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Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes
related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a
variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been
associated with stress-induced drug reinforcement. Extensive literature has identified
CRF to play an important role in the molecular mechanisms that lead to an increase in
susceptibility that precipitates relapse to SUDs. The CRF system has a heterogeneous
role in SUDs. It enhances the acute effects of drugs of abuse and is also responsible
for the potentiation of drug-induced neuroplasticity evoked during the withdrawal period.
We present in this review the brain regions and circuitries where CRF is expressed
and may participate in stress-induced drug abuse. Finally, we attempt to evaluate the
role of modulating the CRF system as a possible therapeutic strategy for treating the
dysregulation of emotional behaviors that result from the acute positive reinforcement of
substances of abuse as well as the negative reinforcement produced by withdrawal.
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INTRODUCTION
Drug addiction is a chronic condition characterized by periods
of abstinence and relapse. The effects of drugs of abuse on brain
function have been extensively evaluated with the intention of
developing therapies that can prevent relapse and facilitate the
treatment of substance use disorders (SUDs). An extensive liter-
ature has shown that addictive drugs affect systems that govern
reward pathways (mesolimbic dopaminergic pathway), learning
and memory processes (hippocampus), emotion (amygdala), and
cognitive functions (prefrontal cortex). The reinforcing effects
of drug of abuse have been attributed to actions in the limbic
system that in turn influence motivational, emotional and affec-
tive behaviors (Rezayof et al., 2002; David et al., 2008; Martin
et al., 2008; Nielsen et al., 2011; Xue et al., 2012) and for reviews
see (Koob, 1992; Pierce and Kumaresan, 2006; Feltenstein and
See, 2008). Specifically, the alteration of reward processing (Wise,
1998, 2005) has been identified as a critical factor that leads to
an increase in the chance of relapse (Koob and Le Moal, 1997;
Everitt et al., 1999; Koob et al., 2004; Everitt and Robbins, 2005).
The development of SUDs is a progression that commences with
the first exposure to the drug and ends with physiological and
psychological dependence.

Although substances of abuse have different mechanisms of
action, repeated exposure has been shown to lead to similar
neural adaptations. Addiction to any class of drugs has been
described as a learning process. Individuals learn associations
between the rewarding effects of the drugs and the environ-
mental cues that predict drug availability. Neuroadaptations in
areas associated with learning and memory (hippocampus and
amygdala) are affected after a single episode of any drug use

by influencing synaptic transmission. Following chronic drug
use, the compulsive seeking and uncontrollable use leads to
long-lasting alterations in synaptic plasticity, such as changes in
synaptic strength.

Human studies (Gawin and Kleber, 1986; Wallace, 1989) and
experiments with preclinical models (Thatcher-Britton and Koob,
1986; Piazza et al., 1990; Goeders and Guerin, 1994; Kreibich
et al., 2009) have identified stress as a critical factor in the drug
addiction process, including triggering relapse. Corticotropin
releasing factor (CRF) has been implicated in neuroendocrine
and behavioral responses to stress (Britton et al., 1982; Koob and
Bloom, 1985). It has been shown to be activated during stress-
induced drug reinstatement, where it acts to facilitate relapse and
increase anxiety during acute and chronic withdrawal (Shaham
et al., 1995; Ambrosio et al., 1997; Koob, 1999) and see (Sarnyai
et al., 2001; George et al., 2011) for extensive review.

CRF-induced neuroplastic changes have been studied both in
mesolimbic brain circuits that include the ventral tegmental area
(VTA) and nucleus accumbens (NAcc) (Ungless et al., 2003; Wang
et al., 2007a; Hahn et al., 2009) and also in brain regions associ-
ated with emotion, such as the amygdala (Fudge and Emiliano,
2003; Pollandt et al., 2006; Fu et al., 2007; Kash et al., 2008;
Francesconi et al., 2009). Despite extensive research supporting
the role of CRF in drug addiction, the specific participation of
CRF on drug-induced synaptic plasticity that leads to relapse
remains undetermined.

This review will attempt to examine recent research on the
role of CRF and its interaction with drug-mediated synaptic
plasticity. The VTA and the amygdalar nuclei where CRF is
highly expressed will be described. We will discuss whether CRF
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facilitates or inhibits synaptic strength from the basal condi-
tion. Finally, we will attempt to integrate the neurobiological
changes that result from the interaction of substances of abuse
with stress to evaluate alternative drug targets for experimen-
tal therapeutics to prevent relapse and facilitate the treatment of
SUDs.

SUBSTANCE USE DISORDERS (SUDs) AND STRESS
SUDs are a chronic and relapsing condition characterized by an
intense desire for drug intake during the withdrawal period. This
craving process leads to a progression from the initial impul-
sive consumption to a subsequent compulsive and habit forming
consumption that result in loss of control in limiting intake and
subsequent inability to change the habit developed over time. One
of the main challenges in preclinical addiction research has been
to elucidate the pathways that lead to the loss of control of drug
use and the predisposition to relapse (Koob and Le Moal, 1997).
As described by the Opponent Process Model, the repetitive use of
addictive substances alters the reward circuits by decreasing the
intense pleasure state and by increasing the following unpleas-
ant state. After discontinuation of repeated exposure to addictive
drugs, compensatory reactions develop that oppose the primary
effects of the drug—the withdrawal symptoms. The reduction
of the withdrawal symptoms would therefore represent negative
reinforcement. The reduction of the unpleasant state of the with-
drawal symptoms becomes the major drive in continued drug use.
In a simplified view of the dopamine theory (Wise, 1978, 2008;
Berridge and Robinson, 1998; Everitt and Robbins, 2005; Diana,
2011), the acute euphoric process obtained by binge-intoxication
represents the activation of the dopaminergic system, while the
negative component resulting from the withdrawal period is
marked by the reduction of dopamine function (Tomkins and
Sellers, 2001). The introduction of functional toxicity (Weiss and
Koob, 2001), which is associated with the unpleasant withdrawal
state powered by the recruitment of the stress neurotransmit-
ter, CRF, further expanded the dopamine theory as it applies to
addiction.

