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A B S T R A C T   

There is a growing interest in using electroencephalography (EEG) and source modeling to investigate functional 
interactions among cortical processes, particularly when dealing with pediatric populations. This paper in-
troduces two pipelines that have been recently used to conduct EEG FC analysis in the cortical source space. The 
analytic streams of these pipelines can be summarized into the following steps: 1) cortical source reconstruction 
of high-density EEG data using realistic magnetic resonance imaging (MRI) models created with age-appropriate 
MRI templates; 2) segmentation of reconstructed source activities into brain regions of interest; and 3) estimation 
of FC in age-related frequency bands using robust EEG FC measures, such as weighted phase lag index and 
orthogonalized power envelope correlation. In this paper we demonstrate the two pipelines with resting-state 
EEG data collected from children at 12 and 36 months of age. We also discuss the advantages and limitations 
of the methods/techniques integrated into the pipelines. Given there is a need in the research community for 
open-access analytic toolkits that can be used for pediatric EEG data, programs and codes used for the current 
analysis are made available to the public.   

1. Introduction 

Progress made in developing novel neuroimaging tools offers up the 
opportunity to investigate the dynamic interregional communications in 
the brain and their development over childhood. Studies with functional 
magnetic resonance imaging (fMRI) have advanced our understanding 
of the development of functional brain networks (Gilmore et al., 2018). 
However, there are still challenges to collect fMRI data from awake 
young children (e.g., infants), including head and body motion, fussiness 
of the participant, and high acoustic noise level. Furthermore, hemo-
dynamic signals provide an indirect measure of neural activity. In 
contrast, electroencephalography (EEG) offers a comparatively inex-
pensive and easy-to-use alternative to study brain development in pe-
diatric populations (Xie and Nelson, 2021). More importantly, EEG 
reflects a direct measure of neural activity with high temporal resolu-
tion, which allows for assessing neural oscillations within specific fre-
quency bands that could reflect biophysical properties of local and 
large-scale network interactions. When combined with source 

modeling, EEG can be used to study functional interactions among 
cortical processes non-invasively (Michel and Murray, 2012). The ad-
vantages stemming from the nature of EEG recording make it a more 
practical tool to estimate functional connectivity (FC) while young 
children are performing cognitive tasks or in resting-state while they are 
awake. 

The EEG FC is typically estimated by analyzing the correlation or 
coherence between dynamic signals recorded at multiple channels/ 
electrodes on the scalp (Boersma et al., 2011; Miskovic et al., 2015). 
While previous findings of EEG FC at the scalp-level have provided in-
sights into the development of brain networks, limited information 
about the underlying connections between brain regions can be obtained 
from scalp-level FC due to the issue of volume conduction, which is also 
referred to as field spread. Specifically, volume conduction refers to the 
transmission of electric fields from a cortical source (or dipole) through 
biological tissues towards measurement electrodes. Consequently, the 
electric fields generated by one dipole can be “visible” at multiple 
electrodes, i.e., field smearing on the scalp, due to the complexity of 
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brain and head tissues through which the fields are transmitted. This 
will cause spurious correlation and synchronization values between 
electrodes. Therefore, the interpretation of the scalp-level connectivity 
requires considerable caution because the FC between two electrodes 
might reflect the activation generated by one brain region rather than 
two functionally connected regions. The effects of volume conduction on 
scalp-level EEG FC can be reduced by techniques like partial coherence 
field (R.D. Pascual-Marqui et al., 2011; Roberto D. Pascual-Marqui et al., 
2011) and surface Laplacian (Carvalhaes and De Barros, 2015). An 
alternative way to ameliorate the impact is by analyzing the FC with 
reconstructed cortical source activities (Schoffelen and Gross, 2009), 
and meanwhile this method provides insights into the connections be-
tween cortical regions. To this end, people have leveraged the combi-
nation of cortical source reconstruction, FC estimation methods, 
age-appropriate MRI atlases, and high-density EEG recordings as a 
valid alternative to study the development of FC in various brain net-
works in young children (e.g., Bathelt et al., 2013; Tokariev, Stjerna, 
et al., 2019; Tokariev, Roberts, et al., 2019). 

Neuronal interactions in large-scale networks are represented by 
different forms of correlational metrics that reflect distinct facets of the 
interactions (Palva and Palva, 2012). Two forms of interareal correla-
tions, phase-to-phase synchrony (PPS) and amplitude-to-amplitude 
correlation (AAC), which represent neuronal activity as phase and 
amplitude dynamics respectively, have been widely adopted in recent 
studies on source space FC. The PPS reflects how brain signals in two or 
more sources oscillate with a consistent sequence of relative phase an-
gles, which regulate neuronal spiking and modulate (suppress or facil-
itate) interareal communication (Palva and Palva, 2011). The AAC, on 
the other hand, reflects characteristics in multi-second time scales that 
indicate co-modulations of overall neuronal activity (i.e., amplitude) 
levels and correlations in gross cortical excitability fluctuations (Hipp 
et al., 2012). The measures of PPS and AAC have been widely used with 
resting-state EEG data, but it is also possible to compute these measures 
at sub-second resolution for event-related (i.e., task-based) oscillations, 
especially those at higher frequencies (Karamzadeh et al., 2013; Mis-
kovic and Keil, 2015). While phase-amplitude coupling is another metric 
to study EEG FC, it is beyond the scope of the current study and has been 
discussed elsewhere (Aru et al., 2015). 

