
REVIEW
published: 06 May 2015

doi: 10.3389/fphys.2015.00134

Frontiers in Physiology | www.frontiersin.org 1 May 2015 | Volume 6 | Article 134

Edited by:

Michael Rubart,

Indiana University School of Medicine,

USA

Reviewed by:

William Louch,

University of Oslo, Norway

Frank B. Sachse,

University of Utah, USA

*Correspondence:

Long-Sheng Song,

Division of Cardiovascular Medicine,

Department of Internal Medicine,

François M. Abboud Cardiovascular

Research Center, Carver College of

Medicine, University of Iowa, 285

Newton Road, 2269A CBRB, Iowa

City, IA 52242, USA

long-sheng-song@uiowa.edu

Specialty section:

This article was submitted to

Cardiac Electrophysiology,

a section of the journal

Frontiers in Physiology

Received: 04 March 2015

Accepted: 15 April 2015

Published: 06 May 2015

Citation:

Chen B, Zhang C, Guo A and Song

L-S (2015) In situ single photon

confocal imaging of cardiomyocyte

T-tubule system from

Langendorff-perfused hearts.

Front. Physiol. 6:134.

doi: 10.3389/fphys.2015.00134

In situ single photon confocal
imaging of cardiomyocyte T-tubule
system from Langendorff-perfused
hearts
Biyi Chen, Caimei Zhang, Ang Guo and Long-Sheng Song*

Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center,

Carver College of Medicine, University of Iowa, Iowa City, IA, USA

Transverse tubules (T-tubules) are orderly invaginations of the sarcolemma in

mammalian cardiomyocytes. The integrity of T-tubule architecture is critical for cardiac

excitation–contraction coupling function. T-tubule remodeling is recognized as a key

player in cardiac dysfunction. Early studies on T-tubule structure were based on electron

microscopy, which uncovered important information about the T-tubule architecture. The

advent of fluorescent membrane probes allowed the application of confocal microscopy

to investigations of T-tubule structure. Studies have now been extended beyond single

cardiomyocytes to examine the T-tubule network in intact hearts through in situ confocal

imaging of Langendorff-perfused hearts. This technique has allowed visualization of

T-tubule organization in their natural habitat, avoiding the damage induced by isolation

of cardiomyocytes. Additionally, it is possible to obtain T-tubule images in different

subepicardial regions in a single intact heart. We review how this state-of-the-art imaging

technique has provided important mechanistic insights into maturation of T-tubules in

developing hearts and defined the role of T-tubule remodeling in development and

progression of heart failure.
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Introduction

In the heart, the highly organized transverse (T)-tubule network provides the ultrastructural basis
for rapid electrical excitation, initiation and synchronous triggering of Ca2+ release from the
sarcoplasmic reticulum (SR), all of which are essential for coordinated myocyte contraction (Brette
and Orchard, 2003; Ibrahim et al., 2011; Guo et al., 2013). Studies using electron microscopy and
high resolution optical microscopy provided ample evidence that T-tubules are orderly extensions
of the surface sarcolemma that run transversely along Z-lines at a regular spacing of ∼2µm with
a diameter of 200–400 nm (Fawcett and McNutt, 1969; Kostin et al., 1998; Soeller and Cannell,
1999; Savio-Galimberti et al., 2008; Wagner et al., 2012). The concept of the “cardiac dyad” was
first established based on the tight association of T-tubules with the terminal cisternae of the
SR, also visualized by electron microscopy (Nelson and Benson, 1963; Rostgaard and Behnke,
1965; Fawcett and McNutt, 1969). We now understand that precise communication between
voltage-gated L-type Ca2+ channels (LTCCs) located mainly on the T-tubule membrane and
Ca2+ release channels/ryanodine receptor channels (RyRs) on the SR is essential for normal
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excitation–contraction (E–C) coupling (Stern, 1992; Sun et al.,
1995; Wang et al., 2001; Guo et al., 2013). In the present
review, we will discuss how the T-tubule in situ confocal imaging
technique has emerged as a new approach to ask questions
regarding ultrastructural changes in intact hearts.

