification) of D-PLS (15) and the
result (5 misclassifications) obtained by Hedenfalk et al. (49).
In the study of Nguyen and Rocke (13), at least six (27.3%)
misclassifications were found using A2 procedure. The per-
centage of misclassified samples by TPCR and other methods
was pretty high, implying the difficulty to accurately classify
these 22 tumor samples based on gene expression profiles.
This may be due to the inherent lack of discriminating power
of the dataset (e.g. the small sample size, diagnosis error or the

lack of differentiating power for the expression profiles of
3226 genes to separate these 22 samples) (15,49). Another
possibility could be that the underlying structure of the data
(e.g. inner non-linear relationship) was not characterized by
the methods used (15). As pointed out before by Hedenfalk
et al. (49), ‘the use of microarray covering a larger proportion
of the genome and the analysis of larger numbers of tumor may
make possible a more precise molecular classification of breast
cancer’.

Small, round blue cell tumor data

The small, round blue cell tumors (SRBCTs) of childhood,
including neuroblastoma (NB), rhabdomyosarcoma (RMS),
non-Hodgkin lymphoma (NHL) and the Ewing family of
tumors (EWS), are difficult to distinguish due to their similar
appearances in routine histology. Khan et al. (11) monitored
the gene expression profiles of 6567 genes for these four types
of malignancies using cDNA microarrays and reduced the
number of genes to 2308 by quality filtering for a minimal
level of expression. The original 63 training samples included
both tumor biopsy materials (13 EWS and 10 RMS) and cell
lines (10 EWS, 10 RMS, 12 NB and 8 Burkitt Lymphomas
(BL, a subset of NHL). The original test samples contained
both tumors (5 EWS, 5 RMS and 4 NB) and cell lines (1 EWS,
2 NB and 3 BL). This dataset was centered to have mean zeros
across samples for analysis.

The pooled-together 83 samples were classified by TPCR
using LOOCV with g* = 50, 100, 200, 500 and 1000 genes
selected and the results are presented in Table 3. All the
samples were correctly classified using 3–6 TPCR components
with g* = 100, 200 and 500 genes selected (l = 200), indic-
ating a good prediction performance of TPCR on this dataset.
The same result (0 misclassification) was also obtained in
other studies (15,50–53), indicating good class separability
of this dataset. Khan et al. (11) also found 0 misclassification
using artificial neural networks for 88 samples, including
5 non-SRBCT samples. However, the dimension reduction by

Table 1. Classification results for leukemia dataset

g* Number of TPCR components (%, l = 19, LOOCV)
1 2 3 4 5 6

50 13.89 2.78 4.17 5.56 8.33 6.94
100 15.28 4.17 4.17 5.56 5.56 5.56
200 13.89 2.78 2.78 1.39 4.17 4.17
500 13.89 2.78 2.78 4.17 4.17 4.17

1000 15.28 2.78 4.17 4.17 4.17 4.17

Given are the percentages of misclassification out of 72 samples using LOOCV.

Table 2. Classification results for hereditary breast cancer dataset

g* Number of TPCR components (%, l = 9, LOOCV)
1 2 3 4 5 6

50 54.55 45.45 40.91 40.91 45.45 40.91
100 59.09 50.00 40.91 31.82 36.36 22.73
200 54.55 22.73 18.18 27.27 31.82 31.82
500 77.27 31.82 27.27 36.36 40.91 40.91

1000 59.09 63.64 45.45 45.45 40.91 40.91

Given are the percentages of misclassification out of 22 samples using LOOCV.

Table 3. Classification results for SRBCT dataset

g* Number of TPCR components (%, l = 200, LOOCV)
1 2 3 4 5 6

50 36.14 14.46 1.20 0.00 0.00 0.00
100 34.94 14.46 0.00 0.00 0.00 0.00
200 34.94 14.46 0.00 0.00 0.00 0.00
500 34.94 15.66 0.00 0.00 0.00 0.00

1000 34.94 18.07 1.20 0.00 0.00 0.00

Given are the percentages of misclassification out of 83 samples using LOOCV.
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PCA was performed using all the 88 samples before the
validation procedure, which may suffer from bias.