In the current study we aimed to demonstrate two recently devel-
oped pipelines by two different research labs to conduct brain FC 
analysis in the source space, focusing on PPS (Xie et al., 2019a, 2019b) 

and AAC (Toll et al., 2020; Zhang et al., 2021) respectively (Fig. 1). For 
the sake of brevity, the two pipelines were referred to as the “pl_pps” and 
“pl_aac” in the following sections. The overall analytic streams of the 
pl_pps and pl_aac can be summarized into the following steps: 1) cortical 
source reconstruction with high-density EEG data and realistic MRI 
models; 2) parcellation of reconstructed source activities into brain ROIs 
for major brain lobes or brain networks; 3) calculation of FC between 
each pair of the brain ROIs or between source voxels/vertices in limited 
frequency bands using “robust FC metrics”, i.e., weighted phase lag 
index (wPLI; Vinck et al., 2011) and orthogonalized power envelope 
correlation (Hipp et al., 2012). Robust FC metrics refer to those mea-
sures that were designed to minimize the effects of spurious connections 
caused by volume conduction. The measure of wPLI was developed 
based on PLI, a method that discards the phase difference of zero or Pi by 
averaging the sign of the estimated phase difference, which is motivated 
by the fact that zero-phase difference is most likely to be caused by 
volume conduction (Stam et al., 2007). However, using PLI risks missing 
true instantaneous interactions and underestimates the connectivity at 
small-time lags and low signal-to-noise ratio (Cohen, 2015). In contrast, 
wPLI is less sensitive to noise and shows a more reliable relationship 
with true phase consistency because in wPLI the contribution of the 
observed phase difference is weighted by the magnitude of the lag rather 
than disregarding all zero-phase differences (Vinck et al., 2011). The 
orthogonalized power envelope correlation is another robust FC method 
that relies on correlations between oscillatory signals’ instantaneous 
amplitude across regions (termed power envelopes). To this end, 
orthogonalization between two time series (e.g., X and Y) needs to be 
performed, i.e., to compute the orthogonalized Y′ to X and vice versa, 
before the calculation of the correlation between their power envelopes 
(Fig. 2) (Hipp et al., 2012), with the assumption that orthogonalization 
yields a new signal (e.g., Y′) free of zero-phase-lag effect of the other 
signal (e.g., X). 

While the main steps overlapped between the two pipelines, differ-
ences existed in their procedures of head model construction, frequency 
analysis, FC calculation and voxels parcellation, etc. Moreover, pl_pps 
primarily relies on functions in the Fieldtrip toolbox (Oostenveld et al., 
2011), whereas pl_pps is mainly based on functions in the Brainstorm 
toolbox (Tadel et al., 2011). The examination of how these factors might 
influence FC outputs is out of the scope of the current study but has been 
conducted with adult EEG data (Mahjoory et al., 2017). 

In this study we performed analysis following each pipeline with 

Fig. 1. The processing stream of the pl_pps (left) and pl_aac (right) pipelines.  
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example data collected from 12- and 36-month-old children. Age- 
appropriate MRI templates were used to create the head models 
(O’Reilly et al., 2021; Richards and Xie, 2015). The two pipelines uti-
lized functions in Fieldtrip (Oostenveld et al., 2011) and Brainstrom 
(Tadel et al., 2011), as well as customized MATLAB (R2020b, the 
Mathworks, Inc.) programs. Given there is a need in the research com-
munity for open-access processing pipelines and analytic toolkits that 
can be used for brain FC analysis with pediatric EEG data, programs and 
codes used for the current analyses have been made available to the 
public (see Codes and Data Availability). 

2. Method 

2.1. Participants 

The sample data involved two different cohorts of children (N = 30 

each at 12 and 36 months of age respectively. These children were 
randomly selected from an ongoing longitudinal study on the develop-
ment of emotion processing in childhood. The demographic information 
(e.g., race/ethnicity; family combined income, and parental education) 
of the original cohorts has been described elsewhere (Xie et al., 2021). 
Parents of the participants provided written informed consent before 
their child’s study visits, and ethical permission for the study was ob-
tained from the Institutional Review Board at Boston Children’s 
Hospital. 

2.2. EEG data collection and preprocessing 

EEG baseline (“resting-state”) data was recorded from a 124-channel 
HydroCel Geodesic Sensor Net (HGSN) connected to a NetAmps 300 
amplifier (Electrical Geodesic Inc., Eugene, OR) while children watched 
a toy animation with sounds for 2 min. The EEG recording was 