Methods for In Situ Confocal Imaging of
T-Tubules

Issues with Imaging Dissociated Living Myocytes
For many years, electron microscopy was the only method
available to visualize T-tubule ultrastructure. Many previous
studies using electron microscopy have provided valuable
information and ultrastructural view of T-tubules and its
organization within the cardiomyocytes (Nelson and Benson,
1963; Rostgaard and Behnke, 1965; Simpson, 1965; Ayettey
and Navaratnam, 1978; Di Maio et al., 2007; Hayashi et al.,
2009). However, electron microscopy studies have several
caveats, including the complex and time-consuming steps of
fixation, dehydration, embedding, sectioning, etc. In 1999, two-
photon molecular excitation microscopy and digital image-
processing methods were applied to examine T-tubules in living
cardiomyocytes (Soeller and Cannell, 1999). This approach
overcame the technical limitations of electron microscopy and
allowed visualization of the exquisite complexity of the T-tubule
system in live cells. Since then, many groups reported the
use of two photon or single photon confocal microscopy to
study T-tubule structure in living cardiomyocytes (He et al.,
2001; Louch et al., 2006; Song et al., 2006; Heinzel et al.,
2008; Dibb et al., 2009; Lyon et al., 2009; Ohler et al., 2009;
Stolen et al., 2009; Ibrahim et al., 2010; Wagner et al., 2012).
However, all of these studies were limited to single isolated
myocytes. Enzymatic dissociation of myocytes may impair the
T-tubule membrane of healthy cells. Also, those myocytes with
severely damaged T-tubule membranes may be more fragile
due to enzymatic digestion, mechanical stirring, and changes to
cellular processes such as Ca2+ unloading and reloading during
myocyte isolation process. These factors intrinsic to the isolation
of cardiomyocytes are an obstacle to identifying subtle changes
in T-tubule membrane structure in disease. In addition to using
living isolated cardiomyocytes, fixed myocardium tissue sections
were also used for T-tubule studies (Kaprielian et al., 2000;
Crossman et al., 2011; Richards et al., 2011; Wu et al., 2012). This
is particularly useful for imaging T-tubule structure of myocytes
from large mammals and heart samples from human. In this
approach, wheat germ agglutinin (WGA) conjugated to an Alexa
Fluor is commonly used to label plasma membrane including T-
tubules (Chazotte, 2011). Because of the advantage ofWGAbeing
able to label T-tubules in fixed cells, WGA labeling has been used
as a marker of T-tubules in combination with immunolabeling of
other E–C coupling or T-tubule associated proteins (e.g., LTCCs,
RyRs, Na+/Ca2+ exchanger, carveolin-3, etc.) for simultaneous
examination of the organization and spatial relationship between
T-tubules and key E–C coupling proteins in health and diseased
hearts (Jayasinghe et al., 2009; Crossman et al., 2011; Sachse et al.,
2012).

Technical Details of In Situ Imaging
Langendorff Perfusion Setting
In order to identifying subtle and comprehensive changes
in T-tubule membrane structure of cardiomyocytes in their
natural habitat, our group developed methods for in situ
confocal imaging of T-tubules in intact hearts (Wei et al.,
2010). First, we adapted the set-up of a laser scanning confocal
microscope to include a Langendorff perfusion system as shown
in Figure 1. The height of the perfusion apparatus is set at
∼80 cm. The perfusate solution consists of normal Tyrode’s
solution with no Ca2+ (NaCl 137mM, KCl 5.4mM, HEPES
10mM, Glucose 10mM, MgCl2 1mM, NaH2PO4 0.33mM,
pH adjusted to 7.4 with NaOH, oxygenated with 95% O2

and 5% CO2). The heart is perfused for ∼30min with
perfusate containing membrane lipophilic marker MM 4-64
(AAT Bioquest, Inc) at a concentration of 5µM. For T-tubule
imaging, it is not necessary for the perfusate to be at physiological
temperature, and thus most studies are performed at room
temperature.