CORTICOTROPIN RELEASING FACTOR (CRF) SYSTEM
CRF, also known as corticotropin releasing hormone (CRH), has
been shown to induce various behavioral changes related to adap-
tation to stress. Dysregulation of the CRF system at any point
can lead to a variety of psychiatric disorders such as depres-
sion, obsessive compulsive disorder, post-traumatic stress disor-
der and SUDs (Cole et al., 1990; Sarnyai et al., 1992, 2001; Cador
et al., 1993; Koob and Kreek, 2007; Koob and Le Moal, 2008a).
Footshock-induced stress has been shown to be effective in induc-
ing reinstatement of alcohol (Le et al., 1998, 2000; Gass and Olive,
2007; Richards et al., 2008), nicotine (Buczek et al., 1999), cocaine
(Erb et al., 1996), opiate and psycostimulants (Lu et al., 2003)
and heroin (Shaham et al., 1997) seeking. Specifically CRF has
been associated with drug reinstatement (Shaham et al., 1997; Le
et al., 2002; Liu and Weiss, 2002; Funk et al., 2006). CRF has also
been shown to produce anxiety-like behaviors during withdrawal
from chronic ethanol (Baldwin et al., 1991; Overstreet et al., 2004)
and may be responsible for persistent vulnerability and eventual
relapse.

The CRF system consists of four ligands: CRF, urocortin
(UCN) (Vaughan et al., 1995) 1, 2, and 3, two G-protein-coupled
receptors (GPCR), CRF-receptor 1 (CRF-R1) and CRF-receptor
2 (CRF-R2), as well as a secreted CRF binding protein (CRF-BP);
see Table 1 and (Bale and Vale, 2004) for CRF system review.

It was originally identified as a hypothalamic factor responsible
for stimulating adrenocorticotropic hormone (ACTH) secretion
from the anterior pituitary (Guillemin and Rosenberg, 1955;
Saffran et al., 1955) where it stimulates glucocorticoid synthe-
sis and secretion form the adrenal cortex (Turnbull and Rivier,
1997). Its name was established thirty years before its bio-
chemical identification in the 1980’s (Vale et al., 1981) while
its gene identifier in the National Center for Biotechnology
Information (NCBI) is CRH. It is a 4.7-kilo-Dalton (kDa) pep-
tide and consists of 41-amino acid residues. Neurosecretory
neurons of the paraventricular nucleus (PVN) of the hypothala-
mus synthesize CRF (Meloni et al., 2005). CRF is then released
into the afferent portal blood vessels to the anterior pituitary
gland where it induces ACTH release in the systemic circula-
tion. The hypothalamic-pituitary-adrenal (HPA) axis is regulated
by negative feedback from glucocorticoids that activate gluco-
corticoid receptors specifically in the PVN and hippocampus.
CRF is also expressed outside the HPA axis to control auto-
nomic and behavioral responses to stressors (Palkovits et al., 1983;
Swanson et al., 1983) including stress-induced reinstatement of
drug seeking.

CRF mediates physiological stress responses by activating
CRF-R1 and CRF-R2, which are distributed throughout the
periphery and the brain (De Souza, 1995; Bale and Vale, 2004).
It is believed that the binding of CRF to CRF-Rs is a two-step
mechanism. The N-terminus of the receptor initially binds to
the C-terminus of CRF, which initiates a rearrangement of the
receptor (Grace et al., 2007). The CRF N-terminus contacts the
other sites on the receptor to initiate cellular signaling (Vale
et al., 1981; Rivier et al., 1984) and consequently activate the
G-protein (Nielsen et al., 2000; Grace et al., 2004; Rijkers et al.,
2004; Yamada et al., 2004; Hoare, 2005). The CRF system com-
prises other peptides with structural homology to CRF. UCN 1
shows 45% sequence identity with CRF and binds with high affin-
ity to both CRF receptor subtypes (Perrin et al., 1995), whereas
CRF binds with highest affinity to CRF-R1 (Vaughan et al., 1995;
Burnett, 2005). UCN 2, also known as stresscopin related peptide,
and UCN 3, also known as stresscopin bind specifically to CRF-R2
(Hsu and Hsueh, 2001; Lewis et al., 2001; Reyes et al., 2001).

