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Abstract.
BACKGROUND: Tongue inspection is vital in traditional Chinese medicine. Fissured tongue is an important feature in tongue
diagnosis, and primarily corresponds to three Chinese medicine syndromes: syndrome-related hotness, blood deficiency, and
insufficiency of the spleen. Diagnosis of the syndrome is significantly affected by the experience of clinicians, and it is difficult
for young doctors to perform accurate diagnoses.
OBJECTIVE: The syndrome not only depends on the local features based on fissured regions but also on the global features of
the whole tongue; therefore, a syndrome diagnosis framework combining the global and local features of a fissured tongue image
was developed in the present study to achieve a quantitative and objective diagnosis.
METHODS: First, we detected the fissured region of a tongue image using a single-shot multibox detector. Second, we extracted
the global and local features from a whole tongue image and a fissured region using TongueNet (developed in-house). Third, we
developed a classifier to determine the final syndrome.
RESULTS: Based on an experiment involving 721 fissured tongue images, we discovered that TongueNet affords better feature
extraction. The accuracy of TongueNet was 4% (p < 0.05) and 3% (p < 0.05) higher than that of InceptionV3 and ResNet18,
respectively, for whole tongue images. Meanwhile, at local fissured regions, the accuracy of TongueNet was 3% (p < 0.05)
higher than that of InceptionV3 and equal to that of ResNet18. Finally, the fusion features outperformed the global and local
features with a 78% accuracy.
CONCLUSIONS: Our findings indicate that TongueNet designed with batch normalization and dropout is more suitable for
uncomplicated images than InceptionV3 and ResNet18. In addition, compared with the global features, the fusion features
supplement the detailed information of the fissures and improve classification accuracy.
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1. Introduction

Tongue diagnosis is vital in traditional Chinese medicine (TCM). According to TCM, the tongue is
closely related to the health of the individual. Different characteristics (such as shape and color) of the
tongue can reflect internal health and the severity or progression of disease. TCM practitioners evaluate
clinical symptoms and select appropriate treatments by observing tongue characteristics; however, tradi-
tional tongue diagnosis is based on subjective observation and is often affected by personal experience,
variation in environmental lighting, etc. [1]. Therefore, a quantitative and objective diagnostic method for
issues related to the tongue must be developed.
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In recent years, owing to the development of computer techniques, the application of digital image
processing has been widely investigated with respect to tongue diagnosis. We cannot disregard new
possibilities for improving TCM using computer technologies, such as segmentation of the tongue
image [2–4], separation of tongue substances and tongue coating [5,6], and analysis of tongue images [1,
7–13]. Ning et al. [4] presented a region merging-based automatic tongue segmentation method. In
addition, using the hue, saturation, and value color space, Kamarudin et al. [5] devised new color-
brightness threshold parameters to improve the efficiency of tongue substance and coating separation and
shadow elimination. In the analysis of tongue images, researchers typically combine handcrafted features
based on colors and shapes with the support vector machine (SVM), decision tree, and other classification
models. Wang et al. [11] proposed a method that uses the information from convex defects of the tongue
to recognize a tooth-marked tongue. Zhang et al. [1,12] proposed an objective and systematic tongue
color analysis system. Using the tongue color gamut, 12 standard tongue colors were quantitated. The
tongue color feature vector was composed of the ratio of each color for the entire image.

In the Color Atlas of Chinese Medical Tongue Diagnosis, edited by Xu [14], a fissured tongue is
defined by several shapes, such as cracks and fissures, on the surface of a tongue that differ in depth and
number. The syndrome is a term in TCM, referring to the generalization of pathological attributes at a
certain stage in the course of disease development. According to TCM theory, three types of syndromes
correspond to a fissured tongue: syndrome-related hotness, blood deficiency, and insufficiency of the
spleen. Syndrome-related hotness manifests as a reddish tongue and a rough fissured area; however, blood
deficiency exhibits characteristics such as a white tongue with a fissured area. Meanwhile, insufficiency
of spleen performance is reflected by fissures along with tooth-marked regions and a thick fur.

