
Vol.:(0123456789)1 3

International Journal of Computer Assisted Radiology and Surgery (2021) 16:1447–1457 
https://doi.org/10.1007/s11548-021-02407-z

ORIGINAL ARTICLE

A semi‑automatic seed point‑based method for separation 
of individual vertebrae in 3D surface meshes: a proof of principle 
study

Peter A. J. Pijpker1   · Tim S. Oosterhuis2 · Max J. H. Witjes3 · Chris Faber4 · Peter M. A. van Ooijen5 · Jiří Kosinka6 · 
Jos M. A. Kuijlen7 · Rob J. M. Groen7 · Joep Kraeima3

Received: 15 February 2021 / Accepted: 11 May 2021 / Published online: 27 May 2021 
© The Author(s) 2021

Abstract
Purpose  The purpose of this paper is to present and validate a new semi-automated 3D surface mesh segmentation approach 
that optimizes the laborious individual human vertebrae separation in the spinal virtual surgical planning workflow and make 
a direct accuracy and segmentation time comparison with current standard segmentation method.
Methods  The proposed semi-automatic method uses the 3D bone surface derived from CT image data for seed point-based 
3D mesh partitioning. The accuracy of the proposed method was evaluated on a representative patient dataset. In addition, 
the influence of the number of used seed points was studied. The investigators analyzed whether there was a reduction in 
segmentation time when compared to manual segmentation. Surface-to-surface accuracy measurements were applied to 
assess the concordance with the manual segmentation.
Results  The results demonstrated a statically significant reduction in segmentation time, while maintaining a high accuracy 
compared to the manual segmentation. A considerably smaller error was found when increasing the number of seed points. 
Anatomical regions that include articulating areas tend to show the highest errors, while the posterior laminar surface yielded 
an almost negligible error.
Conclusion  A novel seed point initiated surface based segmentation method for the laborious individual human vertebrae 
separation was presented. This proof-of-principle study demonstrated the accuracy of the proposed method on a clinical CT 
image dataset and its feasibility for spinal virtual surgical planning applications.

Keywords  Spine · Vertebra · Segmentation · Virtual surgical planning (VSP) · Computed tomography · Seed point 
segmentation · 3D surface segmentation
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Introduction

Patients suffering from spinal pathologies that cause insta-
bility of the spine are often treated with posterior rigid 
fixation surgery in order to immobilize the spine and to 
prevent further damage to the spinal cord [1–3]. Screws 
are inserted bilaterally through the pedicles or in the lat-
eral mass at each segment level. The spinal segments to 
be fused are immobilized by the insertion of a rod through 
the polyaxial screw heads.

Accurate screw insertion is important to minimize the 
risk of injuring nearby vital structures, such as the spinal 
cord and the nerve roots, and to facilitate a biomechani-
cal stable fixation [4]. Due to advances in medical tech-
nology and the well-understood importance of accurate 
screw insertion, three-dimensional (3D) virtual surgical 
planning (VSP) has become increasingly popular since its 
emergence approximately two decades ago [5–10]. In the 
University Medical Center Groningen, VSP including the 
use of 3D printed drill guides is one of standard techniques 
for pedicle or lateral mass screw insertion in the cervical 
and upper thoracic spine.

A crucial part of the spinal VSP workflow is bone seg-
mentation in order to obtain 3D bone models from the CT 
image data. Bone segmentation is the process of partition-
ing bone tissue from surrounding soft tissues in medical 
image data. A patient-specific modeling workflow neces-
sitates segmentation of all individual human vertebrae for 
precise preoperative planning of screw trajectories. How-
ever, the complex shape and irregularities in bone density 
make the delineation of individual vertebrae challenging. 
Moreover, the per level varying signal-to-noise ratios and 
the occurrence of CT artifacts further hinder segmenta-
tion [11, 12]. In order to obtain accurate bone models, the 
current workflow requires substantial manual image pre-
processing by specially trained medical engineers, which 
is time consuming and impedes the cost-effectiveness of 
VSP.