CRF-R1 has 415 amino acid residues and it is expressed
in the periphery and in the CNS (Chang et al., 1993; Chen
et al., 1993; Vita et al., 1993; Potter et al., 1994; Tsai-Morris
et al., 1996; Sanchez et al., 1999; Van Pett et al., 2000). Chronic
stress mediated by activation of CRF-R1 by CRF has been asso-
ciated with the development of anxiety disorders (Arborelius
et al., 1999); CRF-R1 antagonists have been shown to reduce
anxiety-like behaviors (Funk et al., 2007). Transgenic mice
with deletion of CRF-R1 (CRF-R1 knock out (KO) mice) have
reduced reaction to both stress and anxiety, for comprehen-
sive review see (Bale and Vale, 2004). This anxiolytic effect,
however may be attributed to the reduction in circulating
glucocorticoids in preclinical models (Tronche et al., 1999).
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Table 1 | Corticotropin Releasing Factor (CRF) system.

Name Type Receptor binding CNS expression Peripheral expression Involvement in stress

response

CRF ligand CRF-R1 > CRF-R2 synthesized in PVN
widely distributed

gut, skin, adrenal gland HPA axis: induces ACTH release
outside HPA axis: controls
autonomic and behavioral
responses

CRF-R1 receptor – CC, CB, MS, HIP, VTA,
amygdala, pituitary

β cell pancreas anxiogenic

CRF-R2 receptor – RN, LS, HY, CP heart, GI, lung, skeletal
muscle, vasculature

anxiogenic/anxiolytic

CRF-BP binding protein – CC, HY, amygdala, VTA Plasma, amniotic fluid,
placenta, pituitary gland,
liver

Periphery: neutralizes CRF
CNS: undetermined

UCN 1 ligand CRF-R1/CRF-R2 EW GI, testis, cardiac myocytes,
thymus, skin, spleen

Periphery: elevated in heart
failure
(Wright et al., 2009)
CNS: modulate excitatory
glutamatergic synaptic
transmission (Liu et al., 2004)

UCN 2 ligand CRF-R2 HY, brainstem, spinal
cord

heart, blood cells, adrenal
gland

central autonomic and
appetitive control (Reyes et al.,
2001) gender difference in
depressive-like behavior (Chen
et al., 2006)

UCN 3 ligand CRF-R2 HY, amygdala GI, pancreas energy homeostasis (Li et al.,
2007) anxiolytic-like effects
(Valdez et al., 2003)

CeA, central nucleus of the amygdala; CB, cerebellum; CC, cerebral cortex; CP, choroid plexus; EW, cell bodies of the Edinger Westphal nucleus; GI, gastrointestinal

tract; HIP, hippocampus; HY, hypothalamus; LS, lateral septum; MS, medial septum; OLF, olfactory area; PVN, paraventricular nucleus of the hypothalamus; RN, raphe

nuclei.

A conditional KO mouse line was generated to differentiate
the behavioral from the neuroendocrine CRF-mediated CRF-
R1 signaling pathways. The selective inactivation of the lim-
bic structures, but not of the HPA system has shown that
CRF-R1 modulates anxiety-like behaviors and it is indepen-
dent of the HPA (Muller et al., 2003). Furthermore, CRF-R1 is
thought to increase susceptibility to alcohol relapse behaviors
(Hansson et al., 2006; Heilig and Koob, 2007). A recent study
evaluated the role of CRF both within and outside the HPA
has shown that CRF via CRF-R1 signaling may have opposite
effects on stress-related alcohol consumption (Molander et al.,
2012).

CRF-R2 has three variants: α, β, and γ. The α is comprised of
411 amino acid residues and the β is comprised of 413–418 amino
acid residues. Both are found in the brain and periphery; however,
CRF-R2β is predominantly found in the heart and vasculature
(Lovenberg et al., 1995a,b; Kimura et al., 2002; Burnett, 2005).
The γ variant is a smaller peptide containing only 397 amino
acid residues, and is found only in the human brain (Kostich
et al., 1998). The precise role of CRF-R2 in the regulation of the
stress response is a subject of intense investigation. Genetic mouse
model studies with deletion of CRF-R2 (CRF-R2 KO mice) have

demonstrated that CRF activation of CRF-R2 can lead to either
an increased or decreased response to stressors (Bale et al., 2000,
2002; Coste et al., 2000; Kishimoto et al., 2000).

The lack of specific antisera that support immunohisto-
chemical experiments and the low resolution of ligand binding
approaches have limited the studies to elucidate the CRF-Rs dis-
tribution and limit the analysis at the mRNA level. To overcome
this impediment, a transgenic mouse that reports expression of
CRF-R1 with green fluorescent protein (GFP) has been success-
fully generated providing a novel tool to investigate the role of
CRF-R1 signaling in stress adaptation (Justice et al., 2008).

