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Complex diseases seriously affect people's physical and mental health. The discovery of
disease-causing genes has become a target of research. With the emergence of
bioinformatics and the rapid development of biotechnology, to overcome the inherent
difficulties of the long experimental period and high cost of traditional biomedical methods,
researchers have proposed many gene prioritization algorithms that use a large amount of
biological data to mine pathogenic genes. However, because the currently known gene–
disease association matrix is still very sparse and lacks evidence that genes and diseases
are unrelated, there are limits to the predictive performance of gene prioritization
algorithms. Based on the hypothesis that functionally related gene mutations may lead
to similar disease phenotypes, this paper proposes a PU induction matrix completion
algorithm based on heterogeneous information fusion (PUIMCHIF) to predict candidate
genes involved in the pathogenicity of human diseases. On the one hand, PUIMCHIF uses
different compact feature learning methods to extract features of genes and diseases from
multiple data sources, making up for the lack of sparse data. On the other hand, based on
the prior knowledge that most of the unknown gene–disease associations are unrelated,
we use the PU-Learning strategy to treat the unknown unlabeled data as negative
examples for biased learning. The experimental results of the PUIMCHIF algorithm
regarding the three indexes of precision, recall, and mean percentile ranking (MPR)
were significantly better than those of other algorithms. In the top 100 global prediction
analysis of multiple genes and multiple diseases, the probability of recovering true gene
associations using PUIMCHIF reached 50% and the MPR value was 10.94%. The
PUIMCHIF algorithm has higher priority than those from other methods, such as IMC
and CATAPULT.

Keywords: pathogenic gene prediction, induction matrix completion, compact feature learning, PU-Learning, mean
percentile ranking
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INTRODUCTION

The discovery of disease-causing genes plays an important role in
understanding the causes of diseases, clinically diagnosing
diseases, and achieving early prevention and treatment (Cheng
et al., 2016; Zeng et al., 2017; Cheng et al., 2019). It is also an
important goal of human genome research, with great scientific
and social significance. Prioritization of potentially pathogenic
genes is an important step in the discovery of disease-causing
genes and obtaining an understanding of genetic diseases.

Early studies of gene–disease associations were based on
clinical and biological experiments, which are expensive and
time-consuming. Owing to the inherent difficulties and delays in
the study of human genetic diseases, there are very few known
identified gene–disease links in public databases, such as the
widely used Online Mendelian Inheritance in Man (OMIM)
(Amberger et al., 2015) and Genetic Association Database
(Becker et al., 2004). Because of the specificity of the study of
disease-causing genes, we do not know the genes that are not
related to a particular disease. We only know the few genes that
have been proven to be related to it. Against this background,
with the emergence of bioinformatics, researchers have begun to
focus on and study genetic disease prioritization algorithms, and
use computer technology to mine candidate pathogenic genes
from massive data (Liu et al., 2020; Wang et al., 2018; Zeng et al.,
2018; Zhang et al., 2019; Zeng et al., 2019; Pan et al., 2019). The
selected genes are more likely to be related to diseases, and gene
sorting algorithms with better predictive performance would be
more helpful to conduct targeted biological experiments and
understand pathogenic mechanisms.

Early gene sorting algorithms based on network similarity
focused on local information in the gene–disease network,
namely, nodes adjacent to gene or disease nodes; an example of
these is the molecular triangulation method (Krauthammer et al.,
2004). It has been found that the global topology of a network can
improve the performance in predicting disease-causing genes (Pan
et al., 2019; Chen et al., 2019). Kohler et al. (Kohler et al., 2008) used
the random walk (RWR) algorithm to analyze candidate disease-
causing genes, which further improved the predictive performance.

Complex biological systems cannot always meet the needs of
analysis with single network data (Chen et al., 2019). The
continuous growth of biological data, such as high-throughput
sequencing, also brings opportunities to study new predictive
methods. The more commonly used databases include the gene
expression database GEO (Barrett et al., 2007), the cancer gene
information TCGA database (Cancer Genome Atlas Research et al.,
2013), the protein interaction network database STRING
(Szklarczyk et al., 2017), the Gene Ontology (GO) database
(Ashburner et al., 2000), and Disease Ontology (DO) (Schriml et
al., 2012). Recently, there has been increasing interest in studying
gene sorting algorithms and starting to integrate a large amount of
biological data and analyze heterogeneous networks (Gomez-
Cabrero et al., 2014; Jiang, 2015; Zhang et al., 2019; Deng et al.,
2019). In 2008, the CIPHER algorithm (Wu et al., 2008) was
proposed by Wu et al., which combines protein interaction and
Frontiers in Genetics | www.frontiersin.org 2
disease-like networks but only considers local information in the
network and lacks global topology. In 2010, Vanunu et al. (Vanunu
et al., 2010) proposed the PRINCE algorithm, based on the idea of
global network information and network dissemination. In the
same year, Yongjin Li et al. (Li and Patra, 2010) proposed the
restarted random walk algorithm (RWRH) that fused a gene
similarity network, a disease phenotypic similarity network, and a
large heterogeneous network composed of a disease phenotype–
gene relationship network. In addition, Singh-Blom et al. (Singh-
Blom et al., 2013) further improved the predictive performance in
2013 using the Katz method commonly used in the field of social
networks for the task of predicting gene–disease relationships.