Development of (semi-)automated image processing 
has led to new segmentation methods based on statistical 
shape models and atlases [13–17]. Since these methods 
have been trained on available databases the algorithm 
generally underperforms in situations where the anatomy 
differs substantially from the average spine, i.e., cases 
with severe spinal deformation. In fact, surface errors are 
reported to be as high as 5.36 mm [20]. The resulting erro-
neous models are simply not suitable for computer-aided 
design and might lead to serious misfit of instruments. 
The more recent evolution of machine learning techniques 
reportedly yields smaller errors and might therefore be 
more useful for computer-aided design of surgical instru-
ments, but these techniques are not yet implemented in 

commercially available software and should still be eval-
uated to be sufficiently reliable [18]. Threshold-based 
bone segmentation is, therefore, still considered the gold 
standard for VSP applications. The method is reliable 
since it relies on Hounsfield Units calibrated with refer-
ence to water. Moreover, it is not influenced by exceptional 
changes in anatomy resulting from severe spinal deforma-
tion pathologies.

Since image segmentation is one of the most crucial but 
time-consuming tasks in spinal VSP, the workflow should 
be optimized by introducing new methods for separating the 
individual vertebrae. In order to meet the clinical demand, 
a more automated approach for splitting of individual ver-
tebrae that relies on the proven reliability and validity of 
threshold-based segmentation is desired. To address this 
issue, we propose a semi-automated software tool that 
uses threshold-based 3D bone surface mesh derived from 
CT image data and separates individual vertebrae based on 
3D surface positioned seed points. The proposed method’s 
efficacy and the relation to the number of used seed points 
were evaluated on a patient dataset. An accuracy and time 
comparison was made between the proposed method and the 
current standard manual segmentation method.

Methods and materials

The proposed algorithm

The seed point-based method presented in this paper can 
best be characterized as a surface seeding method, because 
it is a seed point-based surface segmentation method applied 
to the bone surface as opposed to direct segmentation of the 
CT-scan volume. Before this surface seeding method can be 
applied, a 3D bone surface mesh of the human spine needs to 
be extracted from the CT image data. For the purpose of this 
study, global thresholding and marching cubes triangulation 
were used, which is currently the standard in VSP.

Surface region‑growing

Seed points are manually placed on all parts of the 
extracted bone surface by hand. At least one seed point 
is required for each bone segment. The method, however, 
allows to place a higher number of seed points per seg-
ment. After the initial seed point placement, the region-
growing algorithm can be started. The regions are grown 
from the seed points using an algorithm with a breadth-
first approach. At first, the seed point vertices are added 
to a last-in-first-out queue. As long as the queue is not 
empty, the vertex at the front of the queue is dequeued. 
Each of its neighboring vertices is added to the back 
of the queue and labeled with the region of the current 
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vertex, provided that they do not have region label yet 
and are also ‘connected’ to the current vertex. Two neigh-
boring vertices are ‘connected’ when the angle between 
the vertex normals does not exceed a maximum allowed 
threshold angle. This maximum allowed threshold angle 
is a parameter which is initially set by the user. A pseu-
docode depiction of the region-growing algorithm can be 
seen in Algorithm 1. The connectivity constraint causes 
vertices in smooth areas to form connected surfaces 
through which the region-growing is propagated. On the 
other hands, larger angles between normals of neighbor-
ing vertices which exceed the threshold angle form natu-
ral barriers. The effect can be compared to that of an oil 
spill, spreading circumferentially over the smooth regions 
of the surface, starting from the seed points (Fig. 1).

Iterative threshold adaptation

The threshold angle for connectivity is set to be low initially. 
After an initial region-growing pass, the user may wish to 
increase the connectivity threshold by increasing the maxi-
mum allowed angle between vertex normals. A new region-
growing algorithm pass is then initiated. Between region-
growing algorithm iterations, the user can undo the last 
region-growing pass and add additional seed points. This 
interactive process of automatic region-growing steps and 
possible user intervention can be repeated until all vertices 
are properly assigned to spinal segments.