Fig. 2. Panel A shows the process of cortical source 
reconstruction, which is conducted with the child EEG data 
and a realistic head model, and as a result, the scalp-level 
EEG data is projected into the source-space. In panel B, 
alpha band filtered (5–11 Hz) source-space time-series 
(10 s) in the left and right superior frontal gyrus (SFG), 
randomly selected from one participant’s data, are plotted 
in red and blue respectively. Applying the orthogonaliza-
tion method to the two signals generates a new signal 
(magenta). In this figure, the signal in the left SFG that is 
orthogonalized to the time-series of the right SFG (blue) is 
calculated and plotted in magenta. This new signal is free 
of the zero-phase-lag effect. The signal in the left SFG that 
is likely caused by volume conduction (cyan) can be 
calculated by subtracting the orthogonalized signal 
(magenta) from the original signal (red), i.e., 
“cyan” = “red” – “magenta”. The correlation (corr1) be-
tween the natural logarithm of power envelopes of the 
“blue” and “magenta” signals is calculated, and the same 
kind of correlation (corr2) is calculated between the “red” 
signal and the signal in “blue” that is orthogonalized to 
“red”. The FC (AAC) in the alpha band between left and 
right SFG is the average of corr1 and corr2. Panel C depicts 
the FC (PPS) in the alpha band between the two regions 
using the source-space data from the same participant. 
Results from two robust methods, iCOH (red) and wPLI 
(cyan) and a not robust method, coherence (black) are 
plotted, along with the power spectrum density (PSD) 
(brown) in the alpha band. The two robust methods yield 
very similar patterns with two peaks in the alpha band for 
this participant, while using coherence yields generally 
higher FC values but in a different pattern with no clear 
peak in the alpha band.   
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referenced online to a single vertex electrode. Channel impedance was 
kept below 100 kΩ and signals were sampled at 500 Hz. 

EEG recordings were preprocessed using EEGLAB (Delorme and 
Makeig, 2004) and customized MATLAB programs. The continuous EEG 
data were filtered with a Hamming windowed finite impulse response 
(FIR) filter with a passband of 1–50 Hz. The low-pass cut-off was set to 
be below the high gamma band to reduce the effect of the muscle- and 
movement-related artifacts on pediatric EEG data. The filtered data was 
then segmented into 2 s epochs. Independent component analysis (ICA) 
was conducted, and then SASICA (Chaumon et al., 2015) was used to 
identify and remove artificial components related to eye movements, 
blinks, and focal activity. The EEG epochs were then inspected for ar-
tifacts (EEG > 100 μV or EEG < − 100 μV). Channel interpolation was 
conducted using a spherical spline interpolation with the EEGLAB 
function “eeg_interp” if there were fewer than 18 (15 %) electrodes that 
were missing or had bad data. Each child must have at least 30 clean 
epochs (60 s) to be included for further analyses. The preprocessing 
procedures and the parameters used for each step were determined 
based on previous studies with pediatric EEG data (e.g., Xie et al., 2018, 
2019a, 2019b). The scripts used for preprocessing are also shared with 
the FC analysis codes (see the ReadMe.md). 

Given the dramatic changes in peak frequency of different rhythms in 
childhood (Marshall and Meltzoff, 2011; Perone et al., 2018), the pre-
processed EEG data were filtered into four age-appropriate frequency 
ranges: theta (12mos: 3–6 Hz; 36 mos: 3–7 Hz), alpha (12mos: 5–10 Hz; 
36mos: 6–11 Hz), beta (11–22 Hz for both ages) and gamma (22–45 Hz 
for both ages) bands. The boundaries of the low-frequency bands were 
made to be slightly overlapping because young children have large 
inter-individual variability in the frequency range of different bands, 
especially the theta and alpha bands. Since we were not using individual 
alpha peak to define the frequency boundaries in this tutorial, which 
should be the ideal method, we applied a wider range and slightly 
overlapped boundaries to better capture the theta and alpha activity for 
the participants. The filtering procedure was done before source local-
ization to alleviate the influence of low-frequency oscillations on the 
source localization results (Xie et al., 2018; Zhang et al., 2021). In the 
pl_pps, the filtering process was conducted with the MATLAB FIR 
“bandpass” function with a steepness of 0.85, and then Hilbert transform 
was applied to the filtered EEG time series to obtain the complex-valued 
representation of signals, and thereafter the amplitude and phase time 
series were used in subsequent analyses. In the pl_aac, this was done by 
using the EEGLAB “pop_eegfiltnew” function with the default FIR pa-
rameters and a complex Morlet wavelet filter (similar to the Hilbert 
transformation). 

2.3. EEG FC analysis in the source space 

2.3.1. Head model construction and source localization 
Realistic head models were used in both pl_pps and pl_aac. In the 

pl_pps the head models were created for the 12- and 36-month-old co-
horts separately using age-matched average MRI templates selected 
from the Neurodevelopmental MRI Database (Richards et al., 2016; 
Richards and Xie, 2015). Anatomical MRI templates were segmented 
into component materials, and a forward model was created for each age 
group using the Finite Element Method (FEM) with the gray matter 
being used as source volumes (6 mm grids), using the “ft_prepar-
e_headmodel” and “ft_prepare_sourcemodel” functions in Fieldtrip with 
the following parameters: cfg.method = ‘simbio’, cfg.grid.reso-
lution = 6, and cfg.grid.unit = ‘mm”. Age-appropriate skull conductiv-
ity values (0.066 Ω m− 1 for the 12-month model and 0.036 Ω m− 1 for 
the 36-month model) were used to build each forward model 
(Hämäläinen et al., 2011), using the cfg.conductivity option in the 
“ft_prepare_headmodel” function. The forward model was then used to 
estimate the lead-field matrix and the spatial filter matrix, i.e., the in-
verse of the lead-field matrix, using the “ft_prepare_leadfield” function in 
Fieldtrip. Distributed source reconstruction of the EEG time-series was 

conducted with the exact-LORETA algorithm (eLORETA; R.D. 
Pascual-Marqui et al., 2011; Roberto D. Pascual-Marqui et al., 2011) as 
the constraint for inverse modeling, using the “mkfilt_eloreta.m” func-
tion in Fieldtrip. In the pl_pps, we also provided an option for using the 
minimum norm estimation (MNE) algorithm for source reconstruction, 
by changing cfg.methodtype to be ‘MNE’. Singular value decomposition 
(SVD) was conducted to project the 3-dimensional time series in each 
voxel (i.e., dipole) along the direction (i.e., moment) that explains the 
most variance, using the “svd.m” function in Matlab. This projection is 
equivalent to determining the largest temporal eigenvector of the 
3-dimensional time series. 