CRF-BP is a water-soluble, 37 kD protein and consists of 322
amino acid residues (Bale and Vale, 2004). It is a secreted glyco-
protein, efficiently stored into secretory granules and released into
the extracellular space through exocytosis (Blanco et al., 2011). It
contains aspargine N-linked-type oligosaccharides that are crit-
ical for CRF-BP binding to CRF (Suda et al., 1989). Previous
attempts to identify small molecule inhibitors of CRF-BP have
produced limited success due in part to the high affinity (pico-
molar) of CRF binding to CRF-BP (Behan et al., 1995a) and also
because CRF-BP full length (FL) is susceptible to autocatalytic
proteolysis (Woods et al., 1999). The spontaneous proteolytic
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cleavage yields a larger N-terminal fragment of 27 kD, CRF-BP
(27 kD), which retains the binding site for CRF and a smaller,
9.6 kD C-terminal fragment, CRF-BP (10 kD) (Woods et al.,
1999) with no apparent physiological or pathological role. The
unique cleavage site in CRF-BP (FL) has been identified between
amino acid residues serine 234 and alanine 235. The generation
of two fragments has made it extremely difficult to successfully
purify sufficient quantities of CRF-BP (FL) to study the physi-
ological properties of the native protein. CRF-BP is distributed
in plasma, amniotic and synovial fluid, the placenta, the pituitary
gland, the liver, and in several distinct brain regions, including the
cerebral cortex, the hippocampus (Behan et al., 1995a), the amyg-
dala (Herringa et al., 2004) and the VTA (Wang and Morales,
2008). In the periphery, circulating CRF-BP neutralizes the phys-
iological actions of CRF (Kemp et al., 1998). Because of the
high affinity with CRF, it is believed that CRF-BP plays a buffer
role by reducing the amount of free CRF. In the brain, however,
CRF-BP is mostly membrane-bound and expressed in different
amounts in neurons and neuroglial cells (Behan et al., 1995b).
Within neuronal cells, recent findings demonstrated that dis-
crete subpopulations of VTA dopaminergic and γ-aminobutyric
acid (GABAergic) neurons express CRF-BP (Wang and Morales,
2008). The physiological role of CRF-BP in the central nervous
system (CNS) is still unclear. Additionally, theories suggest the
possibility that CRF-BP may assist the clearance of CRF from the
body and may also protect CRF from degradation (Seasholtz et al.,
2002). Genetic mouse model studies with deletion of CRF-BP
(CRF-BP KO mice) have shown there is an increase in anxiety-
like behavior (Karolyi et al., 1999). Electrophysiology studies have
shown that CRF signals through CRF-R2 to potentiate N-Methyl-
D-aspartate (NMDA)-mediated excitatory postsynaptic currents
(EPSCs) in the VTA (Ungless et al., 2003). Furthermore, using
CRF (6–33), a peptide that competes with CRF at the CRF-BP
binding site, but does not bind to CRF-R2, it was shown that it
blocked CRF-induced potentiation of NMDAR-mediated EPSCs
(Ungless et al., 2003). Taken together, these results suggest that
CRF-BP possesses a diverse role in modulating the CRF-system.
As described by in vitro and in vivo studies, purifying human
CRF-BP (FL) in sufficient quantities for investigation has not
been successful to date (Woods et al., 1997). There have not been
any research tools available to characterize the role of CRF-BP in
the CNS by expressing CRF-BP on the cell surface. Therefore, it
has not been possible to determine whether CRF-BP participates
specifically in the CRF-R2 signaling. A summary of the involve-
ment of the CRF binding in addictive behavior is described in
Table 2.

STRESS-INDUCED DRUG ADDICTION: CRF-MEDIATED
NEUROTRANSMISSION AND PLASTICITY
REINFORCEMENT: VENTRAL TEGMENTAL AREA (VTA) AND
NUCLEUS ACCUMBENS (NAcc)
Addictive drugs have been shown to increase the concentration
of dopamine in the NAcc. Furthermore, the increase of dopamine
has been associated with the amplification of the hedonic impact
of positive reinforcers (Fibiger, 1978; Berridge et al., 1989) and the
development of addictive behaviors (Yokel and Wise, 1975; Bonci
and Malenka, 1999; Wise, 2008). The NAcc receives input from

Table 2 | Involvement of the CRF binding in addictive behaviors.

CRF-R1 antagonists Attenuate stress-induced relapse to drug
seeking and behavioral changes associated
with withdrawal; small molecules and
peptides are available for investigation

CRF-R2 antagonists Regulation of the stress response and
addictive behavior is unclear; small
molecules and peptides are available for
investigation

CRF-BP antagonists Modulation of neuronal activity may be a
target for both drugs of abuse and stress
response; only peptides are available for
investigation

the VTA and it is thought that this pathway may be responsible
not only for the acute pleasure effect of drug intake, but also for
the negative reinforcement and the effects of cues on drug-seeking
behaviors (Koob and Nestler, 1997).

CRF cellular involvement in the VTA
The VTA receives CRF projections mostly from the limbic fore-
brain and PVN of the hypothalamus (Rodaros et al., 2007)
that form glutamatergic synapses and symmetric GABAergic
synapses (Tagliaferro and Morales, 2008). The PVN is the
site for CRF synthesis (Meloni et al., 2005) and the major-
ity of asymmetric synapses (glutamatergic) are expressed in
CRF- and dopaminergic-containing neurons. VTA dopamin-
ergic neurons express CRF-R1 (Van Pett et al., 2000) and a
more recent study has shown that the majority of VTA neu-
rons expressing CRF-BP are dopaminergic (Wang and Morales,
2008). The CRF system modulates dopaminergic neurons by
activating CRF-R1 and CRF-R2; however, CRF is not only
involved in the neuroexcitability of the dopaminergic sys-
tem. It may also be responsible for modulating excitatory and
inhibitory synaptic inputs since the VTA receive inputs from
both CRF-glutamatergic- and CRF-GABAergic-containing neu-
rons (Tagliaferro and Morales, 2008) and for review see Borgland
et al. (2010).