Fig. 1   Conceptual image of two steps of the iterative surface region-
growing based on normals between vertices. a Before the region-
growing, seed points (shown in green and red) for different bone seg-
ments are placed. b In the first iteration, vertices neighboring the seed 
points are assigned their respective regions if the angle between their 

normals is low enough. c In the second iteration, vertices bordering 
the newly assigned vertices can be added to the segments, and so on 
until there are no newly assigned vertices. Note that not all of the 
neighboring vertices are assigned to the two segments, because sharp 
edges are reached
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Surface segmentation application

The surface seeding segmentation algorithm described in 
this paper was implemented as a C+ + application for the 
purpose of 3D VSP. The input of the seed point algorithm is 
the 3D bone surface mesh derived from CT image data. In 
the application, the mesh is obtained by global thresholding 
and triangulated by marching cubes, equivalent to the cur-
rent standard in VSP. The user interaction of the segmenta-
tion algorithm takes place through a graphical user interface 
(GUI), which includes a 3D projection of the bone surface 
to be segmented as well as an options menu. Seed points can 
be placed on the projected bone surface by mouse clicks.

Evaluation

Clinical datasets

CT image datasets from five human patients who previously 
underwent spinal fixation surgery by use of individualized 
3D-printed drill templates were obtained from the University 
Medical Center Groningen. The datasets are representative 
for future clinical cases in terms of uniform spine scan and 
reconstruction protocol (0.6 mm slice thickness, 0.4 mm 
slice increment, sharp reconstruction kernel I70h). The 
cohort data range in age from 12 to 75.

Ground truth construction

To build a ground truth for the validation of our algorithm, 
all cervical and upper thoracic human vertebrae (when 

available in the dataset) were manually segmented by thresh-
old segmentation and the split mask feature in Mimics v20 
(Materialise, Leuven, Belgium) by an experienced clinician 
(PP) and checked by the surgeon (JKu). In addition, the time 
required for manual segmentation was measured, from the 
moment of loading the dataset until the export of all models.

Seed point‑based surface segmentation

All individual vertebrae for each patient were segmented 
and reconstructed to 3D models using the presented method 
(Fig. 2). To investigate whether a higher number of seed 
points improves accuracy, the algorithm was applied twice to 
each dataset, once with 5 seed points per vertebra and once 
with 12 seed points. The seed points were predefined near 
anatomical locations that are likely to touch adjacent verte-
brae. These anatomical locations are also easy to find in the 
3D space, making the study outcomes reproducible (Fig. 3). 
Two observers performed the segmentations independently 
to determine the inter-observer variability. For each case, 
the 3D bone surface was derived from CT image data using 
the previously chosen HU threshold. The initial connectivity 
threshold angle was set to 5 degrees, and this was increased 
with 5 degrees after each iteration of region-growing.

Evaluation metrics

The algorithm performance was evaluated on both the 
whole vertebra and the vertebral substructures. Using 
3-matic Research v12 (Materialise, Leuven, Belgium) a 
surface-to-surface Euclidean distance could be calculated 

Fig. 2   The results of applying the algorithm to the first dataset, showing, a the initially set seed points on each level, b the colored parts during 
surface region-growing after 3 iterations, and c the final result after finishing the iterative process
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from each surface point to the nearest point on the reference 
model (Fig. 4). The distance error was calculated from seed 
point model to ground truth and contrariwise (both-ways), 
in order to detect protrusions and missing parts. The list 
of analysis values was then exported to calculate relevant 
parameters that reflect the segmentation accuracy. The cal-
culated parameters include the average symmetric surface 
distance (ASSD), the average asymmetric surface distance 
(AASD), and the root mean square of the surface distance, 

all according to the formulas provided by Heimann et al. 
[19] In addition, the maximum surface distance, the 95th 
percentile of error, and the percentage of surface with a dis-
tance error underneath the 0.2 mm were calculated.

By visual inspection, it was noticed that the performance 
of the algorithm varies at different vertebral segments. The 
vertebrae were therefore partitioned into anterior and pos-
terior substructures by positioning a vertical cutting plane 
midway through the pedicles. Moreover, the laminae were 

Fig. 3   The predefined locations for the 5 seed points (green) and 12 
seed points (blue) scenarios displayed on an already preprocessed and 
segmented example human vertebra, showing the vertebra in poste-
rior view (left) and the anterior view (right). In case of using 5 seed 
points (green) per vertebrae, the posterior seed points were located on 

the edge of the superior and inferior articulating process (red) bilater-
ally. Anteriorly, one seed point was positioned on the center of the 
vertebral body. In case of 12 seed points (blue), additional seed points 
were positioned at the anterior articular area, and 4 seed points were 
positioned on the vertebral body, instead of one seedpoint

Fig. 4   Example of surface-to-surface distance plot (case number 4, 
T2 vertebra, 12 seed points, observer 1). Here, the green represents 
a perfect segmentation, the red color a positive error, and the blue a 
negative error. The gray, yellow-outlined, areas indicate the holes in 

the surfaces. The color grading legend is displayed in millimeters. 
Note that the typical areas of error, like the articular processes, are 
colored in red
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separately analyzed after isolation using the wave brush 
marking tool.