With the rapid development of machine learning and artificial
intelligence in recent years, new algorithms based on machine
learning have been applied to predict candidate pathogenic genes;
they have shown good predictive performance (Zou et al., 2018; Peng
et al., 2018; Liao et al., 2018; Zhang et al., 2018; Xiong et al., 2018; He
et al., 2018; Cheng et al., 2018; Cheng et al., 2018; Zeng et al., 2019;
Ding et al., 2019; Liu, 2019; Liu et al., 2019a; Zhu et al., 2019). In 2011,
Mordelet et al. (Mordelet and Vert, 2011) considered the problem of
genetic prediction as a supervised machine learning problem and
proposed the ProDiGe method. Moreover, in 2013, Singh-Blom et al.
(Kohler et al., 2008) proposed the supervised machine-learning
method CATAPULT using a variety of data sources. Then,
Natarajan et al. (Natarajan and Dhillon, 2014) applied the inductive
matrix completion algorithm (IMC) in the recommendation system
to predict pathogenic genes. This algorithm can not only predict
existing genes and diseases but also predict new genes and diseases
that have not previously been shown to be related. To compensate for
the impact of a data sparseness and the PU problem, the PUIMCHIF
algorithm is proposed in this paper. Specifically, on the basis of the
original IMC algorithm, the main innovations and contributions of
this paper can be summarized as follows: (1) owing to the sparsity of
gene–disease association data, we used a variety of data sources to
construct the characteristics of genes and diseases, and added a
STRING data set for the compact feature learning of genes, which
contained the physical relationships and other interactions that were
not in the original data set. (2) For the gene–gene network and the
disease–disease network (Li et al., 2019), we used the RWRmethod to
obtain the diffusion state of each node in the network under a steady
state in accordance with the network topology, used diffusion
component analysis (DCA) to reduce the dimensions of the data,
and finally obtained the network characteristics of genes or diseases.
One advantage of this approach is the ability to analyze both
HumanNet and STRING networks. (3) Self-encoders in machine
learning can learn efficient representations of data for dimensionality
reduction. Combined with the characteristics of biological data, the
work described in this paper used denoising self-encoding to reduce
the dimensionality of high-dimensional data features of genes and
diseases. (4) Considering the sparse disease–gene association data and
the prior knowledge that most unknown associations are negative
cases, we adopted the PU-Learning strategy to treat unlabeled data as
negative cases for biased learning, so as to replace the IMC method
involving learning for only positive cases. (5) To verify the
effectiveness of the PUIMCHIF method proposed in this paper, we
February 2020 | Volume 11 | Article 5
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used two commonly used evaluation indexes, Precision and Recall.
On this basis, we added theMPR index of mean percentile ranking to
further analyze the experimental results comprehensively.
INTRODUCTION TO METHODS

We are interest in kinds of associations between the genes and
diseases, but only part of them are known. So we want to make a
prediction about the unknown pare from the known ones. As
shown in Figure 1, our goal was to predict these unknown
associations based on the constructed low-dimensional
characteristics of the genes and diseases, and some known items
in the gene–disease associationmatrix P, that is, to predict candidate
genes potentially involved in the pathogenicity of the disease.

First, we constructed a low-dimensional eigenvector of genes
and diseases from different biological sources (compact feature
learning). We proposed different methods for learning compact
features based on different forms of data. For the network data of
genes and diseases, the random walk with restart algorithm
(RWR) was first used to extract the diffusion state of each
node in the network, and then DCA was used for
dimensionality reduction to obtain the similarity of each gene
(or disease) node in the heterogeneous network encoded by low-
dimensional feature vectors. This is because genes (or diseases)
with similar topological properties in the network are more likely
to be functionally related.

Second, for common feature matrix data, to reduce the
influence of high noise and data loss of biological data, we
used denoising autoencoder (DAE) to reduce the dimensions
of features.