CRF increases the firing rate of VTA dopaminergic neurons
(Korotkova et al., 2006; Wanat et al., 2008) via CRF-R1, and
involves the phospholipase C (PLC)–protein kinase C (PKC)
signaling pathway with enhancement of Ih (hyperpolarization-
activated inward current) (Wanat et al., 2008). CRF can also
induce a transient slowly developing potentiation of NMDA-
mediated synaptic transmission via CRF-R2 and activation of
the PLC-PKC signaling pathway. CRF-R2-mediated potentiation
has been shown to require the presence of CRF-BP (Ungless
et al., 2003). The mechanism of action of CRF-R2 and CRF-BP
is still under investigation as the research tools needed to study
CRF-BP and antisera that specifically target CRF-R2 have not
been available.

CRF appears to have both excitatory and inhibitory actions
on the dopaminergic neurons in the VTA. Studies using cocaine
and methamphetamine have shown that the excitatory effect of
CRF on dopaminergic neurons involves fast events, for exam-
ple action potential firing rate and NMDAR-mediated synaptic

Frontiers in Molecular Neuroscience www.frontiersin.org September 2012 | Volume 5 | Article 91 | 4

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Haass-Koffler and Bartlett CRF neuroplasticity in stress and addiction

transmission, while the inhibitory effects of CRF involve slow
forms of synaptic transmission that would result in long-term
plasticity (Beckstead et al., 2009). Those observations demon-
strated that CRF may have different actions on receptors that
mediate the synaptic action on dopamine. This cellular mecha-
nism may refine the role of stress by CRF actions on dopamine-
mediated behaviors (Beckstead et al., 2009).

As it has been shown that potentiation of CRF-R2, but not
CRF-R1, signaling requires the presence of CRF-BP (Ungless
et al., 2003), it has been proposed that CRF-BP and CRF-
R2 mediate longer-lasting forms of synaptic plasticity (Bonci
and Malenka, 1999). Both behavioral sensitization and long-
term potentiation (LTP) share many characteristics such as the
involvement of NMDAR activation for the induction of LTP in
VTA dopaminergic neurons (Bonci and Malenka, 1999; Ungless
et al., 2001). As a consequence, it has been suggested that
synaptic plasticity at excitatory synapses on VTA dopaminer-
gic neurons may play a principal role in triggering behavioral
change. Since NMDAR activation is required for the induc-
tion of LTP in VTA dopaminergic neurons, CRF-Rs activa-
tion may modulate longer-lasting forms of plasticity (Bonci
and Malenka, 1999; Ungless et al., 2001; Bonci and Borgland,
2009).

CRF-mediated neurotransmission and plasticity
Synaptic adaptations observed in remodeling of neuronal circuits
in addictive drug studies have been shown to have implications
in behavior and memory traits that characterize SUDs. The neu-
roplasticity underlying drug-induced sensitization has produced
a growing body of evidence that suggests it may represent the
molecular effect that is critical in modulating addictive behaviors
and would contribute to stress-induced compulsive behaviors in
addiction.

Axon terminals of CRF neurons synapse onto VTA neuronal
dendrites (Tagliaferro and Morales, 2008) and it appears that
stress affects the CRF release in this region (Wang et al., 2006).
Electrophysiological studies have shown that CRF-BP is required
for a slowly developing, transient potentiation of NMDAR-
mediated synaptic transmission elicited by CRF via CRF-R2
specifically (Ungless et al., 2003). These results have been corrob-
orated by behavioral studies that determined the effectiveness of
stress in triggering glutamate and dopamine release in cocaine
seeking of drug-experienced rats (Wang et al., 2007b). Using
chronic cocaine preclinical models, the study has shown the pos-
itive reinforcement associated with CRF, specifically CRF/CRF-
R2/CRF-BP interaction with the dopaminergic system. Those
findings support additional research efforts to develop novel
approaches that probe CRF-BP on the cell surface.

In conclusion, CRF increases VTA glutamatergic synaptic
function, which may facilitate VTA burst firing or induction of
synaptic plasticity that may result from repeated exposure to
drugs of abuse. This process may produce long-term neuroad-
aptations that alter stress responses and enhance drug seeking.
Electrophysiological studies combined with behavioral studies
have proposed that previous experience with drugs of abuse may
facilitate the ability of stress to drive drug seeking and, there-
fore, relapse. These results suggest that CRF may be important

for drug-evoked synaptic plasticity in VTA dopaminergic neu-
rons and may represent the molecular substrate that explains the
anxiety and stress response during withdrawal from substances of
abuse.

CELLULAR INVOLVEMENT OF CRF IN THE AMYGDALA
The amygdala is believed to be a pivotal brain region for emo-
tional response and it is critical for providing affective salience to
sensory information (Adolphs et al., 1994; LeDoux, 2003; Phelps
and LeDoux, 2005). Negative affective responses have been stud-
ied in specific nuclei of the amygdala by studying the conditioned
fear response (Davis, 1992a,b). The amygdala is widely connected
to other limbic regions where it participates in integrating sensory
and cognitive information (LeDoux, 1992, 1993). Experimental
evidence strongly suggests drugs of abuse act on this system
and can modify synaptic events especially during withdrawal.
While the VTA has been associated with the reinforcing effects
of ethanol (Gatto et al., 1994), the activation of the GABAergic
system has been associated with alcohol’s anxiolytic effect (Frye
and Breese, 1982). In addition to the rewarding circuits of the
shell of the NAcc, and brain regions activated by pharmacolog-
ical stressor, such as yohimbine and footshock were found to be
specific in the basolateral and central amygdalar nuclei, and the
bed nucleus of the stria terminalis (BNST) (Funk et al., 2006).
Preclinical studies demonstrated that exposure and withdrawal
from ethanol induces functional and biochemical changes in the
amygdala of rats, demonstrating that this circuit is involved in
long-term increases in anxiety-like behavior following chronic
ethanol exposure (Christian et al., 2012).