Even though fissured tongue is vital to the clinical practice of TCM, only a few studies have been
conducted for digital analysis of images. Wang et al. [15] used the gray difference method to extract the
fissure contour as well as calculate the fissure length, width, average gray value, and other parameters for
construction of the feature vector. Zhang et al. [16] compared the performance of the watershed algorithm
and the Weber local descriptor in fissure extraction, and discovered that the former performed better;
however, Zhang focused only on identifying tagged pixels of fissures with certain thresholds without
using an effective classifier. Therefore, Li et al. [17] improved Zhang’s method using the Otsu threshold
and histogram equalization. Finally, an SVM was used to recognize fissured tongue, and the identification
accuracy increased.

In general, although previous studies have realized significant achievements in the field of fissured
tongue recognition, some important issues still need to be explored. Firstly, the sample size of the datasets
was relatively small (e.g., less than 1000 for [15–17]), which may restrict the generalization of the
classification models. Secondly, all methods used handcrafted features, although some minor details were
difficult to describe. Finally, the studies focused on the method to identify fissured tongue, whereas the
syndrome related to fissured tongue was not investigated.

The remainder of this paper is organized as follows: in Section 2, our dataset and the specific procedures
pertaining to the proposed method are described; the experimental results are presented in Section 3; and
the conclusions and discussion of future studies are provided in Section 4.

2. Materials and methods

Figure 1 summarizes the framework of the experimental design used in our study. We first preprocessed
the collected fissured tongue data (segmentation, resizing, and labeling). A single-shot multibox detector
(SSD) [18] was used to obtain the fissured region. Subsequently, the global and local features were
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Fig. 1. Illustration of the architecture of the syndrome diagnosis model.

extracted separately from the whole image, and the fissured region was detected using our proposed
network, named G-TongueNet and L-TongueNet. After feature extraction, we concatenated the features in
the channel dimension. Subsequently, a gradient-boosting decision tree (GBDT) [19] was used to classify
the three syndromes: syndrome-related hotness, blood deficiency, and insufficiency of the spleen.

2.1. Dataset

We collected 3,322 subjects from Heilongjiang University of Chinese Medicine from April 2018 to
December 2019. The exclusion criteria for this study were the black race, white race, and subjects with
serious mental problems, organic diseases, and cardiac pacemakers. The Institutional Review Boards
reviewed the data, and approval was obtained from Heilongjiang University of Chinese Medicine. Written
informed consent was obtained from each subject. The overall mean ± standard deviation of the age of
male subjects (38%) was 38.86 ± 18.38 years, and that of female subjects (62%) was 39.87 ± 18.55 years.

The dataset was composed of 3322 tongue images measuring either 1480 × 2220 pixels, 1717 ×
2579 pixels, or 1640 × 2460 pixels, and the segmentation version of the tongue images was provided.
A total of 721 tongue images presented consistent diagnostic results from three TCM practitioners
(236 syndrome-related hotness, 306 blood deficiency, and 179 insufficiency of the spleen), whereas the
remaining 2601 tongue images had no syndrome results.

2.2. Image preprocessing

To maintain the size of the input image, the original pre-segmented tongue image must be scaled. We
used the OpenCV toolbox to achieve long-term proportional scaling to 300 × 300 pixels and black pixels
to fill any vacancies. In addition, to maintain the continuity of image features during the scaling process
and avoid image distortion, the bilinear interpolation algorithm was used in the scaling process.

In this study, we labeled the fissured region using BBox-Label-Tool (https://github.com/NorrisWu/
BBox-Label-Tool-master). After identifying the location, the boundary box was saved as (x, y, w, l),
where x and y represent the top-left coordinates, and w and l denote the width and height, respectively.
Finally, a four-element integer vector was saved to the notepad. Figure 2 shows three samples of tongue
images with labels.
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Fig. 2. Examples of labeled fissured regions.

Fig. 3. Fissured region detection network structure.