Next, we applied the partial inductive matrix completion
algorithm to predict the relationship between genes and
Frontiers in Genetics | www.frontiersin.org 3
diseases by combining the characteristics of multiple diseases
and genes. One of the main advantages of this method is that it is
generalized and can be applied to diseases that are not present
during training, which cannot be predicted by traditional matrix
completion methods. This allows us to take advantage of
previous knowledge of known gene–disease interactions to
predict unknown gene–disease interactions. Because we added
an unbiased learning scheme for the unknown association
relationship as a negative example, we finally adopted the
PUIMC method for disease-causing gene prediction. The
details of the PUIMCHIF algorithm are described below.

Compact Feature Learning
In machine learning, the data are more important than the
algorithm because the generalization of machine learning
algorithm is about the ability from known data to the
unknown data. Therefore, when we choose the prediction
method based on machine learning to predict the disease-
causing gene. First, we need to use high-quality data. Second,
we need to conduct feature processing on the data to obtain more
favorable data features for the prediction task.

We integrated a variety of biological data to extract
characteristics of genes or diseases. Moreover, our goal was to
obtain a low-dimensional effective data feature matrix, where one
row of the feature matrix refers to a gene or disease, and the
columns of the matrix represent different characteristics. The
different compact feature learning methods that we used are
described below.

RWR
Closely linked or functionally similar genes are more likely to
cause the same or similar diseases. Random walk provides an
effective framework for exploring relationships in networks.
FIGURE 1 | Schematic diagram of PUIMCHIF model framework.
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Random walk with restart is referred to as RWR, which is a
network diffusion algorithm widely used in the analysis of
complex biological network data (Navlakha and Kingsford,
2010; Cao et al., 2014). Different from the traditional random
walk method, each iteration of RWR introduces a predefined
restart probability at the initial node, which can consider both
local and global topological connection patterns within the
network and take full advantage of direct or indirect
relationships between nodes.

Here, matrix A and B are defined. Matrix A represents the
weighted adjacency matrix of the interaction network of genes
(or diseases). And in matrix B as shown in equation (1), each
element Bij describes the probability of transition from node i to
node j. sti represents an n-dimensional distribution vector, and
each element stores the probability that a node is accessed after
iterating t times from node i during the random walk. The
formula for calculating RWR is shown in equation (2).

Bij =
Aij

Sj0Aij0
(1)

st+1i = 1 − prð ÞstiB + prdi (2)

In equation (2), di represents an n-dimensional standard basis
vector and di(i) = 1, di (j) = 0, for ∀j ≠ i. And pr is a predefined
restart probability that controls the relative influence of local
structure and global structure in the diffusion process. With a
higher value, more attention is paid to the local structure in
the network.

For a node in the iterative process, we can obtain a stable
distribution s∞i , so we define si as the “diffusion state” of node i,
that is si = s∞i . The jth element sij of si represents the probability
that the RWR starts from node i and ends at node j in equilibrium.
When two nodes have similar diffusion states, it generally means
that they are more similar than other nodes in the network and
may have similar functions. This discovery provides a basis for
predicting unknown gene–disease associations.

Diffusion Component Analysis
Although the diffuse states generated by the above RWR process
represent the underlying topological environment and intrinsic
connectivity spectrum of each gene or disease node in the
network, they may not be completely accurate due to the low-
quality and high-dimensional nature of biological data. For
example, a small number of missing or false interactions in the
network can significantly affect the outcome of the diffusion
process (Kim and Leskovec, 2011). It is often inconvenient to
directly use high-dimensional diffusion states as topological
features in prediction tasks.

To solve this problem, we used a dimensionality reduction
method called DCA to reduce the dimensions of the feature
space and obtain important topological features from the
diffusion state. In addition, for multi-omics networks, DCA
also performs very well. The key idea of DCA is to obtain an
informative but low-dimensional vector representation. Similar
to principal component analysis (PCA), which seeks the inherent
low-dimensional linear structure of data to best interpret
Frontiers in Genetics | www.frontiersin.org 4
variances , DCA learns the low-dimensional vector
representation of all nodes to best interpret their patterns of
connection in heterogeneous networks. We will briefly describe
the DCA framework below.