The amygdala mediates conditioned and unconditioned
responses to aversive stimuli (Davis and Whalen, 2001) and it has
been investigated using Pavlovian fear conditioning by pairing a
conditioned stimulus with an aversive unconditioned stimulus.
The re-exposure of the unconditioned stimulus elicits a condi-
tioned fear response derived by the conditioned-unconditioned
association (Pitts et al., 2009). The association signal takes place
in the basolateral amygdala (BLA) and is then transmitted to the
central nucleus of the amygdala (CeA) (McDonald, 1998; Maren,
1999; Davis and Shi, 2000; Pitkanen et al., 2000; Pare et al., 2004).
This transmission process involves both positive and negative
associations.

All components of the CRF system, CRF, CRF-Rs and CRF-BP
are expressed in the amygdala (Potter et al., 1994). Furthermore,
the amygdala is a major extrahypothalamic source of CRF-
containing neurons (Palkovits et al., 1983; Van Pett et al., 2000).
Both BLA and CeA nuclei play a role in the stress response
(Richter et al., 1995; Merali et al., 1998; Koob and Heinrichs,
1999). Extensive studies have shown that the CRF system par-
ticipates in memory consolidation that involves the BLA-CeA
circuit (Roozendaal et al., 2002; Hubbard et al., 2007). It has
been observed that CRF release in the amygdala is increased
during acute withdrawal (Richter and Weiss, 1999); therefore,
it has been hypothesized that CRF may modulate drug-evoked
synaptic plasticity (Ungless et al., 2001, 2003) and for a recent
review, see (Luscher and Malenka, 2011). The neuronal basis for
negative reinforcement is less well-understood; however, more
recent behavioral studies have shown that CRF is capable of
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potentiating excitatory synaptic currents via CRF-R1 in the CeA
two weeks following withdrawal from cocaine (Pollandt et al.,
2006).

A recent study has shown that CRF-R1 specifically possess a
bidirectional role in anxiety (Refojo et al., 2011). While dele-
tion of CRF-R1 in the mid brain dopaminergic neurons increases
anxiety-like behaviors and reduces dopamine release in the pre-
frontal cortex, deletion of CRF-R1 in the forebrain glutamanergic
neuronal network reduces anxiety and disrupts transmission in
the amygdala and hippocampus (Refojo et al., 2011).

The role of CRF was also evaluated extensively in voluntary
ethanol consumption using gene expression and genetic variation
in preclinical models see (Bjork et al., 2010) for extensive review.
In ethanol-exposed animals, ethanol intake was reduced by
administration of CRF-R1 antagonist, and tested using pharma-
cological interventions that reduce anxiety-like behaviors (Logrip
et al., 2011; Zorrilla and Koob, 2012). The reduction of ethanol
intake was also observed in transgenic mice with deletion of CRF-
R1 (CRF-R1 KO) (Chu et al., 2007). CRF-R1 antagonists reduce
drug withdrawal-associated anxiety and attenuate the negative
reinforcing effects of ethanol associated with prolonged ethanol
exposure (Ghitza et al., 2006; Marinelli et al., 2007; Li et al.,
2007; Koob and Le Moal, 2008b; Richards et al., 2008). CRF-
R1 inhibitors have shown to attenuate stress-induced relapse to
cocaine and heroin in trained animals (Shaham et al., 1998) and
to reduce stress-induced reinstatement and stress-induced reac-
tivation of conditioned place preference in many addictive drugs
(Koob and Zorrilla, 2010).

The extended amygdala
Among the extrahypothalamic structures that contain CRF
expressing neurons there is the “extended amygdala.” The
extended amygdala is comprised by the BNST, the central medial
amygdala (CeA), the sublenticular sustantia innominata and a
transition zone forming the posterior part of the NAcc (Heimer
and Alheid, 1991). It represents the brain circuit involved in
processing the aversive stimuli produced by ethanol withdrawal
(Koob and Le Moal, 2001), in which the GABA system has been
altered and the CRF system in the adjacent CeA has been shown
to be activated (Roberts et al., 1996). Those observations indi-
cate that GABAergic activity within interneurons of the extended
amygdala may play a prominent role in the chronic negative
emotion-like state of motivational significance for drug seeking
in alcohol dependence (Koob and Le Moal, 2001; Koob, 2003,
2009a,b). In addition, an in situ hybridization study has shown
that recruitment of CRF-R1 signaling, in the components of the
extended amygdala, may be responsible of driving the excessive
voluntary alcohol intake and may be linked to increase stress
activity (Hansson et al., 2007).

The BNST (as well as distinct regions of the CeA) has been
associated with stress and anxiety (Walker and Davis, 2008) and
is involved specifically with CRF signaling (Davis et al., 1997).
The CeA and BNST have direct projections to many brain regions
that have been studied to elucidate the symptoms of fear or
anxiety (Davis, 1992b). The BNST has been identified as a pos-
sible regulator of VTA dopaminergic neuron firing (Georges and
Aston-Jones, 2002) and consequently involved in the regulation

of acute actions of alcohol, nicotine, and cocaine (Watkins et al.,
1999; Carboni et al., 2000; Eiler et al., 2003).

