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A general definition and a criterion (a necessary and sufficient condition) are formulated for an 
arbitrary set of external factors to selectively influence a corresponding set of random entities 
(generalized random variables, with values in arbitrary observation spaces), jointly distributed 
at every treatment (a set of factor values containing precisely one value of each factor). The 
random entities are selectively influenced by the corresponding factors if and only if the following 
condition, called the joint distribution criterion, is satisfied: there is a jointly distributed set of 
random entities, one entity for every value of every factor, such that every subset of this set 
that corresponds to a treatment is distributed as the original variables at this treatment. The 
distance tests (necessary conditions) for selective influence previously formulated for two 
random variables in a two-by-two factorial design (Kujala and Dzhafarov, 2008, J. Math. Psychol. 
52, 128–144) are extended to arbitrary sets of factors and random variables. The generalization 
turns out to be the simplest possible one: the distance tests should be applied to all two-by-two 
designs extractable from a given set of factors.
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stochastic dependence, stochastically unrelated

chosen, may appear complicated. As a partial remedy, we precede 
the formal development in Sections 2–5 by Section 1 in which we 
provide a more intuitive account of some of the basic notions and 
results. We do this on simple examples involving just two random 
variables influenced by two factors.

1. IntuItIve IntroductIon
1.1. What Is selectIve Influence?
Consider a simple double-detection experiment: there are two 
stimuli each of which may possess or lack a certain feature 
(signal property), and an observer has to respond Yes (signal 
present) or No (signal absent) to each of the two stimuli. For 
instance, the stimuli may be two spatially separated line seg-
ments in a frontal plane each of which may be either vertical 
(signal absent) or tilted by a fixed small angle (signal present); 
the observer says Yes − Yes if both lines appear to be tilted, 
Yes − No if the left line appears tilted and the right one not, etc. 
These responses are random variables: A (response to the left 
stimulus) and B (response to the right one), each with two pos-
sible values {Yes, No} occurring with some probabilities. They are 
jointly distributed, in the sense that by the virtue of co-occurring 
in the same trial the values of A and B are naturally paired, ena-
bling one to meaningfully pose questions like “What is the joint 
probability of A = Yes and B = No?”. The joint distribution of 
A and B may change depending on the values of the following 
external factors: α = Tilt of the left line, with two possible values, 
{absent, present}, and β = Tilt of the right line, with the same two 
values. The combination of factor values chosen, one for each 
of the factors, is traditionally referred to as a treatment. With 

A system’s behavior, be the system biological, social, or  technological, 
can be thought of as a network of stochastically interdependent 
random entities. The external world provides inputs (influences, 
interventions, conditions) presumably affecting some of the com-
ponents of the network and not affecting the others. The question 
arises therefore as to how, based on the joint distributions of all 
these random entities, to distinguish the components affected and 
not affected by each of these external inputs.

The notion of selective influence under stochastic interdepend-
ence was introduced and systematically analyzed in the behavio-
ral context by Townsend (1984), although implicitly it had been 
used before (Lazarsfeld, 1965; Bloxom, 1972; Schweickert, 1982). 
Townsend’s approach to selective influence (further developed in 
Townsend and Thomas, 1994, and mathematically characterized 
in Dzhafarov, 1999) is, however, very different from the present 
one. In fact, in all non-trivial cases they are incompatible. Our 
approach gradually developed starting with Dzhafarov (2001), 
based on Dzhafarov’s earlier work on response time analysis (see 
Dzhafarov, 1997, for an overview). In Dzhafarov (2003) the defini-
tion of selective influence adopted in the present paper was given 
for finite systems of random entities. This notion was put on a 
more solid probabilistic foundation in Dzhafarov and Gluhovsky 
(2006), and further developed in Kujala and Dzhafarov (2008). In 
the latter work, for the first time, workable tests for selective influ-
ence were formulated.

The present paper continues this line of research on a higher 
level of mathematical rigor and arguably the highest possible level 
of generality. The abstract nature of the mathematical theory makes 
it rather difficult reading, with notation which, though carefully 
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What does this mean? The meaning of the relation is only obvious if 
A and B are stochastically independent for all four treatments, i.e., if 
p

ij
 = p

i· 
p

·j
, q

ij
 = q

i·
q

·j
, etc., where i, j ∈{1, 2}. In this case all one has to 

establish to prove (A, B)  (α, β) is that the marginal distribution 
of A is not affected by changes in β and the marginal distribution 
of B is not affected by changes in α.

To look at this in detail, let the pair of our random variables 
(A, B) at the four treatments be denoted (A, B)

11
, (A, B)

12
, (A, B)

21
, 

and (A, B)
22

, where 1, 2 denote “absent” and “present,” respec-
tively. If A and B are independent at all four treatments, then the 
selectiveness (A, B)  (α, β) simply means that the marginal 
distribution of A does not depend on β (i.e., p

1·
 = q

1·
 and r

1·
 = s

1·
) 

and the marginal distribution of B does not depend on α (i.e., 
p

·1
 = q

·1
 and r

·1
 = s

·1
). The problem arises when A and B are not 

independent for at least one of the treatments: how should one 
determine then if (A, B)  (α, β)? This is the problem addressed 
in this paper, only we do not confine the consideration to the case 
of two factors and two random variables. Rather we generalize 
the problem to an arbitrary set of external factors and an arbi-
trary (but one-to-one corresponding to the set of factors) set of 
random entities.1

For a finite set of random variables the definition of selec-
tive influence was given in Dzhafarov (2003) and then refined 
in Dzhafarov and Gluhovsky (2006) and Kujala and Dzhafarov 
(2008). Applying it to our example, (A, B) is selectively influ-
enced by (α, β) if and only if one can find functions f and g and 
a random entity C whose distribution does not depend on α, 
β, such that

 
A B f C g C, , , , ,( ) ∼ ( ) ( )( )αβ α β

 
(1)

where ∼ stands for “is distributed as”.2 That is, denoting f(α = 1, C) 
by f

1
(C), g(β = 2, C) by g

2
(C), etc.,

 

( , ) ~ ( ( ), ( )), ( , ~ ( ( ), ( )),

( , ) ~( (
11 1 1 12 1 2

21 2

A B f C g C A B f C g C

A B f

)

CC g C A B f C g C), ( )), ( , ~ ( ( ), ( )).1 22 2 2)

As an example, let C be a random vector (C
0
, C

I
, C

2
) with sto-

chastically independent components having the following inter-
pretation: C

0
 is a random entity representing the general level of 

visual attention, while C
1
 and C

2
 are stimulus-specific sources of 

randomness (which, with no loss of generality, can be taken to be 
uniformly distributed between 0 and 1). Let

this  terminology and notation, the population-level (idealized) 
results of the experiment in question can be presented in the 
form of four matrices:

 α = absentTreatment  β = absent
B = yes B = no

A = yes p
11

p
12

p
1·

A = no p
21

p
22

P
2·

p
·1

p
·2

 α = absentTreatment  β = present
B = yes B = no

A = yes q
11

q
12

q
1·

A = no q
21

q
22

q
2·

q
·1

q
·2

 α = presentTreatment  β = absent
B = yes B = no

A = yes r
11

r
12

r
1·

A = no r
21

r
22

r
2·

r
·1

r
·2

 α = presentTreatment  β = present
B = yes B = no

A = yes s
11

s
12

s
1·

A = no s
21

s
22

s
2·

s
·1

s
·2

The letters p, q, r, s here represent theoretical probabilities, with 
the usual meaning of the subscripts: p

1·
 = p

11
 + p

12
, p

2·
 = p

21
 + p

22
, 

p
1·
 + p

2·
 = 1, etc. It is natural to surmise that, unless the observer does 

not look at the stimuli at all, the random variable A should depend 
on (be influenced by) the value of α, and B should be influenced 
by the value of β. It is not obvious, however, whether factor α only 
(or selectively) influences random variable A, without affecting B, 
and whether factor β only (selectively) influences random variable 
B, without affecting A:

 

α β
↓ ↓
A B

,

as opposed to the possibilities

 

α β α β α β
↓ ↓ ↓ ↓ ↓ ↓
A B A B A B

  , , .