All aforementioned parameters were calculated from 
the surface distance data using a custom-written Python 
script and presented as descriptive statistics. The inter-
observer variability was supported by the calculation of 
the intraclass correlation coefficient (ICC). The proposed 
methods and manual segmentation times were compared 
by using a paired t-test. Data analysis was performed using 
IBM SPSS statistics version 23 (IBM corp., Armonk, NY, 
the USA).

Results

The results show a clear algorithm performance differ-
ence between the 5 and 12 seed point scenario (Table 1). 
The ASSD for using 5 seed points was 0.52  mm and 
decreased to 0.23 mm when using 12 seed points. The 
95th percentile for 5 and 12 seed points was 3.07 mm 

and 0.69 mm, respectively. To put this in perspective, the 
width of a typical T1 vertebral body measures 26.5 mm 
[20]. The detailed segmentation accuracy results for the 
12 seed point scenario are listed in Table 2, providing a 
distinction between cases, vertebral levels, and anatomical 
regions. Grouping per case showed that the ASSD ranges 
from 0.05 mm for Case 2 to 0.32 mm for Case 5, and the 
respective 95th percentiles were 0.09 mm and 1.47 mm. 
The ASSD for the different anatomical levels ranged from 
0.11 mm in C1 vertebrae to 0.69 mm in C7 vertebrae. The 
cumulative error distribution plot provides insight in the 
distribution of error for each vertebral level and shows that 
for all levels except for the C7 vertebra, 90 percent of the 
surface demonstrates an error below 0.2 mm (Fig. 5). The 
results for the different anatomical regions show an ASSD 
of 0.25 mm for the anterior substructures and 0.49 mm 
for the posterior parts of the vertebrae. When limiting 
to the laminar region, the ASSD decreased to 0.03 mm. 
The respective 95th percentiles were found to be 0.99 mm 
(anterior), 0.71 mm (posterior), and 0.11 mm (lamina). 

Table 1   A comparison between 
using 5 or 12 seed points per 
vertebra showing metrics 
based on surface distance 
measurements

ASSD  average symmetric surface distance; AASD average asymmetric surface distance; RMS, root mean 
square of surface distance. Values are displayed in millimeters, except for the last column, which shows a 
percentage

ASSD (mm) AASD (mm) RMS (mm) Max error (mm) 95th pctl. (mm) pct.  error. 
< 0.2mm

5 seeds 0.52 0.37 2.20 36.05 3.07 88%
12 seeds 0.23 0.14 1.27 24.48 0.69 92%

Table 2   Accuracy results for the 12 seed point scenario, providing a distinction between the different cases, the vertebral levels, and the ana-
tomical regions

ASSD (mm) AASD (mm) RMS (mm) Max error (mm) 95th pctl. (mm) pct.  error. 
< 0.2 mm

Case No. Case 1 0.26 0.17 1.49 24.48 0.98 92%
Case 2 0.05 0.01 0.43 10.95 0.09 98%
Case 3 0.26 0.03 0.76 19.11 0.98 73%
Case 4 0.16 0.09 1.09 21.90 0.14 96%
Case 5 0.32 0.24 1.47 16.09 1.47 92%

Level C1 0.11 − 0.01 0.49 11.38 0.36 91%
C2 0.13 0.04 0.70 14.46 0.49 91%
C3 0.17 0.08 0.89 19.11 0.43 93%
C4 0.12 − 0.03 0.43 6.79 0.67 92%
C5 0.21 0.13 1.13 16.09 0.68 93%
C6 0.08 − 0.01 0.42 15.30 0.24 95%
C7 0.69 0.63 2.69 24.48 5.90 89%
T1 0.21 0.11 1.10 21.90 0.95 92%
T2 0.08 0.04 0.41 8.60 0.20 95%

Region Anterior 0.25 0.19 1.40 24.48 0.71 92%
Lamina 0.03 0.01 0.19 12.54 0.11 98%
Posterior 0.49 0.41 4.12 64.97 0.99 91%
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The performance of the algorithm between the defined 
anatomical regions is illustrated in the cumulative error 
distribution plot (Fig. 6). An inter-observer correlation 
(ICC) of 0.96 between the two raters was found. 