The BNST possesses an extensive network of dopaminergic
fibers (Fudge and Emiliano, 2003) and is connected to the reward
pathway by extensive projections to the VTA, thus influenc-
ing the excitatory input through both NMDA and non-NMDA
receptors (Georges and Aston-Jones, 2001, 2002). This dopamin-
ergic excitatory transmission in the VTA requires the presence of
CRF (Kash et al., 2008). Acute cocaine administration has been
shown to induce dopamine signaling through a specific CRF-R1-
dependent enhancement of NMDA excitatory transmission (Kash
et al., 2008). This mechanism was described as a short-term form
of plasticity in the BNST, which may be responsible for the acute
effects of addictive drugs (Kash et al., 2008). These findings sug-
gested that glutamatergic neurotransmission in BNST may be
functionally involved with acute reinforcing actions of drug of
abuse (Walker and Davis, 2008).

Basolateral amygdala (BLA)
The basolateral nucleus of the amygdala (BLA) is critically impli-
cated in emotional learning (LeDoux, 2000), and in reward
(Balleine and Killcross, 2006; Tye et al., 2008). Neurons from
the BLA project directly to the CeA as well as to the BNST. The
BLA is mostly composed by glutamatergic pyramidal neurons and
provides the main excitatory input to the CeA and other limbic
and cortical structures (Sah et al., 2003); however, the excitatory
transmission is believed to be modulated by the relatively small
number of GABAergic interneurons found there (Washburn and
Moises, 1992). GABAergic interneurons have been identified as
regulators of stress and anxiety (Silberman et al., 2009).

CRF is present abundantly in the BLA, in addition to CRF-R1
and CRF-BP, (Sakanaka et al., 1986; Potter et al., 1992; Van Pett
et al., 2000); however, the effects of CRF in the BLA have been
studied far less than the other nuclei of the amygdala. The BLA has
been shown to be a critical nucleus for the consolidation of fear
and memory and, therefore, is a possible target for dampening
emotional memories. It has been shown that intra BLA infusions
of CRF increase anxiety-like behaviors (anorexia and grooming)
that are blocked by the administration of a CRF-R1 antagonist
(Jochman et al., 2005). Another BLA microinfusion study showed
that CRF-R1 activates fear memory consolidation and that this
effect is blocked by administration of another CRF-R1 antago-
nist. The fear memory consolidation process seems specifically
regulated by the CRF-R1 activation since CRF-R2 antagonist in
the BLA disrupted neither the contextual fear conditioning nor
performance of contextual freezing in the drug-free conditioned
fear test (Hubbard et al., 2007). BLA CRF-R1 activation has been
described as induced synaptic plasticity, and demonstrating that
BLA CRF-R1 activation can be pharmacologically blocked by
small molecules, the possibility to compromise the consolidation
of fear memory suggests a potential therapeutic opportunity to
ease the development of intense emotional memories.

Central nucleus amygdala (CeA)
The CeA has been identified as locus for both acute positive
reinforcement of ethanol self-administration and for the nega-
tive reinforcement associated with ethanol withdrawal (Baldwin
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et al., 1991; Heinrichs et al., 1992, 1995; Koob and Le Moal, 1997,
2001; Zorrilla et al., 2001). The CeA has also been identified as a
critical locus for reversing many behavioral effects associated with
ethanol intoxication (Hyytia and Koob, 1995).

In the CeA, most neurons are GABAergic (Sun and Cassell,
1993), and CRF is highly co-expressed with GABAergic neurons
(Veinante et al., 1997; Day et al., 1999). The CeA abundantly
expresses CRF, CRF-R1 and CRF-BP (Sakanaka et al., 1986; Potter
et al., 1992; Van Pett et al., 2000). Moreover, in the CeA the action
of CRF and ethanol has been shown to increase GABA release (Nie
et al., 2004) and the amount of CRF release is increased in pre-
clinical models of ethanol dependence (Merlo Pich et al., 1995).
Protein kinase C epsilon (PKCε) has been shown to modulate
CRF-R1 signaling in the CeA (Choi et al., 2002) and transgenic
mice with deletion of PKCε (PKCε KO mice) have shown reduced
anxiety-like behaviors (Hodge et al., 2002). Electrophysiological
studies have shown that ethanol-induced GABA release in the
amygdala is regulated by CRF-R1 (Nie et al., 2004) and that
ethanol-stimulated vesicular GABA release depends on PKCε

models (Bajo et al., 2008). PKCε signaling pathway in the CeA is
activated by CRF-R1 activation and modulates GABAergic neu-
rotransmission that may contribute to the anxiogenic effects of
ethanol (Smith et al., 1998; Timpl et al., 1998). This functional
link between ethanol, CRF and PKCε that modulates GABAergic
neurotransmission in the CeA may contribute to the dysregula-
tion of emotional behaviors that regulate acute positive reinforce-
ment of ethanol consumption and the negative reinforcement
produced by ethanol withdrawal.