Thus, we will have one of the latter scenarios if the “present” value 
of α visually masks or enhances the salience of the “present” value 
of β, or if the values of β somehow affect the level of attention the 
observer pays to the factor α.

We denote the case when (α, β) selectively influence (A, B), 
respectively, by

 A B, , .( ) ( ) α β

1As explained in Section 2, we distinguish random entities and their special case, 
random variables. Random entities take on values in arbitrary measurable spaces, 
while random variables map, or can be redefined to map, into real numbers endo-
wed with the Borel sigma-algebra. Note also that the notion of a random entity (or 
variable) should always be taken to include deterministic entities (variables) as a 
special case, the same as the notion of stochastic interdependence, unless otherwi-
se indicated, should be taken to include stochastic independence as a special case.
2It is usually the case that the possibility of selectiveness is considered when it is 
known that the factors are effective in their influence upon (A, B), meaning that for 
at least one value of either of the two factors the change of the other factor from 1 
to 2 changes the joint distribution of (A, B). This aspect of the dependence of (A, B) 
on (α, β) being relatively trivial, we do not include it in the definition of selective 
influence. In other words, (A, B)  (α, β) is taken to mean that β does not influence 
A and α does not influence B, leaving open the question of whether α influences A 
and/or β influences B (see Dzhafarov, 2003, p. 10).
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obvious consequence of (1). The reverse is not true, as illustrated by 
examples in Dzhafarov (2003) and, more systematically, in Kujala 
and Dzhafarov (2008). Other examples are given in this paper: in 
fact, in all our examples where the selective influence relation does 
not hold marginal selectivity is satisfied.

Third, selective influence relation satisfies the nestedness prop-
erty: if some random variables are selectively influenced by cor-
responding factors (say, (A, B, C)  (α, β, γ) – we need more 
than two factor-variable pairs for this property to be non-trivial), 
then any subset of these variables is selectively influenced by the 
 corresponding subset of factors: (A, B)  (α, β), (A, C)  (α, 
γ), and (B, C)  (β, z). This property is obvious as soon as (1) is 
generalized to larger sets.

In this paper the three properties of selective influence will 
be demonstrated on the maximal level of generality, for arbi-
trary sets of random entities and corresponding sets of factors of 
arbitrary nature.

1.3. dIstance tests for selectIve Influence
How can one determine that (A, B)  (α, β)? In Kujala and 
Dzhafarov (2008) two types of necessary conditions for selective 
influence were formulated, termed cosphericity tests and distance 
tests. As we only generalize in this paper the latter class of tests, 
we need not discuss the former. To apply a distance test to our 
example means to do the following. First, the values of A and B 
have to be encoded by real numbers. In accordance with what we 
know about the transformations we can use any functions f(α, A) 
and g(β, B) with numerical values. Second, one chooses a number 
r ≥ 1. Third, for each of the four treatments αβ = 11, 12, 21, 22 
one computes the quantity

 
D A Bαβ αβ αβ

ρ
ρ= −



E ,

where E denotes expected value and (Aαβ, Bαβ) is an alternative (and 
more convenient) way of designating (A, B)αβ. Note that Dαβ (the 
same as αβ, 21, etc.) is a string of symbols, with no multiplication 
involved.

It has been shown in Kujala and Dzhafarov (2008) that if 
(A, B)  (α, β), then, considering each random variable at each 
value of the corresponding factor as a point (this yields four points, 
A

1
, A

2
, B

1
, B

2
), these points can be placed in a metric space in which 

the values D11, D12, D21, D22 are, with some caveats, distances 
between A points and B points (D11 between A

1
 and B

1
, D12 

between A
1
 and B

2
, etc.). As these distances, by definition, should 

satisfy the triangle inequality, we conclude with a bit of algebra 
(see Section 5) that

 
max D D D D D D D D11 12 21 22

1

2
11 12 21 22, , , .{ } ≤ + + +( )

A distance test consists in checking if this inequality is satisfied: if 
not (at least for one choice of the numerical values and the exponent 
r), then the selective influence relation is ruled out.

In this paper we generalize this test to arbitrary sets of random 
entities selectively influenced by arbitrary sets of external factors. 
As it turns out, all one has to do to prove that all random enti-
ties, taken one for each value of the corresponding factor, can be 
embedded in a metric space is to apply the test just described to 

 

A
C h C

C h C
B

C h C

C
=





=
1 if ( , )

if ( , )

1 if ( , )

if 
1 1 0

1 1 0

2 2 0>
≤

>α
α

β
0 0

,
22 2 0( , )≤ h Cβ

,




where h
1
, h

2
 are some measurable functions from the set of pos-

sible values of C into interval [0, 1]. One can see that A and B are 
generally stochastically interdependent by virtue of depending on 
one and the same random entity, C

0
, but that A does not depend 

on β, in the sense that for any given values of the other arguments, 
C

0
 = c

0
, C

1
 = c

1
,
 
C

2
 = c

2
, and α = 1 or 2, the value of A does not 

change as a function of β; and B does not depend on α in the 
analogous sense.

The definition of selective influence can also be looked at in a 
simpler and more fundamental way. The fact that for any given 
treatment A and B are stochastically related (i.e., paired, whether 
independent or interdependent) means in Kolmogorov’s probabil-
ity theory that A and B are measurable functions of one and the 
same random entity. It is always true therefore that

 
A B f C g C, , , , , , .( ) ∼ ( ) ( )( )αβ αβ αβα β α β

The random entities C
11

, C
12

, C
21

, C
22

, can always be replaced with a 
single C, e.g., by putting C = (C

11
, C

12
, C

21
, C

22
) and redefining the 

functions f, g accordingly:

 
A B f C g C, , , , , , .( ) ∼ ( ) ( )( )αβ α β α β

 
(2)

Comparing this universal representation with (1) we see that the 
assumption of selective influence is that β in f and α in g are dummy 
arguments.

1.2. MaIn propertIes of selectIve Influence
There are three main properties of the selective influence relation, 
(A, B)  (α, β).

First, selective influence is invariant with respect to all (meas-
urable) transformations of the random variables A,B, even if trans-
formations of A are allowed to depend on values of factor α and 
transformations of B are allowed to depend on values of factor 
β. In our example the values of A and B are denoted yes and no. 
Clearly, we can encode them 0 and 1, respectively, or by any other 
two numbers or words. Moreover, we can, if we so choose, denote 
{yes, no} for A by {1, 0} if α = absent but by {−3, 5} if α = present; 
analogously, we can denote {yes, no} for B by {lion, crocodile} if 
β = absent but by {zebra, cheetah} if β = present. Selective influence, 
(A, B)  (α, β), if it holds for the original values for A and B must 
also hold after any such transformations. This follows from the fact 
that if (1) holds then after any factor-value-specific transformations 
F(α, A) and G(β, B) we have

 

F A G B F f C G g C

f C g C

α β α α β β

α β
αβ

, , , ~ , , , , ,

* , , * ,

( ) ( )( ) ( )( ) ( )( )( )
= ( ) ( ))( ).

Second, selective influence implies marginal selectivity, the term 
coined by Townsend and Schweickert (1989) for the situation 
when the marginal distribution of A does not depend on β and 
the  marginal distribution of B does not depend on α. This is an 
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where P
ij
xαyβ is a string of symbols, with no multiplication implied. 

To ascertain if (A, B)  (α, β) using (4), we have to see if we can 
find 16 probabilities

 

Q H i H j H k H l

i j k l

ijkl = = ∧ = ∧ = ∧ =( )
∈{ }

Pr
1 1 2 2α β α β ,

, , , , ,yes no  
(5)

for four binary variables H H H H
1 2 1 2α β α β, , ,{ }, subject to the basic 

constraints

 

Q Qijkl ijkl
ijkl

≥ =∑0 1, ,

 

(6)

and such that

 

Q P Q P

Q P Q P

ijkl ijkl ijkl iljk

ijkl kjil ijkl

= =

= =
∑ ∑
∑

1 1 1 2

2 1

α β α β

α β

, ,

, kklij
2 2α β ,∑  

(7)

for all i, j, k, l ∈{yes, no}. Indeed,

 

Pr
by (5)

H i H j Q P

A i B j

ijkl ij
kl

1 1

1 1 1 1

1 1α β

α β α β

α β= ∧ =( ) = =

= = ∧ =( )
∑

Pr ,,

which shows that the first of the equations (7) is equivalent to 
( , ) ( , ),H H A B

1 1 1 1 1 1α β α β α β∼  the application of (4) to xαyβ = 1α1β; and 
analogously for the other three equations.