The proposed method yielded consistently lower process-
ing times compared to manual segmentation (Table 3). The 
manual method took 18.52 min per subject (all vertebrae) 
on average. When using the proposed seed point algorithm, 
segmentation times significantly reduced to 9.74 min per 
subject in case of the 12 seed point scenario (P = 0.021) 

and further reduced to 4.94 min in case of the 5 seed point 
scenario (P = 0.016).

Discussion

The use of VSP in spinal surgery provides surgeons with 
a tool to precisely plan pedicle screw positions and use 
3D-printed patient-specific guides to translate the plan to 
the operating theater. The current VSP workflow requires 

Fig. 5   Cumulative error distribution plot between the proposed 
method and the ground truth differentiated by vertebral level in case 
of using 12 seed points per vertebra. The plot visualizes the maxi-

mum error and its variance between spinal levels at each chosen per-
centile of the total surface mesh

Fig. 6   Cumulative error distribution plot for the anterior, posterior and lamina substructures in case of using 12 seed points per vertebra. The 
plot visualizes the maximum error and its variance between vertebral substructures at each chosen percentile of the total surface mesh
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specific 3D expertise and is time consuming with regard to 
segmentation of the individual anatomical structures [21]. 
For the spine specifically, individual vertebrae labeling 
requires time-consuming manual image processing and 
therefore strongly influences the cost-effectiveness of VSP. 
This study presents a semi-automated user-independent 
method for individual vertebrae separation. It ultimately 
resulted in a significant time reduction and accurate 3D 
surface mesh segmentation of the individual vertebrae.

In VSP, the initial construction of accurate 3D bone mod-
els derived from CT image data is crucial, as all other steps 
in the VSP process heavily depend on the accuracy of these 
models. Although current software includes algorithms to 
speed up individual vertebrae labeling, it still is a labori-
ous manual process. Optimizing the process of individual 
vertebrae segmentation can be roughly divided into two dis-
tinct approaches; (1) introducing new state-of-the-art algo-
rithms that form individual vertebrae from the CT volume 
data (volume segmentation), or as proposed in this study, 
(2) using proven volume segmentation techniques and intro-
duce subsequent surface partitioning methods for separating 
adjacent vertebrae.

1.	 Several novel volume segmentation approaches have 
been proposed in the literature, including statistical 
shape models, atlas-based methods, or more recently, 
machine learning-based methods [13–17]. The essence 
of fully automated segmentation methods is often based 
on time saving and the reduction of errors during the 
clinical interpretation of image data. Although the meth-
ods have the potential to be applied to a large number of 
datasets without manual user input, using the atlas- and 
statistical shape-based methods for VSP applications 
would currently be imprudent considering the reported 
average surface errors ranging from 0.64 mm up to 
5.36 mm in an osteoporotic cohort [22]. On the other 

hands, the evolution of machine learning techniques, 
such as the recently presented fully convolutional net-
work by Lessmann et al., leads to significant progress in 
the accuracy of automated vertebra segmentation [18]. 
To the best of our knowledge, such machine learning-
based methods are, however, currently not implemented 
in commercially available software packages. Manual 
threshold-based segmentations are therefore still consid-
ered as standard method, also because they incorporate 
expert knowledge and can handle exceptional changes 
in anatomy resulting from severe spinal deformation 
pathologies.