In the pl_aac analyses, realistic head and brain surface models 
(O’Reilly et al., 2021) for each age group were generated via the 
Brainstorm neuroimaging toolbox for MATLAB (Tadel et al., 2011) 
incorporating appropriate conductivities for the various tissue types as 
described above. After down-sampling the cortical tessellation to 5000 
vertices and fitting the appropriate EEG cap montage to the scalp sur-
face, the lead-field matrix was calculated using the symmetric boundary 
element method (BEM) as employed in the OpenMEEG toolbox (Gram-
fort et al., 2010). The spatial filter matrix was obtained by 
weighted-MNE without noise modeling. To improve accuracy, this ma-
trix was calculated without normal cortical restraint and reduced using 
principal components analysis of various frequency bands of the EEG 
data in each subject. Please see the ReadMe.md file and the “baby-
PublishOrthlog.m” program for details, as well as Fig. 2A for a summary 
of the source localization procedures. 

2.3.2. Parcellation of source voxels/vertices into ROIs 
The complex-valued time-series in the source voxels or vertices were 

segmented into brain regions of interest (ROIs). This was done to ground 
our EEG source regions in commonly used, MRI (anatomical) derived 
definition of the major brain lobes or networks while maintaining ROI 
sizes large enough to be transformed for use in the lower-resolution 
electrophysiological context (Power et al., 2010). 

In the pl_pps the 3D source volumes were segmented into 48 cortical 
ROIs using the LPBA40 brain atlas (Shattuck et al., 2008). The recon-
structed time-series in the source volumes (voxels) surrounding the 
centroid of each ROI were averaged to represent the source activation 
for each ROI (Hillebrand et al., 2016; also see Hillebrand et al., 2012 for 
using the voxel with the greatest power). These ROIs were further 
grouped into the four major lobes, i.e., the frontal, temporal, parietal 
and occipital lobes. In this pipeline, we also provided other options for 
using the average activity or principal component analysis (PCA) to 
obtain the representative source activity for each ROI (Bathelt et al., 
2013; Wirsich et al., 2021). These methods used to define the repre-
sentative activity of an ROI have their own advantages and disadvan-
tages. Using the component with the highest weight from PCA or 
average activity across voxels of an ROI may have a higher 
signal-to-noise ratio compared to using the centroid voxel or a few 
voxels surrounding the centroid; however, phase information can be 
distorted by the PCA or the average process, as the phase angles between 
oscillations of distant voxels are likely to be different. We recommend 
using one or only a few voxels surrounding the centroid to represent the 
activity of an ROI when PPS is the choice for FC analysis, although which 
method is the most suitable is still an open question for debate. 

In the pl_aac, connectivity matrices of all pairwise connections were 
generated among all source vertexes and a t-test of each vertex for global 
correlation significantly greater than the mean across subjects was 
calculated. These values were used to identify connected vertices that 
emerged as hubs of significant connectivity. In this way functional ROIs 
were produced in a data-derived manner, agnostic of any atlas computed 
a priori. Mean connectivity from these ROIs, identified in each frequency 
band and in each age group, was then calculated to identify connectivity 
topologies (Toll et al., 2020). To the best of our knowledge, this is the 
first EEG-derived functional connectivity atlas produced and therefore 
yields interesting insights but would benefit greatly from validation and 
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replication in larger datasets. 

2.3.3. Estimation of brain FC 
In the pl_pps, the first step was to conduct frequency analysis with 

the Fieldtrip function “ft_freqanalysis”. In the current pipeline, a “han-
ning taper” was used, but it is also possible to use the multiple tapers 
based on discrete prolate spheroidal sequences (DPSS) by changing cfg. 
taper from “hanning” to “dpss”. The frequency analysis method was set 
up by defining cfg.method as “mtmftt”, which analyzed the entire 
spectrum for the entire data length. The output parameter “cfg.output” 
was set as ‘fourier” to generate the complex Fourier spectra. Please see 
step 4 “Frequency analysis of the source-space ROI data” in the “Inter-
mediate outputs” section of the ReadMe.md file and the “SourceS-
paceFCAnalysis_PPS” program for details. 