Note that (7) implies marginal selectivity. For instance, it fol-
lows from (7) that

 
Pr PrA i P Q Q H iijj ijklklj ijkljkl1 1 1

1 1α β α
α β=( ) = = = = =( )∑ ∑∑ ∑ ,

and

 
Pr PrA i P Q Q H iill ijkljkl ijkljkl1 2 1

1 2α β α
α β=( ) = = = = =( )∑ ∑∑ ∑ ,

that is, Pr( ) Pr( ).A i A i
1 1 1 2α β α β= = =

Example 1.1. Let the dependence of {A, B} on {α, β} be described 
by the distributions

Treatment = 1α1β B = yes B = no

A = yes 0.5 0 0.5

A = no 0 0.5 0.5

0.5 0.5

Treatment = 1α2β B = yes B = no

A = yes 0 0.5 0.5

A = no 0.5 0 0.5

0.5 0.5

Treatment = 2α1β B = yes B = no

A = yes 0 0.5 0.5

A = no 0.5 0 0.5

0.5 0.5

all pairs of 2 × 2 treatments for all pairs of factors. To present this 
result in an unambiguous form we have to introduce some nota-
tion that may appear cumbersome at first: since a value of a factor 
generally does not itself indicate which factor it is a value of (e.g., 
absent or 1 can be a value of both α and β), we superscript each 
factor value by the corresponding factor name. In our example it 
would be 1α, 2α, 1β, 2β. We call these pairs, factor value with factor 
name, factor points. The four distances will now be written D1α1β, 
D1α2β, D2α1β, D2α2β. Note that we could only get away with the 
previous notation because the identity of the factors in it was 
encoded by the order of their values within pairs: in D11 the first 
1 belonged to α and the second one to β. This convention cannot 
work, of course, for more than two factors. In the new notation 
the distance test acquires the form

 

max D D D D

D D D D

1 1 1 2 2 1 2 2

1

2
1 1 1 2 2 1 2 2

α β α β α β α β

α β α β α β α β

, , ,

,

{ }
≤ + + +( )  

(3)

where

 
Dx y Dy x A B x y

x y x y

α β β α
ρ

ρ
α β α β= = −





∈{ }E , , , .1 2

1.4. the joInt dIstrIbutIon crIterIon for selectIve Influence
Compliance with a given set of distance tests is only a necessary 
condition for selective influence. Is there a way to definitively prove 
that selective influence (A, B)  (α, β) does hold if it is not ruled 
out by distance tests? As it turns out, the answer is affirmative, and 
it is an almost immediate consequence of our definition of selective 
influence, if presented at a sufficiently high level of mathematical 
rigor. Stated in intuitive terms and applied to our example, consider 
four hypothetical random variables, one for each of our factor 
points: H H H H

1 1 2 2α β α β, , , . Suppose that they are jointly distributed, 
i.e., we can speak of co-occurring quadruples of values. There are 
six pairwise combinations of the four factor points but only four 
of them, those of the form xαyβ (x, y ∈{1, 2}), form treatments, 
whereas the remaining two, 1α2α and 1β2β, do not. The four treat-
ments correspond to pairs ( , )A B

x y x yα β α β  whose joint distributions 
are well defined. Suppose now that for all those cases when a pair 
of factor points forms a treatment we have

 
H H A B x y

x y x y x yα β α β α β, , , , , .( ) ∼ ( ) ∈{ }1 2
 

(4)

Then and only then (A, B)  (α, β), and we can write then A
xα 

instead of A
x yα β and B

yβ instead of B
x yα β. We call this the joint distri-

bution criterion for selective influence. The joint distributions of 
( , )H H

1 2α α  and ( , )H H
1 2β β  must also be well defined, even though 

they do not correspond to any pairs of random variables one can 
choose from the observable A B A B

1 1 1 2 2 1 2 2α β α β α β α β, , , .
Let us look at this in detail. The observed joint distributions of 

( , )A B
x y x yα β α β  are represented by four probabilities each, denoted 

in the four matrices introducing our example by p
ij 
, q

ij 
, r

ij 
, s

ij 
. We 

now switch to a more convenient notation (although again, more 
cumbersome at first glance):

 
P x y A i B j i j x yij x y x y

α β
α β α β= = =( ) ∈{ } ∈{ }Pr , , , , , , , ,yes no 1 2
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and

 

max 1 1 , 1 2 , 2 1 , 2 2

=1>
1

2
= 1 1  + 1 2  + 2 1 + 2 2

D D D D

D D D D

α β α β α β α β

α β α β α β α

{ }
ββ( )/2,

which contravenes (3).

In this paper the joint distribution criterion is formulated in 
complete generality, for arbitrary sets of random entities and cor-
responding sets of external factors.

1.5. the need for generalIzatIon
In a controlled experiment or systematic survey we usually focus 
on a small number of random entities, such as which of several 
responses is given and how long it has taken, and try to selec-
tively target some of them by experimental manipulations, or 
selectively relate them to concomitant factors. Relatively small 
networks of random entities and external factors are therefore 
of paramount practical importance. But a network of random 
entities and the set of external factors that may be thought to 
affect them selectively can be quite large, even infinitely large, 
in theoretical  considerations dealing with complex observable 
behaviors, such as a person’s  activities within a typical day, or 
unobservable “mental networks” behind even relatively simple 
tasks, such as pushing a key in response to a stimulus varying 
in two binary properties (see Dzhafarov, Schweickert, and Sung, 
2004, for an example). Random processes are routinely used in 
modeling simple forms of decision making (see, e.g., Diederich 
and Busemeyer, 2003). Any random process can be viewed as a 
system of stochastically interdependent random entities indexed 
by “intervention values” (including “no intervention”) at every 
moment of time. An intervention α at moment t

1
 can be thought 

to selectively affect a portion of the random process in some 
interval [t

1
, t

2
] (perhaps even with t

2
 = t

1
), and the problem arises 

as to how to identify such an interval from the observed joint 
distribution of the random entities constituting the process. It 
is important therefore to be able to apply the notion of selec-
tive influence to arbitrary, finite and infinite, systems of random 
entities, and external factors.

2. conventIons and notatIon
A factor is defined as a non-empty set of factor points (a dummy 
factor can be defined as a set containing a single point). Denoting 
factors by lowercase Greek letters, α, β, γ, …, the factor points of, 
say, factor α are formally pairs (x, ‘α’) consisting of a factor value 
(or level), x, and a unique factor name, ‘α’ (read: value/level x of 
factor α). This ensures that no two distinct factors have common 
points: e.g., level 1 of factor ‘size’ (1, ‘size’), is distinct from level 1 
of factor ‘shape’ (1, ‘shape’). It is convenient to write xα in place of 
(x, ‘α’): 1shape, (50 db)intensity, presentleft stilumus, etc.

Let Φ be a non-empty set of factors. A set φ containing precisely 
one factor point x xα α

αα,‘ ’( ) =  for each factor α in Φ,

 
φ α

α
α

= { } ∈
∈ ∏x

Φ
Φ,

Treatment = 2α2β B = yes B = no

A = yes 0.5 0 0.5

A = no 0 0.5 0.5

0.5 0.5

Note that marginal selectivity here is satisfied trivially, as the 
marginal distributions remain fixed. Consider the distribution of 
{ , , , }H H H H

1 1 2 2α β α β  with

 

Q

ijkl

ijklijkl =






.

.

5

5 1100

0

for = 0011

for =

otherwise.

It is easy to check that this distribution satisfies (6) and (7), hence 
also (4). By the joint distribution criterion, we conclude that 
{A, B}  {α, β}.