2.	 In case of a mesh-based approach, as proposed in this 
study, segmentation is applied after obtaining a 3D 
surface model from the image data. In this context, we 
developed an algorithm that skips the laborious manual 
image post-processing and introduces a seed point-based 
surface segmentation method that is applied after surface 
triangulation. The GUI allows the user to interactively 
position seed points in 3D. An iterative region-growing 
process based on surface normals is then initiated which 
adds neighboring vertices to segments when the angle 
does not exceed the threshold angle. The GUI enables 
additional user interaction during the iterative threshold-
ing, providing the ability to add seed points as required.

The results of this study have demonstrated highly accu-
rate separation of individual vertebrae. The robustness was 
shown by applying the proposed method to a representa-
tive dataset including osteoporotic cases. Also, an excellent 
inter-observer correlation was found between both raters. 
The hypothesized relation between the number of seed 
points and segmentation accuracy was supported by an over 
50% reduction of the ASSD in case of using 12 seed points 
per level compared to using 5 seed points. Based on the 
comparable distribution of error in Fig. 6, it could be con-
cluded that the accuracy for anterior and posterior regions 
did not differ largely. The presupposed lower error in laminar 
region was confirmed by an ASSD of 0.03 mm, an explain-
able effect due to exclusion of surface areas that connect 
with surrounding regions and tend to introduce the highest 
errors. The laminar error is clinically negligible, as against 
to a reported accuracy up to 0.62 mm for global threshold-
ing alone [23]. Upon evaluation of the specific anatomical 
regions, an ASSD of 0.69 mm was found for the C7 verte-
bra. The often inferior image quality at the cervicothoracic 
junction, mostly due to shoulder artifacts, probably is an 
important source of error. Moreover, the ribs at the cervico-
thoracic junction might have been falsely assigned to the C7 
vertebra and introduce severe surface errors. CT image noise 
is another commonly mentioned source of error, however, 
since CT noise is present throughout the whole scan and 
the error in the lamina was almost negligible, we suspect 

Table 3   Time measurements, averaged over 2 raters, for segmentation 
using the proposed seed point method compared to using the manual 
segmentation method

*P value between the newly proposed method and the manual 
method.

Proposed method (min) Manual 
method(min)

5 seeds 12 seeds

Case 1 9.08 19.35 34.57
Case 2 2.85 4.80 9.43
Case 3 4.28 7.52 19.97
Case 4 4.43 10.30 12.58
Case 5 4.05 6.73 16.07
Average 4.94 9.74 18.52
P value* 0.016 0.021
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this is the least important source of error. Though, it has to 
be said that the noise-related error might also be present in 
ground truth. Compared to the current manual segmentation 
method, the algorithm proved to be significantly faster for 
both the 5 seed point scenario and 12 seed point scenario. 
The substantially higher segmentation time for the first case 
can be explained by the presence of severe degeneration in 
the facet joints. It has to be mentioned that the segmentation 
by current standard software was performed by an experi-
enced rater, already passed the complete learning curve. This 
was not possible for the proposed method, because it is yet 
not part of clinical routine.

Despite the low average surface distances, it should be 
noted a relatively high maximum surface distance exists 
between the model created using mimics and the model cre-
ated using the novel surface seeding algorithm. The reason 
for this lies in the fact that the extracted model contains an 
inner cortical surface that is formed by the border between 
the cortical bone and trabecular bone. The outliers in surface 
distance are the results of region-growing artifacts which 
arise when parts of the vertebra’s inner surface are added 
to an adjacent vertebra, as shown in Fig. 7. Currently, seeds 
cannot be placed on the inner surface, neither can they be 
placed at the articular parts of the facet joint.

In the literature, not much attention has been paid to 
surface segmentation techniques for clinical applications. 
Therefore, it is difficult to compare the results of the current 
study to earlier presented studies. Although the seed point 
method yielded excellent results, it is semi-automatic, and 
therefore different to most alternative approaches. Kim et al. 
presented a fully automatic surface-based method using 3D 

deformable fences [24]. The fences are generated based on 
valley information in the CT volume data. The 3D fences 
can be used for separating adjacent vertebrae from 3D sur-
face models, and it can therefore be considered a surface 
segmentation method. Results were subjectively evaluated 
by a classification system, and therefore not comparable to 
our results. Lui et al. presented a surface-based method by 
means of spectral clustering. It was proven to be success-
ful for small (50–4000 faces), preferably smooth, meshes 
with segment boundaries in concave regions [25]. This 
approach was not tested for clinical applications, but could 
potentially be interesting for bone segmentation, because the 
places where bone structures touch tend to form deep con-
cavities. A so-called ‘intelligent scissoring’ or ‘randomized 
cuts algorithm’ was showed to be feasible for segmentation 
hand bones and might be useful for surface-based vertebra 
segmentation [26, 27]. However, for spinal application, the 
use might be complicated because the vertebra themselves 
also contain a large number of concavities. Moreover, sur-
faces extracted from high detail CT scans (up to 5.000.000 
faces) may be challenging on conventional hardware.