The second step is to calculate the FC between ROIs in different 
frequency bands, using the Fieldtrip function “ft_connectivityanalysis” 
and the wPLI method (fcmethod = ‘wpli’; cfg.method = fcmethod). In 
this step, random permutation of trials was applied to avoid the influ-
ence of number of observations (trials) on wPLI estimation, as wPLI 
values for signals with lower synchronization can be overestimated 
when calculated across a low number of observations or epochs (Vinck 
et al., 2011). To this end, for each participant, 30 trials were randomly 
selected from all the trials to calculate the wPLI value. This procedure 
was repeated for 50 times and the average wPLI value was calculated as 
the final estimate for the participant. Please see step 5 “Functional 
connectivity analysis” in the “Intermediate outputs” section of the 
ReadMe.md file and the Matlab program for how this was achieved. The 
FC analysis resulted in 48 × 48 weighted adjacency matrices, with each 
element in the matrix representing the connectivity between a pair of 
ROIs. The Fisher’s r-to-z transformation was applied to the values in the 
matrices to improve the normality of their distribution. Since the FC 
analysis in pl_pps was conducted in Fieldtrip, other PPS methods can 
also be selected, such as the imaginary part of the coherency (iCoh) and 
phase-locking value. To do so, cfg.fcmethod needs to be changed to 
‘imag’ or ‘plv’ before running the “SourceSpaceFCAnalysis_PPS” pro-
gram. The Fieldtrip website has detailed tutorial on how to use their 
ft_connectivityanalysis function. Similar FC results have been obtained 
between using wPLI and iCoh (Xie et al., 2019a, 2019b). 

For statistical comparisons, a sparsity threshold of.5 (top 50 %) was 
applied to the matrices to retain the strong and eliminate the noise 
connections, as well as to keep the same number of connections across 
matrices (Bathelt et al., 2013). This procedure was completed in by 
running the “GenerageTxtFilesForStats.m” program. Please see the 
“Other programs” section in the ReadMe.md file for how to use this 
program. This program also calculated the average FC between ROIs in 
the four major lobes, i.e., frontal, temporal, parietal and occipital lobes, 
and generated a text file with the results for all participants in an age 
group. The effect of using different thresholds (e.g., 0.1, 0.2, 0.3, and 
0.5) to build the adjacency matrix has been tested in a recent study, 
which found similar results among using different thresholds (Xie et al., 
2019a, 2019b). 

In the pl_aac the FC was calculated using the orthogonalized power 
envelope correlation between each pair of the vertices. The time-series 
containing the phase and amplitude information of each vertex was 
first iteratively orthogonalized with respect to the rest of the vertices. 
Power envelopes were then calculated from each of the orthogonalized 
analytical time series, followed by a natural logarithm transformation to 
render them a normal distribution (Hipp et al., 2012; Toll et al., 2020). 
Pearson’s correlation analysis was conducted between the orthogonal-
ized power envelopes for each pair of the vertices. For comparison, the 
pl_aac also calculated the correlation coefficient between the plain 
(non-orthogonalized) power envelopes for the vertex pairs (Toll et al., 
2020). Toll et al. (2020) compared the brain connectivity patterns be-
tween using orthogonalized vs. non-orthogonalized power envelopes 
and found much stronger and dominated local connectivity patterns 
when using the non-orthogonalized power envelopes due to the volume 

conduction issue. The large adjacency matrix that contains the FC values 
between each vertex pair could be used to generate the average FC be-
tween each pair of the ROIs. The calculation of orthogonalized power 
correlation between all vertices is more time-consuming than doing the 
calculation between each pair of the ROIs after parcellation (e.g., 
3000–5000 vertices vs. 30–50 ROIs). Thus, we provided an option for 
estimating brain FC using orthogonalized power correlation between 
brain ROIs in the pl_pps. Please see the “Intermediate outputs” section in 
the ReadMe.md document for examples of main intermediate outputs 
generated by the two pipelines. Please also Fig. 2B as an illustration of 
the main procedures in pl_aac and 2 C as an illustration of PPS results 
using different methods. 

3. Results 

In the following sections we present the results obtained from using 
the two pipelines with EEG data of 12- and 36-month-old children. The 
EEG data have been shared along with the scripts (see Codes and Data 
Availability). We provide instructions in the ReadMe.md file on how to 
make figures to display the FC results with open-access software. 

3.1. Brain FC results from pl_pps 

The FC analysis using the wPLI method in pl_pps resulted in four 
adjacency matrices (48 × 48 ROIs) for the four frequency bands. The 
ROIs were re-organized by which of the four major lobes the ROIs belong 
to, i.e., the frontal, temporal, parietal, and occipital lobes. We presented 
the corresponding averaged FC in a brain atlas using the Surf Ice soft-
ware developed by Chris Rorden (Fig. 3). Brain FC showed different 
patterns across frequency bands and ages. Both long- and short-range 
connections were found for the theta bands at both ages. The hubs of 
FC in the alpha band were the central, parietal, and occipital regions. 
The FC in the beta band was most prominent among the frontal and 
temporal regions. A similar pattern of FC was found for the gamma band, 
except that strong gamma FC was also shown between the occipital 
regions. Another characteristic of the FC in the beta and gamma bands 
was that the brain modules seemed to comprise anatomically contiguous 
regions. Overall, brain FC decreased from 12 to 36 months, which 
possibly reflects the pruning of connections during childhood. The 
corresponding adjacency matrices for each brain FC figure can be found 
in Fig. 4. Quantitative analysis of the FC values can be achieved by 
parametric and nonparametric measures of the values in the adjacency 
matrices. We also provided a program to calculate the average FC be-
tween the main lobes (Tokariev, Stjerna, et al., 2019; Tokariev, Roberts, 
et al., 2019) and save the outputs in a text file, using the program 
“GenerateTxtFilesForStats.m”. 