To achieve the purposes of noise reduction and
dimensionality reduction, DCA uses the polynomial logic
model represented by a low-dimensional vector to approximate
the obtained diffusion state distribution, and it has far fewer
dimensions than the original n-dimensional vector representing
the diffusion state. Specifically, the probability of assigning node i
to node j in the diffusion state is modeled as:

ŝ ij =
exp xTi wj

� �
oj0 exp xTi wj0

� � (3)

In equation (3), xi, wi∈Rd, d ≪ n. We take wi as the context
feature and xi as the node feature of node i, both of which
describe the topological properties of the network. If xi and wi

point in similar directions, we obtain a larger inner product. This
means that node j may be frequently visited in a random walk
starting from node i. DCA uses the obtained diffusion state S={
s1,⋯, sn } as input to optimize w and x of all nodes. The
optimization method uses KL divergence, as shown in equation
(4).

min
w,  x

C s,   ŝð Þ = min
w,x

1
n oi=1

n
DKL(sijjŝ i) (4)

DKL(⋅||⋅) is the KL divergence between the two distributions.
We use w and x to represent this formula according to the
definition of KL invergence and ŝ .

C s, ŝð Þ = 1
n o

i=1

n

H sið Þ − o
j=1

n
sij wT

i xj − log o
j0=1

n
exp wT

i , xj0
� � ! !" # (5)

In equation (5), H(⋅) represents entropy. The objective
function can find the low-dimensional vector representation of
w and x using the standard quasi-Newton L-BFGS method.
Although the obtained low-dimensional vector can effectively
capture the network structure, we found that this optimization
method is time-consuming.

To make the DCA framework more suitable for large
biological networks, we use a more efficient method, clusDCA
(Wang et al., 2015), which is based on matrix factorization, to
decompose the diffusion states and obtain their low-dimensional
vector representations. According to the definition, the following
formula can be obtained:

log ŝ ij = xTi wj − log o
j0
exp xTi wj0
� �

(6)

The first term corresponds to the low-dimensional
approximation of ŝ ij. The second term is a normalization factor,
ensuring that ŝ i is a well-defined distribution. By removing the
second term, we relax the constraint that the elements in ŝ ij must
add up to 1. Although the obtained low-dimensional
February 2020 | Volume 11 | Article 5
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approximation of the diffusion state is no longer a strictly valid
probability distribution, it is found that these approximations are
very close to the true distribution, and the effects of relaxation are
negligible. Therefore, it can be simplified as:

log ŝ ij = xTi wj : (7)

In addition, we use the sum of squared errors as the objective
function, instead of minimizing the relative entropy between the
original diffusion state and the approximate diffusion state.

min
w,  x

C s,   ŝð Þ = min
w,x oi=1

n

o
j=1

n
wT
i xj − log sij

� �2
(8)

The obtained objective function can be optimized by singular
value decomposition (SVD). To avoid taking the logarithm of 0,
we add a small positive number 1

n to sij. The calculation formula
of the logarithm diffusion state matrix L is as follows:

L = log S + Qð Þ − log Qð Þ : (9)

In equation (9), S∈Rn×n, Q∈Rn×n and Qij =
1
n, for ∀i, j. Using

the singular value decomposition method, we decompose L into
three matrices:

L = USVT (10)

In equation (10), U∈Rn×n, V∈Rn×n, S∈Rn×n and S is a
diagonal singular value matrix. To obtain the low-dimensional
vectors wj and xi in d dimensions, we simply select the first d
singular vectors Ud, Vd, and Sd. Each row of matrix X =
½x1,  …,   xn�T represents the low-dimensional eigenvector
corresponding to each node in the network. In matrix W =
½w1,  …,  wn�T , each row represents the corresponding vector of
the context feature. The formulas for calculating X and W are as
follows:

X = UdS
1=2
d ,    W = VdS

1=2
d : (11)

Denoising Autoencoder
Autoencoder is an unsupervised neural network model. It learns
the implicit features of input data, which is called “coding.” At
the same time, the original input data can be reconstructed with
Frontiers in Genetics | www.frontiersin.org 5
the learned new features, which is called “decoding.” Intuitively,
autoencoder can be used for reducing feature dimensionality, like
principal components analysis (PCA), but with stronger
performance than PCA because the neural network model can
extract more effective new features.

The denoising autoencoder adds noise to the input x to obtain
~x, and after training, it obtains a noiseless output z, as shown in
Figure 2.