T-tubule Image Acquisition
After T-tubule staining is completed, the heart is transferred to a
chamber attached to a laser scanning confocal microscope, with
the region of interested positioned to face the lens (Figure 1).
For larger species (e.g., rat), sub-regions of the heart can be
imaged, such as posterior or anterior LV. Specific imaging
parameters are detailed as follows. The laser scanning confocal
microscope is equipped with an oil immersion optical lens
(40X or 63X, NA = 1.3). The laser excitation for MM 4-64
is 488, 543 or 561 nm, due to its broad excitation spectrum,
whose power is comparable to that used for imaging of isolated
myocytes. The optical pinhole was set to 1 airy disc. The
maximum depth for high resolution imaging in our system
is ∼70µm, which limits imaging to subepicardial myocytes.
Practically, we choose the focus plane that yields the best

FIGURE 1 | Diagram of in situ confocal imaging system.
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image quality. With a 40X lens, each scanning frame (1024 ×

1024 pixels) covers a 202 × 202 µm2 area, which contains
on average 10–20 myocytes (Figure 2). Scanning sequentially
along the surface of the heart allows for visualization of T-
tubules in different subepicardial regions of an intact heart. For
more thorough analyses, one can perform sequential imaging
along the Z-axis at desired intervals in addition to planar (XY)
scanning.

T-tubule Image Analysis
The most important characteristics of the myocyte T-tubule
system is the highly organized, periodic pattern with regular
spacing (∼2µmdistance). Approaches to determine the integrity
of the T-tubule system include measuring the density (area)
(He et al., 2001; Heinzel et al., 2008; Lyon et al., 2009;
Pavlovic et al., 2010; Kemi et al., 2011; Ibrahim et al., 2013)
and regularity based on the power of the frequency spectrum
of spatially repeated elements (TTpower). (Song et al., 2006;
Wei et al., 2010; Kemi et al., 2011; Wu et al., 2011; Swift
et al., 2012; Ibrahim et al., 2013). However, caveats that are
unique to each of these two methods limit data interpretation
and quantitative comparison of images acquired from different
studies. To overcome these limitations, we recently developed

FIGURE 2 | In situ confocal imaging of T-tubules on intact rat heart and

T-tubule image analysis. (A) A typical t-tubule image from the epicardium of

Langendorff-perfused intact rat heart (control, sham-operated) loaded with

lipophilic membrane indicator FM4-64. (B) The periodically organized

T-tubules were viewed from a 3D reconstruction of 25 confocal stacks at

0.2µm interval. Scale bar: 20µm. (C) Power spectrum retrieved from a 2D

Fourier transformation of T-tubule image characterized the power magnitude

of the regular organization of T-tubule system. Data are adapted from Wei et al.

(2010).

a program, AutoTT, which performs automated analysis of T-
tubule images (Guo and Song, 2014). AutoTT is freely available
to academic investigators. Features of AutoTT include (1)
automated analysis of T-tubules; (2) image preprocessing to
remove noise; (3) minimal influence of image brightness on
data analysis (grayscale images are converted to binary black-
and-white images); (4) enhanced comparison among images via
analysis of topological architecture (sketches) rather than raw
images and normalization of parameter(s). While AutoTT is
optimized for analysis of single myocytes, a revised version allows
for analysis of T-tubules in images of intact hearts. The original
version, using images of single myocytes, removes cellular
boundaries and analyzes the remaining intracellular structures.
Analysis of images from intact hearts in the revised AutoTT
program requires manual selection of intracellular structures,
which can then be subjected to automated analysis of T-tubule
density and regularity.

Advantages of In Situ Confocal T-Tubules Imaging
• Ability to image cardiac (ultra)structure in its native

environment.
• Avoids artifacts associated with dissociation of

cardiomyocytes.
• Subtle changes in T-tubule architecture can be visualized and

quantitated.
• Ability to visualize T-tubules in multiple regions of the heart,

including atrial, LV and RV epicardium.
• In larger species (e.g., rat), sub-regions of the heart can be

imaged, such as posterior or anterior LV.
• For studies of infarcted hearts, it is relatively easier to image

the infarct, border and remote zones.
• Technique can also be applied to image other features in

intact hearts, such as Ca2+ handling and mitochondrial
properties (reactive oxygen species, mitochondrial membrane
potential, etc.).