NCI60 data

Using cDNA microarrays containing 9703 cDNA clones
representing �8000 unique genes, Ross et al. (9) and Scherf
et al. (54) studied gene expression in the 60 human cancer cell
lines used in the NCI anticancer drug screening program. The
60 human cell lines were derived from tumors from a variety
of tissues and organs, which, in contrast to clinical tumors,
have been characterized pharmacologically by treatment with
>70 000 different agents, one at a time and independently (54).
As in the study of Nguyen and Rocke (13), five cancer types
were used for multi-class classification: eight melanoma,
eight renal, six leukemia, seven colon and six CNS. A subset
of 1376 genes selectively filtered from initial 9703 genes and
40 molecular characteristics (targets) individually assessed by
various laboratories was used to discriminate the different
types of cancers (54). Since there are some missing gene
expression values in this dataset, genes with <2 missing values

were used for classification through replacing the missing
values (1 or 2) with the median of the gene expression (13).
This resulted in a gene expression dataset with 35 samples and
1299 genes. This dataset was centered to have mean zeros
across samples in analysis. TPCR was then applied to this
dataset with g* = 50, 100, 200, 500 and 1000 genes selected.

The misclassification results using TPCR are given in
Table 4. The best result was one misclassified sample (#15
ME:LOXIMVI, 2.86%, l = 20), the same as the best result
using D-PLS (15), while the best result obtained by Nguyen
and Rocke (13) was 2 (5.7%) and 3 (8.6%) misclassifications
using PCA and PLS for dimension reduction, respectively
(A2 procedure). The classification performance of TPCR on
this dataset is good, given the small sample-to-class ratio
(35 samples and 5 classes). It would be worthy to note that
ME:LOXIMVI, although supposedly a melanoma in origin,
was reported to lack melanin and other useful marker for the
identification of melanoma cells (55) and showed different
characteristic pattern from the other seven melanoma lines
(9,54). Furthermore, in an earlier study involving the cluster-
ing of the 60 cancer cell lines based purely on their sensitivity
to tens of thousands of potential anticancer compounds,
ME:LOXIMVI was also found to be different from other
melanoma cell lines; instead, it was found to be more similar
to a group of colon cancer cell lines (56).

Evaluation of TPCR more realistically by LHOCV

As demonstrated in the above LOOCV studies with four well-
publicized microarray datasets, TPCR showed better or at least
comparable prediction performance compared with other
published methods. However, LOOCV may provide unreliable

Table 4. Classification results for NCI60 dataset

g* Number of TPCR components (%, l = 20, LOOCV)
1 2 3 4 5 6

50 100.00 60.00 60.00 8.57 8.57 8.57
100 91.43 57.14 37.14 2.86 5.71 5.71
200 77.14 57.14 20.00 2.86 2.86 5.71
500 77.14 57.14 20.00 2.86 5.71 5.71

1000 77.14 48.57 20.00 2.86 2.86 2.86

Given are the percentages of misclassification out of 35 samples using LOOCV.

Table 5. Classification results using TPCR and PLS under LHOCV procedure for Leukemia, hereditary breast cancer, SRBCT and NCI60 datasets

g* Number of TPCR components Number of PLS components
1 2 3 4 5 6 1 2 3 4 5 6

Leukemia dataset (%, LHOCV) (l = 19)
50 14.97 4.19 5.83 6.72 6.61 6.50 15.00 4.53 5.28 5.19 5.36 6.08

100 15.08 4.08 4.61 5.00 5.31 5.19 15.22 4.17 4.36 4.50 4.75 5.14
200 15.19 3.89 3.75 3.92 4.89 4.97 15.28 4.03 4.36 4.53 4.56 4.89
500 14.86 4.31 4.28 4.06 4.14 4.25 14.94 4.36 4.75 4.67 4.58 4.58

1000 14.72 5.25 4.83 4.44 4.19 4.19 14.72 4.72 4.89 4.61 4.61 4.72

Hereditary breast cancer dataset (%, LHOCV) (l = 9)
50 60.27 47.18 47.00 46.09 45.55 46.27 60.27 47.91 47.09 46.27 46.55 46.45

100 58.91 45.09 45.00 45.81 44.18 43.82 58.55 44.55 45.36 44.45 44.36 44.18

200 58.73 45.45 45.27 44.64 44.00 44.18 59.18 46.09 44.55 44.00 44.00 44.91
500 61.09 46.45 46.00 45.27 44.18 44.73 60.64 45.73 45.00 44.45 45.18 45.27

1000 64.64 54.73 49.00 48.27 47.55 46.45 63.55 50.91 48.91 47.73 47.45 47.45

SRBCT dataset (%, LHOCV) (l = 200)
50 40.85 18.63 0.83 0.39 0.56 0.59 45.07 20.98 0.73 0.54 0.56 0.68