Example 1.2. No such probabilities Q
ijkl

 can be found for the 
distributions

Treatment = 1α1β B = yes B = no

A = yes 0.5 0 0.5

A = no 0 0.5 0.5

0.5 0.5

Treatment = 1α2β B = yes B = no

A = yes 0.5 0 0.5

A = no 0 0.5 0.5

0.5 0.5

Treatment = 2α1β B = yes B = no

A = yes 0.5 0 0.5

A = no 0 0.5 0.5

0.5 0.5

Treatment = 2α2β B = yes B = no

A = yes 0 0.5 0.5

A = no 0.5 0 0.5

 0.5 0.5

so {A, B} are not selectively influenced by {α, β} in this case. This 
can be shown by direct algebra, but there is a simpler method: 
this dependence of {A, B} on {α, β} fails a distance test. Indeed, 
let us transform yes into 0 and no into 1, and let us choose the 
exponent r = 1 (although in this example the value of r does not 
matter). Then

 

D D D

D

1 1 1 2 2 1

0 0 0 5 0 1 0 1 0 0 1 1 0 5 0

2 2 0 0

α β α β α β

α β

= =
= − ⋅ + − ⋅ + − ⋅ + − ⋅ =

= − ⋅

. . ,

00 0 1 0 5 1 0 0 5 1 1 0 1+ − ⋅ + − ⋅ + − ⋅ =. . ,
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different treatments. Note that Aφ and A ′φ  are defined on different 
sample spaces: they do not possess a joint distribution. In particular, 
they are not mutually independent.6

Example 2.3. The random variables A and B in the examples of 
Section 1 are called A and B by the abuse of language just men-
tioned. Strictly speaking we deal with four pairwise stochastically 
unrelated A A A A

1 1 1 2 2 1 2 2α β α β α β α β, , ,  and four pairwise stochastically 
unrelated B B B B

1 1 1 2 2 1 2 2α β α β α β α β, , , , such that A
x yα β and B

z uα β possess a 
joint distribution if and only if xαyβ = zαuβ.

A set of random entities {Aω}ω∈Ω on one and the same sample 
space is a random entity whose observation space (A, Σ) is the con-
ventionally understood product of the observation spaces (Aω, Σω) 
for Aω, ω ∈ Ω. If the set of random entities {Aω}ω∈Ω depends on Φ, 
we present {Aω}ω∈Ω at a treatment φ as { }Aφ

ω
ω∈Ω instead of the more 

correct but less convenient ({Aω}ω∈Ω)φ.

Example 2.4. The variables {A, B, C} of Example 2.2 depend on 
the factors Φ = {α, β, γ} of Example 2.1 if ′ = ′M Mφ is viewed as a 
function of φ = 1α1β1γ, 1α2β1γ, … . In this example ′ = ′ ′ = ′A Aφ φ, ,Σ Σ  
and {aφ, bφ, cφ} = {a, b, c}.

3. selectIve Influence
In accordance with the previous section, given a set of factors Φ, a 
corresponding set of random entities is denoted {Aα}α∈Φ. For each 
α∈Φ, the entity Aα may in fact be a shortcut notation for a set of 
stochastically unrelated random entities indexed by different treat-
ments, { } .Aφ

α
φ∈∏Φ  In other words, Aφ

α is treated as a random entity A 
corresponding to factor α and taken at treatment φ. The complete 
notation for the set of random entities {Aα}α∈Φ then is

 
Aφ

α

α φ
{ }{ }∈ ∈Φ ΠΦ

,
 

(8)

where the elements of { } ,Aφ
α

α∈Φ  for a given φ, are stochastically 
interrelated (possess a joint distribution), while the sets { }Aφ

α
α∈Φ 

and { } ,A ′ ∈φ
α

α Φ  for distinct φ, φ′, are stochastically unrelated. It is 
more convenient, however, not to use this explicit notation and to 
speak instead of {Aα}α∈Φ depending on Φ.

Definition 3.1. Let a set of random entities {Aα}α∈Φ indexed by a 
set of factors Φ depend on this set of factors (i.e., be presentable 
as (8)). We say that the dependence of {Aα}α∈Φ on Φ is marginally 
selective (satisfies the property of marginal selectivity) if, for any 
subset Φ

1
 ⊂ Φ and any φ

1
∈ΠΦ

1
, the distribution of { }Aφ

α
α∈Φ1

 is the 
same for all treatments φ containing φ

1
 (that is, it does not depend 

on {xβ ∈φ : β ∈Φ − Φ
1
}).

The notion of marginal selectivity was introduced by Townsend 
and Schweickert (1989), for two random variables. In Dzhafarov 
(2003) it was generalized to a finite set of random variables under 

is called a treatment.3 When the set of factors Φ is finite, treatments 
will be presented as strings of factor points, without commas or 
parentheses: xαyβzγ, x x xk

k

1 2
1 2µ µ µ… , etc.

Example 2.1. If Φ = {α, β, γ} with α = {1α, 2α}, β = {1β, 2β}, and 
γ = {1γ}, then the treatments φ (written as strings) are 1α1β1γ, 1α2β1γ, 
2α1β1γ, and 2α2β1γ.

A random entity A is a triad consisting of a measurable function 
f : ′→A A, a sample (probability) space ( , , ),′ ′ ′A Σ M  and an obser-
vation (measurable) space (A, Σ), on which f induces a probability 
measure M. Traditionally, A is simply identified with f, the sample 
space and the observation space being assumed implicitly, or A is 
viewed as the identity function on A, with (A′, Σ′, M′) = (A, Σ, M). 
The latter view is often the only practical one, as we almost never 
know anything about a sample space as separate from the observa-
tion space.

A random variable is a random entity whose observation space 
is a subset of reals endowed with the Borel sigma-algebra.4

Given an arbitrary indexing set Ω, any set of random entities 
whose measurable functions {fω: A′ → Aω}ω∈Ω map from one and 
the same sample space (A′,  Σ′,  M′) into respective observation 
spaces {(Aω, Σω)}ω∈Ω possesses a joint distribution, i.e., a probability 
measure M induced by M′ on the product space ⊗ω∈Ω(Aω, Σω).5

Example 2.2. Let the sample space consist of A′ = {0, 1} × {0, 1} × 
{0, 1}, Σ′ = 2A′, and M′ derived from elementary probabilities p

ijk
 

(i, j, k ∈{0, 1}). Then the random variables A, B, C defined on 
(A′, Σ′, M′) by the coordinate projections a : (i, j, k)  i, b : (i, 
j, k)  j, and c : (i, j, k)  k, respectively (i, j, k ∈{0, 1}), possess 
the joint distribution M = M′ on ({0, 1}, 2{0,1}) ⊗ ({0, 1}, 2{0,1}) ⊗ 
({0, 1}, 2{0,1}) = (A′, Σ′).

Two random entities A and B defined on different sample 
spaces are called (stochastically or probabilistically) unrelated 
(see Dzhafarov and Gluhovsky, 2006). They do not possess a joint 
distribution. Note that two unrelated random variables can be 
identically distributed – if they map into one and the same obser-
vation space on which they induce one and the same probability 
measure.

Throughout this paper we deal with a set of probabilistically 
unrelated random entities {Aφ}φ∈ΠΦ indexed by treatments φ∈ΠΦ, 
with measures {Mφ}φ∈ΠΦ induced on one and the same observation 
space (A, Σ). For convenience, we refer to Aφ as “a random entity 
A at φ”, as if Aφ and A ′φ  for φ ≠ φ′ were “a single” entity A at two 

3Strictly speaking, an element of the Cartesian product ΠΦ is a choice function, 
{( , )}α α

α
αx ∈Φ whereas a treatment φ is the range of a choice function, { }xα

α
α∈Φ . We 

conveniently confuse the two notions. Also for convenience only, in this paper we 
assume “completely crossed design”, i.e., that every member of ΠΦ is a possible 
treatment. With only slight modifications ΠΦ can be replaced with any nonempty 
subset thereof.
4A random entity A with A a finite or infinite denumerable set and Σ the set of all 
its subsets can also be (and traditionally is) considered a random variable, because 
such an A can always be injectively mapped into the set of reals, or into a partition 
of an interval of reals. 
5Recall that in the product measurable space ⊗ω∈Ω(Aω, Σω) = (A, Σ) the set A is the 
Cartesian product Πω∈ΩAω, while Σ = ⊗ω∈ΩΣω is the smallest sigma algebra contai-
ning all sets of the form a aω ω ω ω ω ω0 0 0 0

×Π ΣΩ∈ − ∈{ } A , .