There was an option for calculating the orthogonalized power en-
velope correlation using the pl_pps. This method resulted in more 
segregated network organization, i.e., the hubs were more localized, 
compared to the results from using wPLI. The adjacency matrices of 
orthogonalized power envelope correlation can be found in Fig. 5. 

3.2. Brain FC results from pl_aac 

Four frequency bands were investigated: theta, alpha, beta, and 
gamma. In each band, the 5000 × 5000 connectivity matrices, repre-
senting the correlation of each vertex of cortical source space orthogo-
nalized to every other vertex, were robustly normalized using the 
median and median absolute deviation. Then each vertex’s global con-
nectivity strength across all 30 subjects in each group was assessed by a 
Student’s T test, yielding a 5000 × 5000 matrix describing each vertex 
pair’s connectivity strength. Finally, the mean of this matrix was taken 
to yield a single 5000 × 1 column vector describing the topology of the 
observed mean connectivity (Fig. 6). 

It is important to note this procedure is completely agnostic of any a 
priori model or atlas. Distinct topologies of connectivity emerged in each 
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band and were highly congruent between the two cohorts despite being 
independently generated (Fig. 6). In the theta band, hubs of connectivity 
manifested in areas observed in adults including the principal nodes of 
the executive and salience networks (e.g., prefrontal lobe, areas toward 
the back of the parietal lob, and frontoinsular regions). These regions 
have also been identified as hubs of FC based on infant resting-state fMRI 
data, such that after 9 months of age, hubs started to emerge in higher 
cognition-related regions, including the lateral frontal area, insula, 
posterior superior temporal sulcus, and superior parietal lobules (Wen 
et al., 2019). In both cohorts, these patterns were strongly lateralized to 
the right hemisphere. The alpha band topology was the most disparate 

between the cohorts with the infants presenting higher temporal lobe 
connectivity. The beta band produced the clearest illustration of what is 
putatively the pruning and specialization of functional networks over a 
child’s cortical development. The least variance between the cohorts 
was observed in the gamma band as expected since local region intra-
connectivity is likely to change the least over developmental pruning. 

4. Discussion 

In this study, we provided an overview of two recently developed 
pipelines by two research labs on EEG source space FC analysis. Step-by- 

Fig. 3. Functional connections between anatomical ROIs for the theta (A), alpha (B), beta (C), and gamma (D) bands using the pl_pps. The connections (edges) in this 
figure are transformed to z-values and plotted with the same threshold. Thicker lines are edges with stronger FC. Brain ROIs belonging to different lobes are plotted in 
different colors—frontal ROIs in blue, temporal ROIs in green, central and parietal ROIs in yellow, and occipital ROIs in red. 
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step descriptions were provided, and the codes used in our analysis were 
made available to the public. The two pipelines (“pl_pps” and “pl_aac”) 
comprised the construction of realistic head models and cutting-edge FC 
methods that were used to alleviate the effects of volume conduction 
that could otherwise dominate the FC found on the scalp. Comparable 
results were found regarding the FC hubs in the theta, beta and gamma 
frequency bands between the two pipelines in terms of the location of FC 
hubs and the developmental change of the FC strength from 12 to 36 
months of age. A major difference between the two pipelines was that 
the results from pl_pps did not show the lateralization (to the right 
hemisphere) that was shown in the pl_aac results. These pipelines did 
differ with respect to the methods used for head model creation (BEM vs. 
FEM; surface vs. volume models), cortical parcellation (vertices vs. 
ROIs), and FC estimation (PPS vs. AAC), which might lead to divergent 
results in source-space FC analysis. 

The creation of realistic head models with age-appropriate MRI 
templates is a critical step in our source-space FC pipelines when used 
for pediatric EEG data. There are substantial neuroanatomical changes 
of neural tissues over childhood, and the structure of a child’s brain 
differs greatly from an adult’s brain (Phan et al., 2018; Richards and Xie, 
2015). Consequently, using a head model created with an adult’s MRI 
for children’s EEG data will likely mislocalize the source of EEG currents 
(Reynolds and Richards, 2009), which in turn would influence the FC 
estimation in the source space. A significant advance in cortical source 
analysis for pediatric participants is to use realistic head models created 
with individual MRIs or an age-appropriate MRI template (Hämäläinen 
et al., 2011; Xie and Richards, 2017). Age-appropriate skull conductivity 

values were utilized in the pl_pps given the fact that skull conductivity 
value changes drastically in childhood, which is much higher for infants 
than adults (Odabaee et al., 2014). Although systematic estimation of 
skull conductivity for children at different ages has yet to be conducted, 
attempts have been made to use higher skull conductivity values for EEG 
source localization and source-space FC analysis for pediatric pop-
ulations (Hämäläinen et al., 2011; Xie et al., 2019a, 2019b). 