100 41.29 18.80 0.66 0.17 0.29 0.22 46.54 21.66 0.61 0.22 0.39 0.37
200 42.59 19.22 1.07 0.32 0.27 0.32 49.66 21.54 0.90 0.29 0.39 0.39
500 43.83 20.71 2.20 0.78 0.56 0.51 52.71 23.63 1.88 0.66 0.56 0.63

1000 45.61 22.95 4.54 1.85 1.15 0.80 54.88 26.22 4.07 1.37 0.71 0.61

NCI60 dataset (%, LHOCV) (l = 20)
50 72.65 55.24 36.12 13.18 13.41 13.88 71.00 53.12 34.47 14.18 13.88 14.53

100 72.18 54.00 34.41 11.12 11.35 11.41 70.24 52.29 32.82 11.47 11.65 11.41

200 70.94 52.59 33.18 9.47 9.82 10.12 70.47 51.41 30.82 9.65 10.65 10.65
500 70.59 50.94 31.35 8.82 9.24 9.53 70.65 50.47 30.71 9.06 9.53 9.76

1000 70.76 49.29 30.35 9.53 9.00 9.41 71.35 49.82 30.88 9.00 9.82 9.71

Given are the percentages of misclassifications averaged over 100 re-randomizations. (Bold number denotes the minimum value in the same row; bold and underlined
number means the minimum value in the whole 5 · 6 data matrix).
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good prediction results due to the high variance (45,46). To
assess the prediction performance of TPCR more realistically,
TPCR was further compared using LHOCV procedure
with the well-known PLS method, which has been widely
used in microarray analysis (13,15–17,41,57–60), including
tumor classification. This LHOCV procedure was repeated
100 times and the average misclassification error rates over
100 re-randomizations for the four microarray datasets are
shown in Table 5.

It is obvious that the error rates using LHOCV were higher
than those using LOOCV since the size of the dataset is small
and only half of the total samples were used to construct the
classification model under LHOCV procedure. On the other
hand, it can be observed that the minimum LHOCV error rate
obtained by TPCR is consistently lower than that obtained by
PLS for each of the four microarray datasets. Actually, with
the same number of genes selected, the minimum LHOCV
error rate by TPCR (bold number in Table 5) is, in most
cases, lower than that by PLS, indicating that the prediction

performance of TPCR is better than or at least comparable to
the well-known PLS method.

Assessment of the reliability of classification models
by permutation analysis

Given the relatively small sample size of microarray datasets in
cancer classification, especially for hereditary breast cancer
dataset and NCI60 dataset, it is important to evaluate the
stability and reliability of a classification model. There are
various statistical methods to assess the reliability when there
are not enough samples available to perform external validation
(13–15,41). In this paper, so-called permutation or shuffle stud-
ies were performed to compare the misclassification error rates
using TPCR with those expected at random. Initially, the class
memberships of all the samples were permuted (the rows of
Y matrix were shuffled) while keeping the gene expression
profiles (X matrix) unchanged; then the newly generated
random dataset with shuffled Y and unchanged X was analyzed
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Figure 1. Distribution of error rate (percentage of misclassified samples) over 100 runs of permutation analysis (the original class memberships of all samples were
randomly shuffled for 100 times and then used together with original gene expression profiles for classification by TPCR using the same LOOCV as applied before for
original dataset). The solid line with asterisk labeled in each plot represents the minimum error rate using LOOCV for each original dataset: (a) Leukemia dataset
(number of selected genes, TPCR component number, l and corresponding LOOCV error rate for the original dataset: 200, 4, 19 and 1.39%); (b) Hereditary breast
cancer dataset (200, 3, 9 and 18.18%); (c) SRBCT (50, 4, 200 and 0.00%); and (d) NCI60 (100, 4, 20 and 2.86%).
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by TPCR using exactly the same LOOCV procedure as applied
before to the original dataset (gene number, TPCR component
number and meta parameter l were the same as those chosen to
obtain the minimum error rates for original datasets, as shown in
Tables 1–4). This procedure was carried out 100 times and the
distributions of the error rates over 100 permutations for the
four datasets are plotted in Figure 1 and compared with
the minimum misclassification error rates obtained from
original datasets. It is obvious that, in all cases, the estimated
error rate obtained by TPCR for original dataset is significantly
lower than what would be expected at random. This kind of
permutation analysis can be used to test whether a complete
cross-validation is performed as well as whether there is some
real structure or classification information inside the dataset. If
an incomplete LOOCV is applied or a dataset with no classi-
fication information (e.g. random dataset) is analyzed, the esti-
mated error rate obtained from original dataset will be close to
that calculated from the shuffled dataset.