The surface seeding segmentation program used in this 
study is in a prototype stage. There are a number of addi-
tions to this prototype application that are currently under 
development to further increase its clinical efficacy. Firstly, 
the prototype application only has a 3D view of the extracted 
bone surface and segments. A series of 2D overviews of the 
original CT images (axial, coronal, and sagittal) with the 
surface and bone outlined could provide valuable additional 
feedback. Another missing feature in the prototype appli-
cation a hole-filling operation. Currently, the segments are 

Fig. 7   An example of a region-growing artifact which can arise with 
the surface seeding method. The meshes of the vertebrae contain 
holes where their facet joints touch, which causes the inferior facet 

joint surface (cyan) of the C5 vertebra (gray) to be wrongfully attrib-
uted to the C6 vertebra (beige). Note that the holes in the vertebrae 
meshes are shown in red
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exported as they are generated by the algorithm, including 
any holes that appear at the scan borders and where facet 
joints touch. However, for the VSP, solid body meshes are 
required. Artifacts like the one shown in Fig. 7 can poten-
tially also be automatically trimmed during automatic hole 
filling, insofar as they are enclosed by the adjacent segment. 
It is also the absence of this closing holes operation that hin-
dered the evaluation of the proposed method using the com-
monly used Dice coefficient (DC). Since the DC requires 
volumes rather than surfaces, the DC was not calculated. 
The current study was therefore limited in scope to surface 
distance-based measurements.

In this preliminary proof of principle study conclusions 
are based on a rather small dataset, which may be inade-
quate to draw definitive conclusions in terms of robustness 
in daily clinical practice. Nevertheless, it demonstrates the 
feasibility and serves as the basis for further development 
toward a clinically embedded 3D VSP tool. Minor varia-
tions between cases and vertebra were observed, but dif-
ferences were minor and ASSD remained sub-millimeter. 
After implementation of additional features, which will 
be part of future work, the method should be evaluated on 
larger datasets to prove its robustness in clinical practice.

The results showed in this study have several surgical 
and VSP implications. It was found that the time required 
for individual vertebra segmentation can be consider-
ably reduced when using the semi-automatic segmenta-
tion approach. Meanwhile, the segmentation accuracy 
remained high according to the percentage of surface with 
an error below 0.2 mm. This metric was set as clinically 
relevant cut-off value since patient-specific guides in our 
center are always designed with a 0.2 mm surface offset 
to cope with remaining soft tissue or small segmentation 
errors. Although artifacts were found, they do not impact 
the clinical efficacy of the surface seeding algorithm, 
because patient-specific drill guides are positioned on the 
outer surface. This is also reflected in the negligible error 
that was found when limiting the analysis to the laminar 
region. In this study, we chose to assess the use of 5 and 
12 seed points for reasons of study simplicity and clarity 
and due to spinal anatomical features. In clinical practice, 
however, the number of seed points needed per vertebra is 
likely to vary between cases. The number of seed points 
should be judged in a clinical setting on a case-to-case 
basis, depending on bone quality, facet joint osteoarthritis, 
and degeneration of the intervertebral disks. In addition to 
this, the expert users have a substantial degree of control 
during the iterative process due to the ability to add extra 
seed points after each region-growing iteration.

In conclusion, we have described a semi-automated sur-
face segmentation algorithm for individual vertebrae separa-
tion based on manually positioned seed points. The method 
relies on global threshold segmentation and introduces a 

seed point-based 3D mesh partitioning method for separat-
ing adjacent vertebrae. This proof-of-principle study demon-
strated the accuracy of the proposed method on a clinical CT 
image dataset and the feasibility for spinal VSP applications.
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