2.3. Fissured region detection

To learn the features of the fissured region in the tongue image, the region must first be detected.
However, the color contrast between the fissured region and its surrounding tissue was unclear, and
traditional target detection methods based on hand-designed features often cannot satisfy the requirements.
Therefore, at this stage, we used a convolutional neural network (CNN) to determine the fissured region.

We used an SSD in this study, the architecture of which is shown in Fig. 3. The SSD uses a visual
geometry group network (VGG16, including 13 convolutional layers and 3 fully connected layers) [20]
as the backbone network. The last two fully connected layers were changed to convolutional layers, after
which four convolutional layers were added. For an input image, the model first extracts feature maps
of different sizes from the backbone network. After another convolutional layer and a pooling layer,
every pixel in these feature maps will generate several default boxes of different sizes. Consequently,
fissures of different scales can be detected. For every default box, we predicted the category, calculated
the classification loss and position loss using the gold standard, and performed training to minimize the
loss. Finally, non-maximum suppression was performed to filter overlapping boundary boxes.

A total of 2601 fissured tongue images were assigned to a training set (70%) or a test set (30%). The
training set included 1820 fissured tongue images, and the test set included 781 fissured tongue images.
We used stochastic gradient descent to adjust our network to a batch size of 50, a learning rate of 0.0001,
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Fig. 4. Fissure feature extraction model based on G-TongueNet.

a weight decay of 0.0005, and an iteration of 50,000. The non-maximum suppression method was used to
filter a part of the overlapping boundary boxes, and we set the overlap rate threshold to 0.6.

During testing, every image was calculated with the fixed weight from the SSD, and the fissured region
was output.

2.4. Feature extraction

We designed a CNN model named TongueNet to extract both global and local fissured tongue features.
These features were used to classify the three syndromes: syndrome-related hotness, blood deficiency,
and insufficiency of the spleen.

TongueNet is improved from LeNet [21], which solves the shortcomings of LeNet, i.e., it overfits easily
by adding a batch normalization [22] layer and dropout [23]. Furthermore, to ensure that TongueNet learns
the features of the fissured tongue image while reducing the training time and parameter calculation, the
number of layers was not fixed, and the best model depth was obtained through experimental design.

The TongueNet architecture used in this study is shown in Fig. 4. TongueNet is primarily composed
of several blocks that contain one convolutional layer, one BN layer, and one pooling layer. TongueNet
adjusts the depth by increasing or decreasing the number of blocks. Considering the size of the input
image, a larger kernel (5 × 5) was used in the first two convolutional layers. As the number of layers
increased, we used a smaller kernel (3 × 3). All convolutional layers used the same padding and had one
stride. To avoid the disappearance of the gradient, a BN layer was set after each convolutional layer. The
ReLU activation function [24] was used in TongueNet because the calculation was rapid regardless of
whether forward or backward propagation was involved. All pooling layers were max-pooling layers,
with kernels measuring 2 × 2 and two strides. Dropout was used after every pooling layer and fully
connected layer. The final Softmax was used to output the probability that the input sample belongs to
each class.

TongueNet that extracts local and global features of fissured tongue images is named L-TongueNet
and G-TongueNet, respectively. The grid search method was used to determine the best parameters of
TongueNet. L-TongueNet achieved the best performance with a learning rate of 0.0001, a weight decay
of 0.1, a drop rate of 0.2, a batch size of 60, and a block number of 8. We stopped our training after 500
epochs. Furthermore, G-TongueNet was used to determine the parameters using the grid search method.
The main difference between L-TongueNet and G-TongueNet is that the former has 8 blocks, but the
latter has 7 blocks. In addition, InceptionV3 [25,26] and ResNet18 [27] were trained for comparison.

During testing, the network served as a fixed feature extractor. We eliminated the last layer of Softmax
and output the pre-layer as deep features; therefore, we extracted global features from the original fissured
tongue image and local features from the fissured region detected by the SSD. All these features were
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Fig. 5. Some fissured regions detected by SSD.

used to classify the three syndromes. Although the network can output the classification directly, we
discovered that the fusion features were better. Comparisons and analyses are shown in Section 3.