6We could have extended the scope of this definition by allowing Aφ to be a fun-
ction fφ φ φ: ′A A→  relating ( , , )′ ′ ′Aφ φ φΣ M  to (Aφ, Σφ), i.e., by allowing the set and the 
sigma algebra, not only the measure Mφ, to depend on treatment φ. This would 
have, however, made our abuse of language (in treating different Aφ’s as a single A 
at different φ’s) even more abusive. Moreover, this general approach can always be 
reduced to the set-up with a φ-independent (A, Σ) by putting A A= ×∈φ φ φΠΦ ( { )}  
and Σ the sigma algebra consisting of all countable unions of the sets a×{ }φ  for all 
a∈Σφ and all φ∈ΠΦ.
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Treatment = 1α2β B = 0 B = 1

A = 0 0 0.6 0.6

A = 1 0.4 0 0.4

0.4 0.6

Treatment = 2α1β B = 0 B = 1

A = 0 0.3 0.2 0.5

A = 1 0.3 0.2 0.5

0.6 0.4

Treatment = 2α2β B = 0 B = 1

A = 0 0.25 0.25 0.5

A = 1 0.15 0.35 0.5

0.4 0.6

We verify that marginal selectivity holds for A and B and introduce 
the abridged indexing, A A

1 2α α, , etc.:

 

A A
A A

A

A A
A A

A

1 1 1 2 1

2 1 2 2 2

0 1

0 6 0 4

0 1

0 5 0 5

α β α β α

α β α β α

∼ ∼
= =

=

∼ ∼
= =

=

. .
,

. .
,

BB B
B B

B

B B
B B

B

1 1 2 1 1

1 2 2 2 2

0 1

0 6 0 4

0 1

0 4 0 6

α β α β β

α β α β β

∼ ∼
= =

=

∼ ∼
= =

=

. .
,

. .
..

   

We can use the abridged indexing in all considerations involving A 
alone and B alone. Consider, however, this: from the joint distribu-
tion matrices we have

 

A B A B

A B A B

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

1α β α β α β α β

α β α β α β α β

= = −

⊥ ¬ ⊥( )
, ,

, ,

where ⊥ indicates stochastic independence and ¬ negation (i.e., 
A

2 2α β and B
2 2α β  are not stochastically independent). If now we 

attempt to use in these relations the abridged indexing, we will run 
into a contradiction: from A B

1 1α β=  and A B
1 2

1α β= −  we conclude 
B B

1 2
1β β= − , but then it is impossible for B

1β to be independent 
of A

2α  and for B
2β not to be. It is therefore necessary to retain the 

notation A A
1 1 1 2α β α β, , etc. in all considerations involving both A and 

B even though we know that the dependence of {A, B} on {α, β} 
is marginally selective.

Definition 3.4. Let a set of random entities {Aα}α∈Φ indexed by a 
set of factors Φ depend on this set of factors. We say that the set 
{Aα}α∈Φ is selectively influenced by Φ, and write

 
Aα

α{ } ∈Φ
 Φ,

if, for some random entity C and every xα ∈α ∈Φ there is a meas-
urable function f

xα such that, for every treatment φ,

the name of complete marginal selectivity. The adjective “complete” 
(omitted in the present paper for simplicity) distinguishes this 
notion from a weaker and less useful generalization of Townsend 
and Schweickert’s term: for any factor α∈Φ and any treatment φ, 
the distribution of Aφ

α does not depend on {xβ ∈φ : β ∈Φ − {α}}.
Note that Definition 3.1 does not mean that for distinct treat-

ments φ and φ′ which include φ
1
 = {xβ ∈φ : β ∈Φ

1
} = {xβ ∈φ′ : 

β ∈Φ
1
},

 
A Aφ φ φ

α

α φ φ φ
α

α1 1
1

1 1
1

∪ −( ) ∈ ∪ ′−( ) ∈
{ } = { }

Φ Φ
.

This equality is not legitimate as the two sets of random variables 
do not possess a joint distribution. One can only say that

 
A Aφ φ φ

α

α φ φ φ
α

α1 1
1

1 1
1

∪ −( ) ∈ ∪ ′−( ) ∈
{ } ∼ { }

Φ Φ
,

where, as before, ∼ means “is distributed as.”

Example 3.2. Let the variables {A, B, C} of Example 2.2 be indexed 
by the factors Φ = {α, β, γ} of Example 2.1, respectively. That is, {A, 
B, C} stands for {Aα, Aβ, Aγ}, in accordance with the general notation 
of Definition 3.1. Then the dependence of {Aα, Aβ, Aγ} on {α, β, γ} 
is marginally selective if and only if

 

A A A A A A A A

A

α γ α γ α γ α γ

β

α β γ α β γ α β γ α β γ, ~ , & , ~ , ,{ } { } { } { }
1 1 1 1 2 1 2 1 1 2 2 1

,, ~ , & , ~ , ,A A A A A A A

A

γ β γ β γ β γ
α β γ α β γ α β γ α β γ

α

{ } { } { } { }
1 1 1 2 1 1 1 2 1 2 2 1

1 11 1 1 2 1 2 1 1 2 2 1

1 1 1 2 1 1 1 2 1

β γ α β γ α β γ α β γ

α β γ α β γ α β

α α α α

β β

∼ ∼

∼

A A A

A A A

& ,

& γγ α β γ

α β γ α β γ α β γ α β γ

β β

γ γ γ γ

∼

∼ ∼ ∼

A

A A A A

2 2 1

1 1 1 1 2 1 2 1 1 2 2 1

,

.

Under marginal selectivity, it is sometimes admissible, by abuse 
of notation, to write { }Aφ

α
α∈Φ1

 as { }Aφ
α

α1 1∈Φ  where φ
1
 = {xα ∈φ : α ∈Φ

1
}. 

Thus, in Example 3.2, it may be convenient to present both 
{ , }A Aα γ

α β γ1 1 1
 and { , }A Aα γ

α β γ1 2 1
 as { , } ,A Aα γ

α γ1 1
 present both A

1 1 1α β γ
β  

and A
2 1 1α β γ
β  as A

1β
β , etc. This does not lead to complications provided 

one remembers that, say, A
1 1 1α β γ
α  and A

1 2 1α β γ
α  are identically distrib-

uted rather than identical. One can therefore deal with A
1α
α  and A

2α
α  

in all considerations involving only Aα, or with A
1β
β  and A

2β
β  in all 

considerations involving only Aβ. It would be incorrect, however, 
to speak of stochastic relationships between A

1α
α  or A

2α
α  and A

1β
β  

or A
2β
β :  to depict such relationships one needs both Aα and Aβ to 

be double-indexed by the factor points involved (unless we have 
selective influence in addition to marginal selectivity, as explained 
in the next section).

Example 3.3. Continuing Example 3.2, let us return to writing 
{A, B, C} instead of {Aα, Aβ, Aγ}. We can omit the factor γ when 
dealing with {A, B} only and write { , } , { , } , { , } ,A B A B A B

1 1 1 2 2 1α β α β α β  
{ , } .A B

2 2α β  Let the distributions of these random pairs be

Treatment = 1α1β B = 0 B = 1

A = 0 0.6 0 0.6

A = 1 0 0.4 0.4

0.6 0.4
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4. the joInt dIstrIbutIon crIterIon
Definition 3.4 suggests a way of looking at the selective influence 
relation directly in terms of the (product) observation space for the 
system of the random entities involved, making the overt recon-
struction of C and the functions f

xα unnecessary (or trivial, as in 
the proof of the theorem below).

Theorem 4.1. A necessary and sufficient condition for

 
Aα

α{ } ∈Φ
Φ

is the existence of a jointly distributed system

 
H

x x
α α{ }

∈Φ

such that for every subset φ of Φ that forms a treatment (i.e., 
belongs to ΠΦ),

 
H A

x x
α α φ φ

α

α
{ } ∼ { }

∈ ∈Φ
.