Another advantage of our pipelines is that both of them used robust 
FC metrics that were designed to minimize the spurious connections 
caused by volume conduction. In contrast, there are less-robust FC 
metrics, e.g., coherence and phase-locking value, that are considerably 
more sensitive to the effects of volume conduction (source mixing), and 
thus often reflect rather simple properties of the data, for instance, the 
strength of the sources and the corresponding mixing of the sources (e. 
g., the EEG power measured on the scalp) (Colclough et al., 2016). The 
wPLI metric (Vinck et al., 2011) used in the pl_pps is an adjusted version 
of the original PLI metric (Stam et al., 2007) that evaluates the distri-
bution of phase differences (lags) across observations. The fundamental 
idea of PLI is to discard the phase difference of zero or π by averaging the 
sign of the estimated phase difference, which is motivated by the fact 
that zero-phase difference is most likely to be caused by volume con-
duction (like the idea of iCOH). However, using PLI risks missing true 
instantaneous interactions and underestimates the connectivity at 
small-time lags and low signal-to-noise ratio (Cohen, 2015). In contrast, 
wPLI is less sensitive to noise and shows a more reliable relationship 
with true phase consistency because, in wPLI, the contribution of the 
observed phase difference is weighted by the magnitude of the lag rather 

Fig. 4. Adjacency matrices of functional connectivity in four different frequency bands, originated from the pl_pps using the wPLI method. The 48 cortical ROIs are 
divided into 4 lobes labeled in different colors: frontal regions in blue, temporal regions in green, central/parietal regions in orange, and occipital regions in red. 
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than disregarding all zero-phase differences. The orthogonalized power 
correlation used in the pl_aac also is, by design, insensitive to the trivial 
zero-phase-lag connectivity due to volume conduction (Hipp et al., 
2012). The correlation is calculated between oscillatory signal’s 
instantaneous amplitudes across regions (i.e., power envelopes) after the 
orthogonalization of each pair of the signals (e.g., channels, brain vox-
els, or ROIs) that yields new signals free of zero-phase-lag effects (Toll 
et al., 2020). The characteristics of these methods have been extensively 
discussed elsewhere (Bastos and Schoffelen, 2016). 

The impacts of using different head models, source localization al-
gorithms, and FC methods on the output connectivity metrics have been 
reported in the literature (Barzegaran and Knyazeva, 2017; Quanying 
Liu et al., 2018; Mahjoory et al., 2017). For instance, a study presented a 
comprehensive assessment of the consistency of source localization and 
FC metrics across different anatomical templates (MNI152 vs. Colin27), 
head models (BEM, FEM, and spherical models), inverse algorithms 
(wMNE, eLORETA, and beamforming), and software implementations 
(Brainstorm, Fieldtrip, and their toolbox) (Mahjoory et al., 2017). The 
results for source localization and FC estimation were found to be 
relatively unaffected by the choice of head models, whereas the inverse 
algorithms and software packages induced a considerable variability. 
Specifically, significant differences were found between the beam-
forming and distributed (eLORETA/wMNE) inverse solutions and be-
tween the packages with different algorithms and brain atlases 
implemented (i.e., Brainstorm, Fieldtrip, and the authors’ customized 
toolbox). While the authors claimed no evidence for the superiority of a 
particular methodology (Mahjoory et al., 2017), another study found 

that the FC networks were more similar to those observed with 
resting-state fMRI when eLORETA was used as the inverse solution, 
compared to MNE and LCMV (Liu et al., 2018). It is worth noting that all 
these studies were based on adult EEG data. It is unclear how different 
parameters used in the current two pipelines, i.e., pl_pps and pl_aac, 
would affect the FC metrics obtained from pediatric EEG data. Thus, 
future research should investigate the potential impacts of these factors 
on source-space FC with pediatric EEG data. 

The vertices-based results from the pl_aac shed light on the potential 
hubs of brain FC in different frequency bands in infants and young 
children. Anatomical and fMRI-derived functional atlases have been 
available for humans, including infants, for some time. However, fre-
quency band specific connectomes in the source space, derived from 
high temporal resolution EEG, have only recently emerged as new 
mathematical approaches. One of these approaches, orthogonalized 
power envelope connectivity, was applied in this population to take 
advantage of the higher SNR afforded by young children’s thin skulls to 
yield the first frequency band specific FC atlases in human infants. These 
EEG-derived FC atlases (Fig. 6) provide insights into the development of 
functional brain networks in early childhood and would benefit greatly 
from validation and replication in larger (longitudinal) datasets. 
Whether brain networks identified with source-space EEG would map 
onto those derived from fMRI has yet to be understood, especially for 
young children. While there are reports that large-scale functional brain 
networks derived from resting-state EEG are “moderately comparable” 
to those obtained through fMRI in adults (Liu et al., 2017; Wirsich et al., 
2021), a recent study using intracerebral EEG recordings showed that 

Fig. 5. Adjacency matrices of functional connectivity in four different frequency bands, originated from pl_pps using the orthoganalized power envelop correlation 
method. Note: this figure was generated by the alternative option (i.e., SourceSpaceFCAnalysis_AAC.m) in pl_pps. It is not the output from pl_aac. The output from 
pl_aac is depicted in the following figure (i.e., Fig. 6). 
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unlike with resting-state fMRI, brain modules identified based on phase 
synchronization predominately comprised anatomically contiguous re-
gions (Williams et al., 2021). Moreover, the architecture of functional 
brain networks is still developing in childhood and can be drastically 
different than the brain networks in adults (Eggebrecht et al., 2017). 
Hence, future investigation of source-space FC with longitudinal EEG 
data will be crucial for us to better understand the development of 
functional brain networks over childhood. 