Another randomization analysis applied to further assess the
stability and reliability of a classification model is to examine
the distribution of the error rates over 100 re-randomizations
obtained using LHOCV (14,15), especially when there is
inadequate sets of data. If the classification model is unstable
during the 100 re-randomization or perturbations introduced
by this procedure, the estimate of the predictive ability is un-
likely to be reliable (46). The distribution plots of misclassi-
fication error rates over 100 re-randomizations using LHOCV
for the four microarray datasets are shown in Figure 2 (genes,
the number of TPCR components and meta parameter l were
chosen according to the minimum averaged LHOCV error rate
for each dataset). Substantial stability of the classification
models can be observed on both Leukemia (Figure 2a) and
SRBCT (Figure 2c) datasets with small averaged error rate and
variance, while the classification model on hereditary breast
cancer dataset (Figure 2b) is unstable with relatively large
averaged error rate and variance, possibly due to the small
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Figure 2. Distribution of error rate (percentage of misclassified test samples) over 100 runs of LHOCV or re-randomization analysis using TPCR (the original dataset
was randomly split, half/half, into training and test samples for 100 times, then the new generated training dataset was used to predict the test dataset using TPCR): (a)
Leukemia dataset (number of selected genes, number of TPCR components, l and corresponding averaged LHOCV error rate: 200, 3, 19 and 3.75%); (b) Hereditary
breast cancer dataset (100, 6, 9 and 43.82%); (c) SRBCT (100, 4, 200 and 0.17%); and (d) NCI60 (500, 4, 20 and 8.82%).
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sample size or inherent difficulty to discriminate the tumors.
Taken together, the reliability of the four classification models
is in the decreasing order: SRBCT > Leukemia > NCI60 >
Hereditary breast cancer, the same order as obtained previously
using PLS (15).

Comparison of the speed of classic SVD algorithm
and fast kernel EVD algorithm

The classic SVD algorithm ([U, S, V] = svd (X), build-in
function in MATLAB) and a fast kernel EVD algorithm ori-
ginated from the work of Wu et al. (39), [U, �2] = eig (XXT),
were compared in terms of the time used to calculate the left
singular vectors U from the four microarray gene expression
profiles (X matrix), and the results are shown in Table 6 (Intel
Pentium 4 1.70 GHz CPU; 512 MB RAM; Window 2000 Pro;
MATLAB R14). It is clear that the fast kernel EVD algorithm
is much faster than the SVD algorithm, with a speed increase
ranging from 147 (NCI60) to 696 times (Leukemia). Generally
speaking, the improvement of the speed increases as the size of
the dataset increases. Considering that the time-consuming
cross-validation procedure was applied to select optimal
meta parameter l and to evaluate the method, the improve-
ment of speed is very significant, especially for LHOCV in
which 100 runs of re-randomizations were performed.

CONCLUSIONS

In this paper, based on the EIV model, we proposed a novel
method called TPCR to perform multi-class classification of
tumor samples by taking into account the errors in microarray
gene expression profiles. In addition, the latent variable struc-
ture underlying the microarray data was also taken into account
in our method to mitigate the collinearity that resulted from the
high-dimensional microarray data, which shows a salient
advantage of our method over the classical EIV model. Four
well-known microarray datasets were used to demonstrate that
the performance of TPCR is better than or at least comparable
to other published methods in the classification of tumors.
A major advantage of TPCR over other methods is that it
takes into account not only the errors in both independent
variables and dependent variables but also the latent structure
from the augmented subspace of independent and dependent
variables. A fast kernel EVD algorithm was applied to decrease
dramatically the time needed to extract the latent variables.
The reported error rates of classification model using TPCR
from the original datasets were shown to be significantly lower
than what would be expected by chance from shuffling or
permuting the memberships of samples. By half-half

randomly splitting the original dataset into training and test
samples for 100 times, the stability and reliability of the
classification models were assessed by the distributions of
the error rates over 100 re-randomizations and were shown in
the decreasing order: SRBCT>Leukemia>NCI60>Hereditary
breast cancer.
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