Remark 4.2. We call this the joint distribution criterion for selective 
influence.

Proof. The necessity is proved by observing that if {Aα}α∈Φ  Φ, 
then the system

 
H f C

x x x x
α α α α{ } = { }∈ ∈ Φ Φ

( )

is a jointly distributed system of random entities. To prove the suf-
ficiency, define

 
C H

x x
= { }

∈
α α

Φ
,

and, for every xα, define

 
f C C H

x x xα α α( ) Pr ( ) ,= =oj

where Pr oj
xα denotes the xαth coordinate projection. ¨

As a very simple application of the joint distribution criterion 
we prove the following (intuitively quite obvious) statement.

Lemma 4.3. If the dependence of {Aα}α∈Φ on Φ is marginally selective 
and { }Aφ

α
α∈Φ is a set of mutually independent random entities for every 

treatment φ, then {Aα}α∈Φ  Φ.

Proof. For any factor α ∈Φ, marginal selectivity implies that the 
distribution of Aφ

α depends only on the factor point xα ∈φ. Form 
the set { }H

x xα α ∈Φ
 consisting of mutually independent random enti-

ties such that, for any xα, H A
x xα α

α~ . Then, for every treatment φ, 
{ } ~ { } ,H A

x xα α φ φ
α

α∈ ∈Φ  and Theorem 4.1 implies {Aα}α∈Φ  Φ. ¨

In Section 1.4 we have seen illustrations of the criterion on 
interdependent random entities. Here is another example.

Example 4.4. Let Φ = {α, β}, α = {1α,2α}, β = {1β, 2β}, and let {Aφ, 
Bφ} for every treatment φ be a pair of Bernoulli variables. Consider 
the distributions below:

Treatment = 1α1β B = 0 B = 1

A = 0 0.5 0 0.5

A = 1 0 0.5 0.5

0.5 0.5

 
A f C

x xφ
α

α φ
α α{ } ∼ ( ){ }

∈ ∈Φ
.

Remark 3.5. Alternatively, one could posit, for every treatment φ,

 
A f C

x x
φ
α

α φ φ
α α{ } = ( ){ }∈ ∈Φ

,

where

 
Cφ φ{ } ∈ΠΦ

is a set of pairwise unrelated random entities all distributed as C. 
This formulation is more cumbersome but it correctly emphasizes 
the stochastic unrelatedness of { }Aφ

α
α∈Φ for different treatments φ. 

Definition 3.4, however, is more parsimonious, as the stochastic 
unrelatedness property is known from the context.

Remark 3.6. If applied to finite sets Φ, Definition 3.4 becomes 
equivalent to the formulations of selective influence given in 
Dzhafarov (2003), Dzhafarov and Gluhovsky (2006), and Kujala 
and Dzhafarov (2008). Even for the finite case, however, the 
present definition is mathematically more rigorous, and it prof-
its from the precision offered by the notation xα = (x, ‘α’) for 
factor points. More importantly, it can be seen more immediately 
than the previous definitions to be reformulable into the joint 
distribution criterion for selective influence, as discussed in the 
next section.

The following statements are obvious.

Lemma 3.7. If {Aα}α∈Φ  Φ, then

(i) { }Aα
α∈Φ Φ

1 1  for any Φ
1
 ⊂ Φ;

(ii) the dependence of {Aα}α∈Φ on Φ is marginally selective.

That is (refer to Section 1.2), selective influence has the nested-
ness property and implies marginal selectivity.

The next lemma says that if a set of random entities  
{Aα}α∈Φ is selectively influenced by Φ, then the set of individually 
transformed versions of these random variables is also selec-
tively influenced by Φ (refer to the first property in Section 1.2). 
“Individual transformations” of Aα can be different for different 
factor points xα.

Lemma 3.8. If {Aα}α∈Φ  Φ then {Bα}α∈Φ  Φ, where, for any α ∈Φ, 
any xα ∈α, and any treatment φ containing xα,

 
B h A

xφ
α

φ
α

α= ( ),

for some measurable function h
xα .

Proof. By definition,

 
A f C

x xφ
α

α φ
α α{ } { }

∈ ∈Φ
~ ( ) ,

which implies

 
B h f C g C

x x x x xφ
α

α φ φ
α α α α α{ } ( ){ } = { }

∈ ∈ ∈Φ
~ ( ) ( ) ,

where g h f
x x xα α α≡   is a measurable function. ¨
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In any case, the exceptional simplicity of these tests makes it 
worthwhile to always consider them before applying the joint 
distribution criterion.

5. dIstance tests
In Kujala and Dzhafarov (2008) the distance tests were formulated 
for two variables influenced by two factors in a two-by-two factorial 
design. In this section we generalize these tests to arbitrary random 
variables {Aα}α∈Φ whose dependence on factors Φ is marginally 
selective. Perhaps surprisingly, we show that this generalization 
requires nothing more and nothing less than applying the original 
tests to all possible two-by-two factorial designs one can extract 
from Φ.

Distance tests can be applied to non-numerical random enti-
ties only after they have been numerically transformed (thus, for 
the distance test applied to Example 1.2 we transformed yes into 0 
and no into 1). In this section therefore we confine our discussion 
to random variables.

We will need some auxiliary notions and notation conventions. 
Any finite sequence of factor points ( , , )x xn

n

1
1α α…  is called a chain. 

Chains will be written as strings, x xn
n

1
1α α… , without commas and 

parentheses (this generalizes the convention we have already used 
for chains which are finite treatments). Chains can be denoted by 
capital Roman letters, X x xn

n= …1
1α α  (from the second half of the 

alphabet, to distinguish them from random variables and entities 
for which we use the first half). A chain X may be empty or con-
sist of a single element (factor point), xα. A subsequence of points 
belonging to a chain forms its subchain.

A concatenation of two chains X and Y is written as XY. So, we 
can have chains xαXyβ, xαXYyβ, XxαyβY, xαXyβZ, etc.

The number of points in a chain X is its cardinality, | X |, and 
any chain with the smallest cardinality within a set of chains is 
referred to as a minimal chain (in this set). In particular, one can 
speak of a minimal subchain of a chain among all subchains with 
a certain property (this notion is used in the proof of Theorem 
5.11 below).

Definition 5.1. Let the dependence of a set of random variables 
{Aα}α∈Φ on factors Φ be marginally selective. Let r ≥ 1 be fixed. For 
any (xα, yβ) with α ≠ β, we define

 
Dx y A  A

x y x y

α β α β

ρ
α β α β= − ,

where || A − B ||r for any jointly distributed A and B is defined as

 

A  B
A  B

A  B
− =

−



 ∞

− ∞






ρ

ρρ ρ

ρ

E for 1 ,

ess sup for 

≤ <

= .

Remark 5.2. Here ess sup is the essential supremum, the lowest 
upper bound that holds almost surely; it is the limit of || A − B ||r 
as r → ∞.

Remark 5.3. Note that Dxαyβ is well-defined only under the assump-
tion that the dependence of a set of random variables {Aα}α∈Φ on 
factors Φ is marginally selective. Otherwise || ||A  A

x y x yα β α β
α β

ρ−  would 
not be determined by xαyβ only, and it would not even be legitimate 
to index the two variables by xαyβ alone.