2.5. Classification of syndromes

At this stage, the global and local features were concatenated in the channel dimension. Subsequently,
the GBDT was trained to classify the three syndromes. The GBDT builds multiple decision trees
sequentially, where each decision tree is built on the residual from the previous decision tree.

Two classic classifiers, the SVM and back propagation (BP) neural networks [28,29], were used
for model comparison. The experimental results were evaluated using the following six metrics: (1)
accuracy; (2) sensitivity; (3) specificity; (4) time complexity; (5) space complexity; and (6) number of
parameters [30].

To eliminate the effects of accidental factors on the accuracy of the model, bootstrap and permutation
tests were performed. All confidence intervals were computed based on the percentiles of 1,000 random
resamplings (bootstraps) of the data. The accuracy difference and p-values were calculated by a standard
permutation test [31] using 10,000 random resamplings of the test set. Firstly, the test set was sampled
repeatedly to obtain two sample groups, which were respectively input to model A and model B.
Subsequently, the accuracy difference between model A and model B was calculated; repeating 10,000
times, obtains 10,000 differences. Finally, we obtained the average accuracy difference. The confidence
interval and p-value were also calculated from the 10,000 differences.

3. Results and discussion

3.1. Results of fissured region detection

A total of 733 fissured regions were correctly detected, and the precision, recall, and mAP reached
0.81, 0.88, and 0.85, respectively. Figure 5 shows some fissured regions detected by the SSD in the test
set. The results indicate that: 1) the SSD performance was good, i.e., 88% of fissures with all shapes were
detected; and 2) some small fissures were overlooked. This was because small fissures, typically with
shallow depths, have a similar contrast to surrounding tissue and hence are difficult to detect.
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Table 1
Comparison of the classification metrics of different global feature learning models

Model Accuracy Sensitivity Specificity AUC
Syndrome-related hotness G-TongueNet 0.86 0.88 0.83 0.81

G-ResNet18 0.85 0.90 0.76 0.75
G-InceptionV3 0.79 0.81 0.74 0.77

Blood deficiency G-TongueNet 0.79 0.82 0.75 0.75
G-ResNet18 0.79 0.82 0.74 0.83
G-InceptionV3 0.81 0.88 0.68 0.78

Insufficiency of the spleen G-TongueNet 0.83 0.92 0.65 0.82
G-ResNet18 0.80 0.86 0.67 0.84
G-InceptionV3 0.84 0.88 0.71 0.82

Fig. 6. ROC of the global feature models.

3.2. Global and local features

We conducted the experiments on our dataset using two additional illustrious methods, i.e., ResNet18
and InceptionV3. Using the training strategy described in feature extraction, we trained L-ResNet18 and
L-InceptionV3 from the fissured regions and G-ResNet18 and G-InceptionV3 from the whole tongue
images.

To illustrate the results more clearly, we constructed a receiver operating characteristics (ROC) curve of
each syndrome, as shown in Fig. 6. Furthermore, we calculated the accuracy, sensitivity, specificity, and
area under the curve (AUC) values, as shown in Table 1. Although G-TongueNet indicated the highest
AUC value in the classification of syndrome-related hotness, ResNet18 attained the maximum AUC value
in the classification of blood deficiency and insufficiency of the spleen. Different models attained their
maximum values under different syndromes and metrics.
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Table 2
Comparison of the complexity and overall accuracy of different global feature learning models

Number of
parameters (MB)

Time complexity
(GFLOPs)

Space
complexity (MB)

Overall accuracy
(95% CI)

Accuracy
difference (95% CI)

G-ResNet18 42.66 9.58 54.63 0.72 −0.027
(0.691, 0.742) (−0.049, 0.005)

G-TongueNet 1.04 1.19 30.30 0.75 p-value < 0.05
(0.704, 0.798) −0.041

G-InceptionV3 453.00 9.80 510.80 0.71 (−0.069, −0.021)
(0.664, 0.728) p-value < 0.05

Fig. 7. ROC of local feature models.