This prevents the autoencoder from simply copying the input
to the output, so as to extract useful patterns in the data and
improve the weight robustness. Noise can be either pure gaussian
noise added to the input or randomly discarding a feature at
input layer, similar to dropout. The specific equation for
calculating z is as follows:

y = f ~xW1 + b1ð Þ
z = g yW2 + b2ð Þ

(12)

In addition, network parameters are trained to minimize
reconstruction errors, namely:

min LH x, zð Þ = min jjx − zp : (13)

Pathogenic Gene Prediction Method
Standard Inductive Matrix Completion
In the gene–disease association matrix P ∈ RNg�Nd , each row
represents a gene ID and the number of genes is Ng. Each column
represents a disease phenotype and the number of diseases is Nd.
If Pij = 1, this means that gene i is related to disease j, and Pij = 0
means that the relationship between gene i and disease j is
uncertain. Based on the most successful and deeply studied
matrix completion method in the recommender systems, the
IMC algorithm was used to complete the task of learning gene–
disease associations. The advantage of this is that this method is
inductive, and it can achieve the prediction of new genes or
diseases that have rarely been studied.

IMC assumes that the association matrix has a low rank, with
the goal of recovering Z using the observed values of P and the
eigenvectors of genetic diseases, as shown in Figure 3.

The eigenvector matrix of Ng genes is represented by X ∈
RNg�fg , and the eigenvector of gene i is represented by xi ∈ Rfg .
FIGURE 2 | Diagram of Denoising Autoencoder.
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Similarly, Y ∈ RNd�fd is used to represent the eigenvector matrix
of Nd diseases, and yi ∈ Rfd is used to represent the eigenvector
of disease j. The inductive matrix completion problem is to
recover a low-rank matrix Z by using the known association W+

from the gene–disease association matrix P. We established a
bilinear function to learn the projection matrix Z between the
gene space and the disease space to predict the interaction
between unknown genes and diseases. We modeled the matrix
P as XZYT≈ P. Then, we used the following formula to measure
the probability of pairwise interaction score between gene i and
disease j, and the higher the score(i, j) value, the more likely gene
i and disease j interact.

score i, jð Þ = xiZy
T
j (14)

There is usually a significant correlation between spatially
close eigenvectors of genes or diseases, which can greatly reduce
the number of effective parameters needed to model gene–
disease interactions in Z. To consider this problem, we applied
a low-rank constraint on Z and learned only a few potential
factors. Let Z = GHT, where G ∈ Rfg�k,H ∈ Rfd�k, and k is small.
This low-rank constraint not only alleviates the overfitting
problem, but also facilitates the process of optimizing the
calculation (Wang et al., 2015). The optimization problem of
low-rank constraint is NP-hard on the original matrix Z. One
standard method of relaxing the low-rank constraint is to
minimize the trace norm, that is, the sum of the singular
values. Minimizing the trace norm of Z = GHT is equivalent to
minimizing 1

2 (‖G‖
2
F + ‖H‖2F). The decomposition of Z into G

and H solves the following optimization problems by alternating
minimization. A common choice for the loss function ℓ is the
square loss function. l is the regularization parameter.
Frontiers in Genetics | www.frontiersin.org 6
min o
i,jð Þ∈W+

‘ Pij, x
T
i GH

Tyi
� �

+
l
2

‖G‖2F + ‖H‖2F
� �

(15)

Improved Inductive Matrix Completion
To optimize the objective function, we introduce the idea of PU-
Learning. Although we predicted positive examples from
unknown relationships, that is, candidate disease-causing
genes, it was undeniable that these unknown genes-disease
pairs may be unrelated. Therefore, unknown association
relationship information was added to the learning process as
a negative example, and the objective function was as follows:

min o
i,jð Þ∈W+

‘ Pij, x
T
i GH

Tyi
� �

+ a o
i,jð Þ∈W−

‘ Pij, x
T
i GH

Tyi
� �

+ l
2 ‖G‖2F + ‖H‖2F
� � (16)

We represent the unknown association in the gene–disease
association matrix P as W−. The key parameter a < 1 because the
penalty weight of the known relationship must be greater than the
unknown relationship. Finally, equation (14) was still used to
calculate the interaction score between gene i and disease j. The
scores are sorted in descending order, and the first k genes were
selected as candidate pathogenic genes for the corresponding disease.
DATA SETS AND FEATURES

The data sets used in this paper can be divided into three
categories: gene–disease association data, gene characteristic
data, and disease characteristic data.
FIGURE 3 | Methods of predicting pathogenic genes.
February 2020 | Volume 11 | Article 5

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Pathogenic Gene Prediction Algorithm
Gene–Disease Associations
The known gene–disease association data that we used were from
the OMIM database, which contained 12,331 genes, 3,209
diseases, and 3,954 known gene–disease associations (the total
number of nonzero elements in the gene–disease association
matrix). It can be seen that the data in the incidence matrix are
very sparse, with more than 90% of the columns having only one
nonzero item and 70% of the rows having no nonzero elements.