Treatment = 1α2β B = 0 B = 1

A = 0 0 0.5 0.5

A = 1 0.5 0 0.5

0.5 0.5

Treatment = 2α1β B = 0 B = 1

A = 0 0 0.5 0.5

A = 1 0.5 0 0.5

0.5 0.5

Treatment = 2α2β B = 0 B = 1

A = 0 0 0.5 0.5

A = 1 0.5 0 0.5

0.5 0.5

The criterion of the joint distribution of { , , , }H H H H
1 1 2 2α β α β  rejects 

the possibility of {A, B}  {α, β}, as it can be shown by direct algebra 
that there are no 16 probabilities Q

ijkl
 generating the distributions 

in question (cf. Examples 1.1 and 1.2). We do not need to provide 
such a demonstration as it is obvious in this case from probabilistic 
considerations that { , , , }H H H H

1 1 2 2α β α β  cannot be jointly distributed 
and satisfy

 

H H A B H H A B

H H

1 1 1 1 1 1 1 2 1 2 1 2

2 1

α β α β α β α β α β α β

α β

, ~ , , , ~ , ,

, ~

{ } { } { } { }
{ } AA B H H A B

2 1 2 1 2 2 2 2 2 2α β α β α β α β α β, , , ~ , .{ } { } { }
Otherwise the four joint distribution matrices shown above would 
have implied, respectively, H H H H H H

1 1 1 2 2 1
1 1α β α β α β= = − = −, , , 

and H H
2 2

1α β= − , which are not mutually compatible equations.
If we take the numerical values of A and B in the last example 

as they are, then with any exponent r ≥ 1 (see Section 1.3) the 
distance test is passed:

 

max D D D D

D D D D

1 1 1 2 2 1 2 2

1
3

2
1 1 1 2 2 1 2 2

α β α β α β α β

α β α β α β α β

, , ,{ }
= = + + +(≤ ))/ .2

This is just another demonstration that a distance test is only a 
necessary condition for selective influence: a dependence of ran-
dom entities on external factors can pass such a test but still fail 
the joint distribution criterion. It is instructive to see, however, in 
reference to Lemma 3.8, that with appropriately chosen transfor-
mations of the random variables the distributions in question can 
be made to fail the respective distance tests. Thus, the possibility 
of selective influence in Example 4.4 will be rejected if we apply 
the simple transformation

 
h B B x y

y x y x yβ α β α β
α α α β β β( ) = − = =1 1 2 1 2, , , , ,

while leaving A
x yα β untransformed. The distributions then 

become essentially the same as in Example 1.2. The distance 
tests therefore can be conjectured to have considerable rejection 
power if one combines it with adeptly chosen transformations 
(see the open question we pose at the conclusion of the paper). 
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we get

 Dx u DXy Dy z Dz Zα δ β β γ γ> + + .  ¨

Lemma 5.9. Every triadic chain xαyβzγ with pairwise distinct α, β, 
γ is compliant.

Proof. Denoting the random variables corresponding to the factors 
α, β, γ, by A, B, C, respectively, marginal selectivity implies

 

Dx y A B A B

Dy z B C B

x y x y x y z x y z

y z y z x

α β

ρ ρ

β γ

ρ

α β α β α β γ α β γ

β γ β γ α

= − = −

= − =

,

yy z x y z

x z x z x y z x y z

C

Dx z A C A C

β γ α β γ

α γ α γ α β γ α β γ

ρ

α γ

ρ ρ

−

= − = −











,

.


Since { , , }A B C
x y z x y z x y zα β γ α β γ α β γ  are jointly distributed, the statement 

follows from Lemma 5.4.8 ¨

We are ready now to prove the main theorems regarding the 
distance tests for selective influence.

Theorem 5.10. Let {Aα}α∈Φ be selectively influenced by Φ. Then any 
chain x xn

n

1
1α α…  such that α

i 
≠ α

i+1
 for i = 1,…,n − 1, and α

1
 ≠ α

n
 

is compliant,

 
Dx x Dx xn i i

i

n
n i i

1 1
1

1
1 1α α α α≤ +

=

−
+∑ .

Proof. By the joint distribution criterion, there is a jointly distrib-
uted system { }H

x xα α ∈Φ such that for any {xα, yβ} within a treatment 
(i.e. with α ≠ β),

 
A A H H

x y x y x yα β α β

β

α β
α , ~ , .{ } { }

But then

 
Dx y A B H H

x y x y x y

α β

ρ ρ
α β α β α β= − = − ,

and the statement of the lemma follows from Lemma 5.4. ¨

For the next theorem, recall that we are following Convention 5.6.

Theorem 5.11. Every contravening chain X contains a contravening 
tetradic subchain X′ of the form xαyβvαuβ.

Proof. Let X′ = xαPuβ be a minimal contravening subchain of X. 
Then α ≠ β, and by Lemma 5.9, | X′ | ≥ 4. If for some zγ in X′ we 
had α ≠ γ ≠ β, then the subchains xαQzγ and zγRuβ with QzγR = P 
would have to be compliant (otherwise X′ would not be mini-
mal). Then, by Lemma 5.8, we would have a contravening triadic 
chain xαzγuβ, which is impossible by Lemma 5.9. For every zγ in X′ 
therefore, either γ = α or γ = β. Since a contravening chain can-
not contain repeating superscripts, X′ is of the form xαyβvαSuβ. 

We will rely on the following result, whose proof we omit as its 
only non-trivial part follows from the Minkowski inequality (a some-
what abridged proof can be found in Kujala and Dzhafarov, 2008).

Lemma 5.4. Given a sample space, let R be a set of all random 
variables A, B, … (jointly distributed) on this space. For any r ≥ 1, 
|| A − B ||r is an extended metric on R, provided we do not distinguish 
A,B identical on a set of measure 1.

Remark 5.5. The adjective “extended” means that ∞ is included in the 
set of possible values. The norms E[ ]| |A B− ρρ  and ess sup | A − B |, as 
they only involve non-negative values, always exist, finite or infinite.

Convention 5.6. In the remainder of this section we will tacitly 
assume that the dependence of {Aα}α∈Φ on Φ is marginally selec-
tive. We will also tacitly assume that r in the definition of || … ||r 
and D is fixed.

For any chain X x xn
n= …1

1α α  such that α
1
 ≠ α

n
 and α

i
 ≠ α

i+1
  for 

i = 1,…,n −1, define

 
DX Dx xi i

i

n

= +

=

−

∑ α α 1

1

1

(with the understanding that the sum is zero if n is 0 or 1). The 
operator D always acts upon the entire chain following it, e.g., 
Du Xv Dx x DX Dx xnµ ν µ α α ν= + +1

1 .

Definition 5.7. A chain xαXyβ is said to be compliant with the chain 
inequality (or simply, compliant) if DxαXyβ ≥ Dxαyβ. The chain is said 
to be contravening (the chain inequality) if DxαXyβ < Dxαyβ.

It follows from this definition that if xαXyβ is contravening or 
compliant, then α ≠ β (otherwise Dxαyβ is not defined), and no fac-
tor in xαXyβ occurs twice in succession. For a chain to be contraven-
ing, in addition, X must be non-empty (i.e., | xαXyβ | ≥ 3; Lemma 5.9 
below shows that in fact | xαXyβ | ≥ 4). A non-contravening chain 
need not be compliant: it may, e.g., be any chain with fewer than 3 
elements, or it can be any chain of the form xαXyα. Analogously, a 
non-compliant chain is not necessarily contravening.7

Lemma 5.8. Let U = XyβYzγZ be a contravening chain with a com-
pliant subchain yβYzγ. Then U* = XyβzγZ (i.e., U without Y) is a 
contravening subchain of U.

Proof. Let xα and uδ be the first and the last elements of U, respec-
tively (then necessarily α ≠ δ). Note that xα may coincide with yβ 
or uδ with zγ (but not both). From

 Dx u DXy Dy Yz Dz Zα δ β β γ γ> + +

and

 Dy Yz Dy zβ γ β γ≥

7We cannot resist mentioning at this point a surprising mathematical similarity 
between the conceptual apparatus of (hence also the notation adopted in) the pre-
sent theory, especially in this section, and that of the completely unrelated theory 
of “regular well-matched spaces” developed in Dzhafarov and Dzhafarov (2010) for 
comparative judgments. In particular, factors and factor points seem to be formally 
homologous to “stimulus areas” and “stimuli,” respectively, and the contravening 
chains of the present theory essentially mirror the “soritical” sequences for com-
parative judgments, so that the proof of Theorem 5.11 below is almost identical to 
that of Lemma 3.3 of Dzhafarov and Dzhafarov (2010).