4.1. Limitations and cautions 

There are a few limitations to keep in mind when using the current 
pipelines for source-space FC analysis. First, the two pipelines might be 
more optimal for high- and mid-density EEG with more than 60 channels 
than low-density EEG that has inadequate surface sampling. A handful 
of studies have shown the importance of having a sufficient electrode 
density and full coverage of the head’s surface for cortical source 
localization (see Michel et al., 2004 for review). Although young chil-
dren’s heads are much smaller than adults, and source-space FC has been 

Fig. 6. Functionally-derived connectivity hub regions for the theta (A), alpha (B), beta (C), and gamma (D) bands using the pl_aac. The red regions represent the 
clusters of vertices with relatively large magnitude t statistics, identifying the regions in the brain serving as significant hubs of connectivity in each frequency band. 
The blue regions represent the clusters of vertices with relatively small magnitude t statistics, identifying regions showing weaker connections with other regions. 
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conducted for infants with low-density EEG (Tokariev, Stjerna, et al., 
2019; Tokariev, Roberts, et al., 2019), how the results would differ be-
tween using low- vs. high-density EEG for source-space FC analysis still 
needs to be assessed. An alternative method for low-density EEG is to 
conduct sensor-space FC analysis with techniques that would reduce the 
effect of source mixings, such as partial coherence field (R.D. 
Pascual-Marqui et al., 2011; Roberto D. Pascual-Marqui et al., 2011) and 
surface Laplacian (Carvalhaes and De Barros, 2015). 

Second, the “robust FC metrics” and source localization techniques 
employed in the current two pipelines will only alleviate but not rule out 
the detrimental effects of volume conduction, i.e., there still can be 
spurious false-positive connectivities in the vicinity of true connectiv-
ities due to “signal leakage” during source reconstruction (Palva et al., 
2018). This is because the estimation of thousands of sources with the 
data in a hundred electrodes will always be under-determined, i.e., re-
sidual signal leakage from one location to other locations will always 
characterize the source data. As a result, there can be output connec-
tivities as unwanted by-products of a true interacting pair of sources, 
and the location of the two sources can be misestimated. This type of 
spurious connection also refers to “ghost interaction” and can be 
resolved by a novel approach that bundles connections into hyperedges 
by their adjacency in signal mixing (Wang et al., 2018). 

Third, accurate source estimates of infant EEG also depend on the 
modeling of fontanels and sutures, especially for infants in their first 
postnatal year of life when the fontanels are not fully closed (Lew et al., 
2013). It is unclear how the fontanels and sutures will impact source 
estimates differently for infants at various ages (e.g., 3, 6 and 9 months), 
which is worthy of being investigated by future research. While the 
approaches introduced here should also be applicable to infants younger 
than 12 months of age, interpretation of the FC results needs caution 
when the fontanels and sutures are not taken into account in source 
modeling. 

Finally, we had to limit our approaches to the variation of only a few 
processing parameters that we deemed reasonable and representative of 
pipelines that are recommended in practice. However, EEG-based brain 
connectivity analysis can be performed in numerous different ways, and 
it is still an open question for which method(s) would generate the FC 
metrics closest to the ground truth, especially when dealing with pedi-
atric EEG data. It is therefore important to not consider one set of 
measures as the sole solution to all the issues raised above but try to 
select the techniques that best fit the data. 
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Glossary. This glossary provides supplemental information on the 
technical terms referred to in the manuscript, whereas it is not an 
exhaustive list of all terms employed, nor does it include all 
possible definitions for each term; definitions in addition to or 
different from those reported in this glossary may be found in 
other sources 

Functional connectivity (FC): The temporal coincidence of spatially distant neural activities 
that likely reflects the dynamic interregional communications inside the brain and is 
usually estimated by statistical relationship between the measures of neural activity 
(e.g., EEG oscillations, fMRI BOLD signals). 

Coherence: A measure of the FC in the frequency domain between two signals, loosely 
speaking, the similarly between the power spectrum of two signals. 

Volume conduction: The transmission of electric fields from a cortical source (or dipole) 
through biological tissues towards measurement electrodes. Consequently, the electric 
fields generated by one dipole can be “visible” at multiple electrodes due to the 
complexity in tissue types and conductivity values and the smearing of the field by the 
skull and scalp. 

(Cortical) source analysis: A method/technique that aims to identify the loci of neural ac-
tivity that generates the EEG voltage and power distribution on the scalp 

Head Model: A model that describes the media inside the head with their relative electrical 
conductivity; and loosely speaking, it is the link between the source volumes and the 
electrical potentials on the scalp in source analysis 

Forward model: A computational model created with the head model, an electrode map for 
where the electrodes are, and a source model that describes where the sources (di-
poles) are. The forward model delineates how the activation generated by the dipoles 
propagates to the scalp and is computed independent of the actual EEG data. 

Boundary Element Model (BEM): A type of head model that segments the head into hier-
archical compartments with homogeneous conductivity profiles within a 
compartment 

Finite Element Model (FEM): Another type of head model that defines the conductivity of 
individual voxels inside the head based on the material of the voxel. For example, gray 
matter, white matter, and cerebrospinal fluid would each have its own conductivity 
value in a FEM model 

Lead-field matrix: The mathematical representation (matrix) of the forward model, which 
can be used to calculate the scalp distribution with the current of a given source or any 
combinations of sources. The inverse of the lead-field matrix is the spatial filter matrix. 
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