Table 2 shows the metrics of different global feature learning models. To avoid the contingency of the
test set, we used bootstrap to resample the test set 1000 times and calculated the 95% confidence interval.
The accuracy difference, representing the average difference in accuracy between two models in 10,000
permutation tests, and the p-value were also calculated. Firstly, the accuracy difference was valid and
a p-value less than 0.005 signifies that G-TongueNet was better than G-ResNet18 and G-InceptionV3.
Meanwhile, G-TongueNet performed better in terms of the number of parameters, time complexity, and
space complexity. It can be concluded that G-TongueNet can significantly reduce the training time and
model storage cost while obtaining the best deep features.

Similar to the global feature extraction experiment, we constructed the ROC curve and created a metric
table from the local feature extraction experiment, as shown in Fig. 7 and Table 3. The results show that
L-TongueNet, L-ResNet18, and L-InceptionV3 yielded similar performance, and no particular method
triumphed in all metrics.

Furthermore, the number of parameters, space complexity, time complexity, and overall accuracy are
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Table 3
Comparison of the classification metrics between different local feature learning models

Model Accuracy Sensitivity Specificity AUC
Syndrome-related hotness L-TongueNet 0.82 0.82 0.81 0.80

L-ResNet18 0.80 0.81 0.76 0.78
L-InceptionV3 0.77 0.82 0.69 0.77

Blood deficiency L-TongueNet 0.85 0.86 0.83 0.80
L-ResNet18 0.85 0.84 0.87 0.82
L-InceptionV3 0.82 0.86 0.75 0.79

Insufficiency of the spleen L-TongueNet 0.72 0.90 0.52 0.76
L-ResNet18 0.73 0.93 0.54 0.83
L-InceptionV3 0.75 0.85 0.64 0.79

Table 4
Comparison of the complexity and overall accuracy of different local feature learning models

Number of
parameters (MB)

Time complexity
(GFLOPs)

Space
complexity (MB)

Overall accuracy
(95% CI)

Accuracy
difference (95% CI)

L-ResNet18 42.66 9.58 54.63 0.72 −0.001
(0.679, 0.735) (−0.003, 0.004)

L-TongueNet 1.09 1.19 30.30 0.72 p-value > 0.05
(0.682, 0.748) −0.030

L-InceptionV3 453.00 9.80 510.80 0.69 (−0.050, −0.006)
(0.655, 0.724) p-value < 0.05

shown in Table 4. Similarly, L-TongueNet performed the best in terms of number of parameters, space
complexity, and time complexity. Although L-TongueNet performed better than L-InceptionV3, it exhib-
ited the same overall accuracy as L-ResNet18. The results indicate that L-TongueNet and L-ResNet18
possessed the same feature extraction capabilities, which were better than those of L-InceptionV3. Ad-
ditionally, L-InceptionV3 trained 415 times more parameters than L-TongueNet and exhibited worse
accuracy due to overfitting.

3.3. Classification results

From the experiments in the last part, it is evident that G-TongueNet and L-TongueNet performed the
best in terms of global and local feature extraction; therefore, we used the 128-dimensional deep feature
at the last fully connected layer of the G-TongueNet and L-TongueNet as the output. In this experiment,
721 tongue images were segmented into a training set and a test set at a ratio of 7:3. The training and test
sets contained 505 and 216 images, respectively. Based on the model structure described in Section 2,
after the fusion of global and local features, we used the GBDT to classify the syndromes. In addition,
the SVM and BP networks were used for comparison.

Using the grid search method to adjust the parameters, we discovered that the linear kernel SVM with
cost C = 15 performed the best. The GBDT with learning_rate = 0.2, n_estimators = 40, subsample =
0.8, min_samples_leaf = 80, and min_samples_split = 100 yielded the highest accuracy in the training
set. In addition, the BP network with a learning rate of 0.001, a weight decay of 0.9, a batch of 60, and a
number of hidden layer nodes of 140 performed the best in the training set.