Gene Characteristics
Gene characteristics were obtained by processing four different data
sources through compact feature learning (Compact Feature
Learning). The first source of gene characteristics was gene
microarray data, which contained 8,755 genes and 4,536
characteristics. First, we linearly transformed the expression range
of each gene to between 0 and 1. Because these characteristics are
highly correlated, we used four layers of denoising autoencoder to
reduce the dimensionality of the data, and the number of cells in
each hidden layer was 3,000-800-300-100, respectively. Moreover,
gaussian noise with a noise factor of 0.2 was added to the input data,
and sigmoid was used to activate each layer. The model was
optimized with Adam, and epoch was 100.

The second source of gene characteristics was from
homologous gene phenotypic associations in eight other
species, which were more abundant than in studies of human
genetic diseases. The data used in the experiment are shown in
Table 1. The features were extracted by two-layer denoising
autoencoder with the following specific parameters: the number
of nodes in each layer is “200–100,” the corruption level of data is
0.2, the activation function is sigmoid function, the batch size is
set as 150, and the model is optimized by Adam.

In addition, the data on interactions between genes can also be
used as a part of the characteristics of genes. We integrated two
networks, HumanNet (Lee et al., 2011) and STRING (Szklarczyk
et al., 2017), for unified analysis. These two sets of data represent
gene–gene interaction networks, but there are differences between
them (Kuang et al., 2018). The integrated analysis of different sets
of data can verify each set, and they can help to validate each other
and expand understanding the potential rules. We used the RWR
and DCA methods to fuse two networks to extract gene features.
We set the restart probability to 0.05 and extracted the 600-
dimensional gene characteristics. Finally, the gene characteristics
used in the model were 800 dimensions.
Frontiers in Genetics | www.frontiersin.org 7
Disease Characteristics
The disease characteristics are mainly derived from two data
sources: the disease similarity network MimMiner and clinical
manifestation data of the disease, as well as a large amount of
data from analysis of the medical literature.

MimMiner data are processed by literature (van Driel et al.,
2006) and are freely available online. This data set has been
applied in gene prioritization methods (Vanunu et al., 2010;
Singh-Blom et al., 2013; Natarajan and Dhillon, 2014). RWR and
DCA were used to extract 100-dimension disease features in the
disease similarity network, and the restart probability was set
as 0.05.

Another disease feature that we incorporated was from the
OMIM disease webpage. We paid special attention to the clinical
features and clinical management of webpages. We obtained
disease features through text mining. We used PCA to reduce the
dimensions of feature space and retained the first 100 principal
components . F ina l ly , we obta ined 200-d imens ion
disease characteristics.
EXPERIMENT

Evaluation Indexes and Methods introduces the evaluation
indexes and methods of the experiment. Parameter Settings
describes the influence of important parameters in the
experiment. In Global Performance, the global performance of
the experiment is compared. Prediction of New Genes and New
Diseases compares the ability to predict new genes and new
diseases. Newly Discovered Genes compares the ability to predict
newly discovered associations.

Evaluation Indexes and Methods
In the experiment, to quantitatively evaluate our method and
compare it with the most advanced disease-causing gene
prioritization methods, we used a cross-validation strategy to
measure gene recovery. We divided the known gene–disease
pairs into three groups of the same size. The associations in one
group were hidden, and the associations in the remaining two
groups were used as training data, repeated three times to ensure
that each group was hidden only once. For each disease in our
data set, we ranked all of the genes according to the degree to
which they were associated with the disease. The first r genes
were taken as candidate pathogenic genes for corresponding
diseases; namely, the top-r ranking method was used. The
performance of the algorithm was analyzed by comparing the
recall and precision of each method under different thresholds r,
usually r ≤ 100. The formula for calculating this was as follows:

Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

Recall rate refers to the proportion of positive cases correctly
judged by the model relative to all positive cases (TP+FN) in the
TABLE 1 | Species Details.

Number Species name Number of disease
phenotypes

Number of
associations

1 Human 3209 3954
2 Arabidopsis thaliana 1137 12010
3 Worm 744 30519
4 Drosophila 2503 68525
5 Zebrafish 1143 4500
6 Escherichiacoli 324 72846
7 Gallus 1188 22150
8 Mouse 4662 75199
9 Saccharomyce 1243 73284
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data set. FN represents the data that are mistaken as negative
cases by the model but are actually positive cases. The precision
rate is the proportion of true positive cases (TP) relative to all
positive cases (TP+FP) judged by the model (Xiong et al., 2012;
Xu et al., 2017; Cheng et al., 2019; Cheng et al., 2019).