It has been shown that there is a critical difference between
CRF effects in low/moderate ethanol-exposed animals (binge-like
ethanol consumption) and ethanol-dependent animals (chronic-
like ethanol exposure). While binge-like ethanol (Lowery-Gionta
et al., 2012) may cause transient perturbations of the CRF sys-
tem which may be able to return to its homeostatic state, the
chronic-like ethanol exposure (Roberto et al., 2003, 2004) may
be responsible for the CRF neuroadaptation that would influence
the allostatic state. An allostatic state is defined as a state of chronic
deviation of the regulatory network from their normal process
and the establishment of a different set point of “apparent stabil-
ity” (Koob and Le Moal, 2001). This chronic deviation of reward
set point is critically altered during drug withdrawal and may
contribute to subsequent neuroadaptation that produces vulner-
ability to addiction and relapses (Koob and Le Moal, 2001). Acute
stress does not increase the mRNA expression of any components
of the CRF system in the CeA (Herringa et al., 2004), however,
in the CeA of animals exposed to ethanol, there was a significant
increase in CRF mRNA expression (Lack et al., 2005) as well as
in ethanol-dependent animals during withdrawal (Sommer et al.,
2008).

The recruitment of CRF in the CeA during early drinking
episodes, before dependence, may initiate neuroplastic changes in
the system that may become more intense with additional ethanol
exposures (Lowery-Gionta et al., 2012). It has been proposed that
this CRF-dependent change contributes to the transition from
binge-drinking to ethanol dependence (Lowery-Gionta et al.,
2012). The authors also found that ethanol enhances GABAergic
transmission in the amygdala at both pre- and post-synaptic

sites in ethanol naïve animals, while binge ethanol consump-
tion blunts the CRF-mediated GABAergic transmission (Lowery-
Gionta et al., 2012). This study revealed that drinking reduced
the effect CRF has on GABAergic transmission. In contrast,
others have found that animals dependent on ethanol showed
enhanced GABAergic transmission in the CeA (Roberto et al.,
2004).

CRF and norepinephrine have been shown to increase
GABAergic activity measured by GABAA inhibitory postsynap-
tic potential (IPSCs) in whole-cell recording from the CeA. This
effect was blocked by CRF-R1 antagonists and blocked in CRF-
R1 knockout mice (Nie et al., 2004; Kash and Winder, 2006).
The augmented GABA release produced by ethanol in the CeA
in dependent animals was observed both in electrophysiologi-
cal and in vivo microdialysis experiments (Roberto et al., 2003).
Later studies in ethanol-dependent rats corroborated that CRF-
alcohol interaction on GABAergic transmission in the CeA is
more pronounced during alcohol dependence (Roberto et al.,
2004).

CONCLUSIONS
This review has summarized the multiple mechanisms that
underlie persistent changes in synaptic efficacy following admin-
istration of addictive drugs. It is evident that the CRF system
significantly facilitates the induction and maintenance of plas-
ticity in the VTA and amygdala, with resulting enhancement of
glutamate-mediated excitation and reduction of GABA-mediated
inhibition, thus contributing to the molecular basis of drug
addiction.

Neuroplasticity in brain reward circuitry following a history
of ethanol dependence has been shown (Hansson et al., 2008).
Experimental data illustrated in this review support the hypoth-
esis that stress induces plasticity within the VTA and amygdala
nuclei and may participate in the development of a chronic anx-
iety state that could lead to the development of SUDs. These
changes in the limbic neuronal network may represent the trig-
ger that may lead to loss of control of drug use. Addictive drugs
have been shown to induce behavioral sensitization and there is a
large body of literature that evaluates the role of stress and addic-
tive behaviors. Studies of long-term neuroadaptation in alcohol
addiction have shown that brain stress and fear systems become
activated (Heilig et al., 2010); however, there is still much to be
elucidated pertaining to drugs’ actions on the CRF system, both
in regard to synaptic plasticity and behavioral responses. Several
blood–brain barrier-penetrating CRF-R1 antagonists have been
developed, however while some compounds have shown effi-
cacy in animal models to treat alcoholism (Gehlert et al., 2007,
2012), CRF-R1 antagonists have still not succeeded in clinical
trials (Koob and Zorrilla, 2012).

Preventing all exposure to substances of abuse is almost
impossible, as many psychoactive substances (alcohol, nicotine,
caffeine, and prescription medications) are generally accepted in
our society. There are many medications that are FDA approved
or used off-label for alcohol dependence that focus on the treat-
ment of symptom reduction (disulfuram, naltrexone), assistance
with withdrawal (benzodiazepines, valporic acid, varenicline),
and relapse prevention (acamprosate, ondansetron, baclofen,
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topiramate, varenicline, methadone) and others FDA approved
medications for other indications are at the preclinical stage
(mifepristone) (Simms et al., 2011), however, the recidivism in
drug abuse is still a major problem for SUDs. Although differ-
ent classes of substances of abuse have different mechanisms of
action, repeated drug use leads to stimulation of the HPA axis
and the abrupt cessation of chronic drug use increases activation
of CRF. Medications that modulate stress responses may offer a
novel pharmacotherapeutic approach for SUDs. Regulating stress
outcomes by acting on the CRF system may offer the possibility
to develop that novel therapeutic directed to diminish the effect
of CRF in synaptic transmissions. By easing the stress-induced
drug seeking, it may be possible to reduce relapse and facilitate

the formation of memories with less deleterious behavioral
consequences.
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