8One can easily generalize this reasoning to show that every chain x xn
n

1
1α α
  with 

pairwise distinct {α
1
, … α

n
} is compliant. As will be apparent from the proof of 

Theorem 5.11, however, in the present development we should only be concerned 
with n = 3.
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Now,

 D D D D E E1 2 2 1 2 2 0 1 1 0µ ν µ ν µ ν µ ν= = = = − ′, ,>

where E and E′ are identically distributed and independent. The 
tetradic inequality on {1μ, 1ν, 2μ, 2ν} is therefore violated:

 

max D D D D

E E
E E D D D

1 1 1 2 2 1 2 2

2

1 1 1 2 2 1

µ ν µ ν µ ν µ ν

µ ν µ ν µ ν

, , ,{ }
= − ′ >

− ′
= + + + DD2 2

2

µ ν

.

Clearly, the tetradic inequality holds on any set {xα, yβ, sα, tβ} that 
does not include {1μ, 2ν}, {2μ, 1ν}, or {2μ, 2ν}, as this inequality then 
only involves mutually independent random variables (Lemma 4.3 
and Theorem 5.10). Denoting by 3μ any point other than 1μ and 2μ 
(if such a point exists), and analogously for 3ν, it remains to consider 
the cases {1μ, 2ν, 3μ, 3ν}, {1μ, 2ν, 2μ, 3ν}, {1μ, 2ν, 3μ, 1ν}, {2μ, 1ν, 3μ, 3ν}, {2μ, 
1ν, 1μ, 3ν}, {2μ, 1ν, 3μ, 2ν}, and {2μ, 2ν, 3μ, 3ν} (note that the order of the 
points is immaterial here). It is easy to check that the four distances 
in each of these quadruples equal either 0 or || E − E′ || > 0 (with 
E, E′ independent identically  distributed), and that the number of 
zero distances in these quadruples is never greater than two. The 
tetradic inequality, therefore, always holds: either

 

max
sum

or

max
sum









{ } = − ′ <
− ′

= { }

{ } = − ′ =
− ′

= { }

E E
E E

E E
E E

3

2 2

2

2 2

,

.

This completes the proof. ¨

Theorem 5.12 is proved for a fixed r ≥ 1, and for “untrans-
formed” {Aα}α∈Φ. The application scope of the distance tests can be 
significantly broadened by using various values of r and by applying 
to {Aα}α∈Φ various transformations as specified in Lemma 3.8. It is 
clear that the tetradic inequalities cannot be independent across 
all r and/or all transformations. Since a violation of a tetradic 
inequality means a strict inequality, the inequality involving the 
same quadruple of factor points will have to hold also for suffi-
ciently close values of r and sufficiently “slight” transformations. 
This also applies to r = ∞: every violated inequality for r = ∞ will 
have to remain violated for all sufficiently large values of r, since 

the difference between ess sup | A − B | and E[ ]| |A B− ρρ  can be 
made arbitrarily small (or, if the former is infinite, the latter can 
be made arbitrarily large).

6. conclusIon
We have advanced the theory of selective influence in three ways.

1. The notion of selective influence (together with the related but 
weaker notion of marginal selectivity) has been generalized 
to arbitrary sets of random entities whose joint distributions 
depend on arbitrary sets of external factors by which the ran-
dom entities are indexed (Definition 3.4).

2. The joint distribution criterion has been formulated for ran-
dom entities to be selectively influenced by their indexing 
external factors: this happens if and only if there is a jointly 

But then vαSuβ must be compliant (otherwise X′ would not be 
minimal), and by Lemma 5.8 xαyβvαuβ is contravening. Since X′ 
is minimal, we conclude that S is empty and X′ = xαyβvαuβ. ¨

It follows that the task of testing the compliance of D with all 
possible chain inequalities, as stated in Theorem 5.10, is reduced to 
testing the compliance with only the inequalities involving tetradic 
chains: if {Aα}α∈Φ  Φ, then, for any chain xμyνuμvν with distinct 
μ and ν,

 Dx v Dx y Dy u Du vµ ν µ ν ν µ µ ν≤ + + ,

and if all such inequalities are satisfied, then there can be no other 
contravening chains. Given any four factor points xμ, yν, uμ, vν, one 
can form four different chains with alternating factors and four 
corresponding inequalities,

 

Dx v Dx y Dy u Du v

Dx y Dx v Dv u Du y

Du y Du v

µ ν µ ν ν µ µ ν

µ ν µ ν ν µ µ ν

µ ν µ

≤ + +
≤ + +
≤

,

,
νν ν µ µ ν

µ ν µ ν ν µ µ ν

+ +
≤ + +











Dv x Dx y

Du v Du y Dy x Dx v

,

.

Following Kujala and Dzhafarov (2008), these are easy to see (by 
adding the left-hand sides to themselves and to the right-hand 
sides) to be equivalent to the single inequality

 

max Dx y Dx v Du y Du v

Dx y Dx v Du y Du v

µ ν µ ν µ ν µ ν

µ ν µ ν µ ν µ ν

, , ,

/ .

{ }
+ + +( )≤ 2

We call this a tetradic inequality. Note that it is always satisfied if 
xμ = uμ or yν = vν, so we only have to look at xμ, yν, uμ, vν with two 
distinct points of each factor.

The theorem below shows that we have to check all such tetradic 
inequalities (for any given r).

Theorem 5.12. The tetradic inequalities are mutually independent, 
in the sense that any one of them can be violated while the rest of 
them hold.

Proof. Let μ and ν be distinct factors in Φ, and let, for all points 
xμ and yν,

 
A A E

x yµ ν
µ ν~ ~ ,

where E is some non-singular random variable (i.e., no constant 
equals E with probability 1). Let 1μ, 2μ, 1ν, 2ν be distinct fixed points 
of μ and ν, and let

 
A A A A A A E E

1 2 1 2 2 1 2 1 2 2 2 2µ ν µ ν µ ν µ ν µ ν µ ν
µ ν µ ν µ ν

, , ,
~ ~ ~ , .( ) ( ) ( ) ( )

 
(9)

Let A
xα
α  for any point of any factor α ∉{μ, ν} be distributed arbitrar-

ily, and let the random variables { }Aφ
α

α∈Φ be mutually independent 
for any treatment φ, except if the latter includes one of the pairs 
{1μ, 2ν}, {2μ, 1ν}, or {2μ, 2ν}: in those cases the joint distribution of 
( , )A A

u v u vµ ν µ ν
µ ν  is given by (9) , while { } { }Aφ

α
α µ∈Φ-  and { } { }Aφ

α
α ν∈Φ-  remain 

the sets of mutually independent variables. It is easy to see that 
{ }Aφ

α
α∈Φ thus defined satisfy the marginal selectivity property.
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5.11), and that the tetradic inequalities for different quadruples 
of factor points (for a given r and a given set of transformations) 
are logically independent (Theorem 5.12).

We conclude by posing an open question. Example 4.4 in Section 
4 shows that the distance tests can be passed for all values of r while 
the random variables in question do not selectively depend on the 
respective factors. At the same time, in this example a distance test 
can be found to fail after the random variables have been trans-
formed in accordance with Lemma 3.8. The open question is: for 
random variables which are not selectively influenced (but whose 
dependence on the corresponding factors is marginally selective), 
can the distance test be passed under all possible measurable trans-
formations of the variables?
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distributed set of random entities, one for every value of every 
factor, such that every subset of this set that corresponds to a 
treatment is distributed as the original entities at this treat-
ment (Theorem 4.1).

3. The distance tests previously formulated for pairs of random 
variables in two-by-two factorial designs have been generali-
zed to arbitrary sets of random variables. For any quadruple of 
distinct factor points xμ, yν, uμ, vν, we check whether

max Dx y Dx v Du y Du v

Dx y Dx v Du y Du v

µ ν µ ν µ ν µ ν

µ ν µ ν µ ν µ ν

, , ,

/ ,

{ }
+ + +( )≤ 2

where the function D is as in Definition 5.1, for some choice 
of r ≥ 1 and of transformations A h A

xφ
α

φ
α

α ( ) as specified in 
Lemma 3.8. If this tetradic inequality is violated, the variables 
are not selectively influenced by the factors indexing them. It 
is shown that we do not need to check for compliance with 
any other chain inequalities (Definition 5.7, Theorems 5.10 and 