To further confirm the value of our approach, we also used
the mean percentile ranking (MPR), an evaluation index based
on recall, to evaluate the performance of the algorithm. This
evaluation index has been applied in recommendation algorithm
and analyses of the performance for predicting drug-targets (Hu
et al., 2008; Johnson, 2014; Li et al., 2015; Ding et al., 2017; Hao
et al., 2019; Liu et al., 2019b; Liu et al., 2019c; Zeng et al., 2019)
and disease biomarkers (Chen et al., 2016; Zeng et al., 2016;
Hong et al., 2019; Xu et al., 2019). For each disease, the genes
were ranked in descending order according to the calculated
gene–disease predictive value. The average ranking of the true
and established associations among them is the final result. Here,
rankji can be used to represent the percentile ranking (PR) of
gene j and disease i. rank ji = 0% indicates that disease i is most
likely to interact with gene j. Similarly, rank ji = 100% indicates
that disease i has the lowest probability of interacting with gene j.
Therefore, the definition of MPR is as follows:

MPR = o
Nt
D

i=1Ri

Nt
D

(19)

Nt
T represents the number of diseases in the test set, and the

formula for calculating Ri is as follows:

Ri =
oNt

T
j=1rankji
Nt
T

(20)

Nt
T represents the number of genes in the test set for current

disease i. It is important to emphasize that lower MPR values are
preferable because they indicate that our approach has a higher
probability, which means that the model works better.
Conversely, a higher MPR indicates a lower likelihood of gene
interactions with disease. Clearly, the randomly generated list is
expected to have an MPR of 50%. Using this measure, we can
obtain a list of recommended candidate pathogenic genes, where
the recommended optimal prediction is used for higher priority
experimental validation.

Parameter Settings
The key parameters of PUIMCHIF are the rank k of matrix
Z∈R800×200, the regularized parameter l, and the penalty weight
a for the unknown relation. As can be seen from Figure 4, the
performance of the PUIMCHIF method increases with the
increase of k. When k = 100, 150, and 200, the three curves are
very close. In the following experiment, the PUIMCHIF method
uniformly set parameters as follows: k = 200, l = 0.02,
and a=0.0035.

As mentioned earlier, our approach features four improvements
over the original IMC approach. For Figure 5, recall, precision, and
MPR were used to analyze the effect of our improved method. The
four experimental results in the figure represent (a) the initial
experimental results of the original IMC method, (b) the results
Frontiers in Genetics | www.frontiersin.org 8
of extracting features by using RWR and DCA, instead of PCA, for
the network data of diseases and genes, (c) the prediction results of
adding STRING data to the gene interaction network, and (d) the
experimental results of each index of the PUIMCHIF method.

We found that using RWR and DCA can better extract the
gene–gene and disease–disease relationships, and helps to improve
the prediction of candidate pathogenic genes. Meanwhile, it was also
found that the protein interaction network STRING improved the
prediction recall rate to 47.45%, and the MPR value also decreased
significantly. Using denoising autoencoder to represent the
characteristics of genes and diseases, and introducing the idea of
PU-Learning into the inductive matrix completion can further
improve the predictive performance.

Global Performance
In this experiment, the threefold cross-validation method was
used to compare the overall performance of the proposed
method with CATAPULT, Katz, and IMC. As shown in
Figure 6A, the vertical axis gives the probability of recovering
the true gene association in the top-r prediction of different r
values on the horizontal axis. The experimental results show that
the PUIMCHIF algorithm proposed in this paper has a much
higher probability of recovering true gene associations under
different thresholds than the other methods. Figure 6B presents
the precision–recall curve.

In addition, Table 2 shows the results of three evaluation
indexes for each method when the threshold r=100. It is worth
mentioning that a smaller value of MPR is associated with a
higher probability and a better effect. It can be seen that the MPR
value of PUIMCHIF is the lowest and the recall rate reaches 50%,
while the best method among other methods, IMC, is only 25%,
that is, the recall is doubled. The precision rate was also twice
that of Katz which is the best method of other methods, reaching
4.87%. The overall performance of PUIMCHIF has been further
improved, confirming the superiority of our method.
FIGURE 4 | Performance Comparison of PUIMCHIF with Different k Values.
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Prediction of New Genes and
New Diseases
Prediction of New Genes
One problem affecting prioritization assessments is that well-related
genes and diseases tend to be more predictable and therefore tend to
generate inflated recall rates. Here, we focued only on genes that are
known to have a single association in the gene-disease association
Frontiers in Genetics | www.frontiersin.org 9
data set. In other words, we selected the gene corresponding to the
row with only 1 non-zero element in the gene-disease association
matrix as the validation set, and hided these known associations in
the training process. After repeated three-fold cross validations,
Figure 7A shows the predictive power of different methods within
the threshold r < 100. The Y-axis represents the probability of a true
known single gene association hidden during recovery training.
FIGURE 5 | Model Optimization Results.
FIGURE 6 | Global Performance with Different Thresholds r. (A) Recall rate at different threshold r. (B) Precision-recall curve.
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Table 3 shows the specific experimental results of each
method when r = 100. For the prediction of new genes,
although the precision rate was slightly lower than Katz, the
recall rate of our PUIMCHIF was significantly higher than other
methods, reaching 40.7% when the recall rate of IMC method
was only 13.7%. At the same time, we found that using the MPR
index to evaluate the results, the PUIMCHIF method was only
13.5%, much lower than Katz and CATAPULT. This also shows
that our method is more reliable.