Figure 8 shows the ROC curve of each syndrome, and Table 5 shows the accuracy, sensitivity, specificity,
and AUC. In terms of syndrome-related hotness and blood deficiency, the three curves were relatively
close to each other; however, in terms of insufficiency of the spleen, the three curves differed, wherein the
SVM performed better. Meanwhile, Table 5 shows the performance of the three methods more clearly.
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Table 5
Comparison of the classification metrics of different classifiers

Model Accuracy Sensitivity Specificity AUC
Syndrome-related hotness SVM 0.88 0.90 0.82 0.88

GBDT 0.88 0.88 0.86 0.88
BP 0.86 0.88 0.81 0.85

Blood deficiency SVM 0.82 0.85 0.78 0.84
GBDT 0.85 0.88 0.75 0.81
BP 0.85 0.88 0.81 0.86

Insufficiency of the spleen SVM 0.83 0.90 0.72 0.78
GBDT 0.82 0.90 0.70 0.73
BP 0.81 0.90 0.70 0.75

Fig. 8. ROC of different classifiers.

We discovered that in syndrome-related hotness classification, the GDBT achieved the highest accuracy,
specificity, and AUC values; however, the SVM achieved the best accuracy, sensitivity, and AUC values.
In blood deficiency classification, the GBDT achieved the highest accuracy and sensitivity values, but the
BP network achieved the highest values for all metrics. Finally, in terms of insufficiency of the spleen, the
SVM achieved the highest accuracy, specificity, and AUC values, whereas the three methods exhibited the
same sensitivity value. It is noteworthy that, for some metrics, different classifiers achieved the highest
value simultaneously; therefore, we believe that the difference among the three classifiers was minimal.

Furthermore, we calculated the overall accuracy of the three classifiers, as shown in Table 6. The
GBDT exhibited minimal advantages; however, from the results of the permutation test, we discovered
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Table 6
Comparison of overall accuracy and accuracy differ-
ence of different classifiers

Model Overall accuracy
(95% CI)

Accuracy difference
(95% CI)

SVM 0.77 −0.007
(0.754, 0.789) (−0.020, 0.019)

GBDT 0.78 p-value > 0.05
(0.747, 0.801) −0.005

BP 0.77 (−0.017, −0.005)
(0.733, 0.796) p-value > 0.05

Table 7
Comparison of the overall accuracy and difference in the accuracy of models
based on different features

Model Overall accuracy
(95% CI)

Accuracy difference
(95% CI)

Model based on global features 0.75 −0.025
(0.704, 0.789) (−0.037, 0.004)

Model based on fusion features 0.78 p-value < 0.05
(0.747, 0.801) −0.053

Model based on local features 0.72 (−0.073, −0.009)
(0.682, 0.748) p-value < 0.05

no significant difference in the model accuracy (p-value > 0.05). Based on Table 6, we further prove that
no significant difference existed among the three classifiers.

In addition, the classification results of G-TongueNet and L-TongueNet were compared with those of
the fusion feature model using the GDBT. The results are shown in Table 7. The accuracy of the model
using fusion features was 3% higher than that of G-TongueNet and 5% higher than that of L-TongueNet.
After 1000 bootstrap replications, the average accuracy difference was calculated. Moreover, our fusion
feature model still surpassed G-TongueNet and L-TongueNet by 2.5% and 5.3%, respectively. We believe
that our method, which combines global and local features, can improve the accuracy of classification in
syndromes.

4. Conclusion

Herein, we propose a framework for the classification of fissured tongue images using deep neural
networks. Firstly, we completed the automatic detection of a fissured region from a tongue using an SSD.
The experimental results indicate that TongueNet performed better than InceptionV3 and ResNet18 in
feature extraction. Moreover, TongueNet performed better in time complexity and space complexity. The
results suggest that a shallow network can extract better features from uncomplicated fissured tongue
images. Finally, it was discovered that the fusion features possessed higher accuracy than the global
or local features. This validated that the fusion features supplemented the detailed information of the
fissures and yielded better performance. Using the framework, we achieved a quantitative and objective
diagnosis of syndromes. Further, our method requires less storage space and less time. In future studies,
we will investigate the fusion of other forms of information including pulse waves and facial information
to improve the accuracy of diagnosis.
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