Prediction of New Diseases
Similar to the prediction of new genes, we only considered
diseases with a single known association in the gene-disease
association data set as the validation set, that is, diseases
corresponding to the columns with only 1 non-zero element in
the gene-disease association matrix, and hided these known
associations during training. Similarly, a three-fold cross-
validation analysis was used, and the results are shown in
Figure 7B. The probability that the proposed method could
recover the true association of new diseases reached 48%, which
was a significant improvement compared with other methods.
Moreover, the MPR value of our method was lower than that of
other methods, and the precision rate was nearly 2.7 percentage
Frontiers in Genetics | www.frontiersin.org 10
points higher than that of IMC method. As can be seen from
Table 4, PUIMCHIF method is superior to other methods in
three evaluation indexes.

Newly Discovered Genes
Cross-validation of retrospective data can lead to overly
optimistic performance estimates. For example, certain gene
interactions may be found because of associations with specific
diseases being evaluated. Although the association itself is
hidden, other features are contaminated by this information.
Therefore, the use of recently reported associations to assess gene
prioritization tools is unbiased in this assessment.

We trained all methods using all the gene associations of the
3,209 OMIM diseases collected. We found 162 newly discovered
associations, of which 83 genes had no known associations
previously. Thus, the assessment of new associations also helps
determine the ability of methods to recommend new genes. The
ranking performance of each method in 162 new associations is
shown in Figure 8. We can see that the IMC method is superior
to other methods in the range of threshold 6 ≤ r ≤ 100.
CONCLUSION
In this paper, a PU induction matrix completion algorithm based
on heterogeneous information fusion, PUIMCHIF, was
proposed to predict gene–disease associations. Based on the
specific advantages of IMC method, PUIMCHIF can predict
new genes and diseases, and has good predictive performance. In
addition, because closely connected or functionally similar genes
are more likely to cause the same or similar diseases, we
TABLE 2 | Experimental Results with Threshold r =100.

Methods Recall Precision MPR

CATAPULT 0.152251 0.006289 0.319410
Katz 0.120132 0.023752 0.335564
IMC 0.249621 0.014036 0.216856
PUIMCHIF 0.501265 0.048681 0.109412
FIGURE 7 | Prediction of New Genes and New Diseases. (A) Prediction of New Genes. (B) Prediction of New Diseases.
TABLE 3 | Prediction of New Genes with Threshold r =100.

Methods Recall Precision MPR

CATAPULT 0.056943 0.001227 0.497410
Katz 0.074838 0.018446 0.466105
IMC 0.137195 0.001935 0.284610
PUIMCHIF 0.407281 0.013840 0.135043
TABLE 4 | Prediction of New Disease with Threshold r =100.

Methods Recall Precision MPR

CATAPULT 0.070060 0.002392 0.346974
Katz 0.045454 0.001709 0.363452
IMC 0.221804 0.014012 0.226905
PUIMCHIF 0.479836 0.040671 0.112801
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constructed low-dimensional feature representations of genes
and diseases from various data sources such as STRING using
the compact feature learning method, which effectively alleviated
the impact of data sparsity. Although there is no evidence that
genes are unrelated to diseases in the data set, it is clear that most
of the unknown associations are negative. PUIMCHIF conducts
biased learning by treating unlabeled data as negative cases and
constraining the penalty weight of known relationships to be
greater than that of unknown relationships. Compared with the
existing prediction methods, the PUIMCHIF method can
significantly improve the prediction results regarding recall
rate, precision rate, and MPR. According to the evaluation
Frontiers in Genetics | www.frontiersin.org 11
index of MPR, the experimental results of the PUIMCHIF
method that we proposed are the lowest; that is to say, the
candidate genes given by our algorithm have a higher priority for
validation by biological experiments.
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