Disadvantages of In Situ Confocal T-Tubule Imaging
• In situ T-tubule imaging is much more costly as compared to

imaging in dissociated myocytes (i.e., requires a significantly
larger amount of MM 4-64 per each experiment).

• Confocal microscope set-up must be adapted to incorporate
Langendorff perfusion system.

• Imaging is restricted to subepicardial myocytes due to
limitations in laser penetration; endocardium cannot be
imaged.

• In situ imaging is not applicable for imaging subepicardium in
large mammals (e.g., dog, pig or human samples, due to the
thickness of the epicardium).

Two Additional Notes
• Phototoxicity issue: We do not expect greater phototoxicity

in in situ imaging as compared to single cell imaging. This
is because the laser power used for in situ imaging is highly
comparable to that used for single cell imaging.

• Temporal degradation: This should not be a concern. First the
experiments are performed at room temperature as used for
isolated myocytes. For each heart, experiments can be done
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within 1–1.5 h (starting from excision of the heart from the
animal). This length of time is even shorter than the approach
of using isolated myocytes. Isolated cells are usually studied
several hours (e.g., 4–5 h) after isolation.

Novel Findings using In Situ Confocal imaging of
T-Tubules
Studies using electron microscopy and laser scanning confocal
imaging of fixed tissue samples or isolated cardiomyocytes
provided the first evidence that T-tubules are altered in failing
hearts (Maron et al., 1975; Schaper et al., 1991; Kostin et al.,
1998; Kaprielian et al., 2000; He et al., 2001; Cannell et al.,
2006; Louch et al., 2006; Heinzel et al., 2008; Lyon et al., 2009).
However, it was unknown at the time whether pathological
T-tubule remodeling only occurs in failing hearts, or if it
starts earlier, e.g., in the compensated hypertrophy stage, and
if so, how it evolves during the transition from hypertrophy
to heart failure. Application of in situ T-tubule imaging has
revealed that not only is T-tubule remodeling a mediator of
heart failure, but T-tubules are critical for normal cardiac
development and function. In this section, we review how
in situ confocal imaging has provided key insights into the
timing and regional differences in T-tubule integrity following
cardiac stress and in developing hearts. In addition, we describe
current efforts to prevent or reverse deleterious T-tubule
remodeling.

T-tubule Remodeling in Animal Models of Heart

Failure
The first application of in situ confocal imaging of T-tubules
was applied to a rat pressure overload model of cardiac stress
(Wei et al., 2010). Following thoracic aortic banding, we utilized
in situ T-tubule imaging to investigate the natural evolution
of T-tubule remodeling over a spectrum of heart disease
(compensated hypertrophy, early heart failure and advanced
heart failure). We found that discrete local loss and global
reorganization of the T-tubule system starts early in compensated
hypertrophy in LV myocytes, prior to detectable LV dysfunction
as assessed by echocardiography. At the onset, this process was
manifested as subcellular T-tubule loss limited to discrete local
regions in some LV myocytes, while the T-tubule structure in
right ventricular (RV) myocytes was unaffected. However, with
progression from compensated hypertrophy to early and late
heart failure, T-tubule remodeling spreads from the LV to the
RV. By the advanced stage of heart failure, the severity of T-
tubule disruption in RV myocytes is equivalent to that seen in
LV myocytes.

This work provided the first evidence that T-tubule
remodeling may constitute a key mechanism underlying
the transition from compensated hypertrophy to heart failure.
Use of in situ confocal T-tubule imaging also allows comparison
of T-tubule integrity in different regions within the same
heart, i.e., LV and RV myocytes. These data revealed that
T-tubule damage is not a response to global neurohormonal
changes, which would manifest as similar changes in LV and
RV myocytes at each stage in heart failure progression. In
addition, in situ imaging provides an opportunity to visualize

and quantitate subtle changes in T-tubule architecture which
may not be apparent in isolated myocytes. For example, in
unpublished studies of isolated myocytes from pressure overload
hypertrophied hearts, we did not observe changes in the T-tubule
integrity as compared to sham control hearts (Figure 3). This is
in contrast to our published findings that T-tubule remodeling
is apparent in intact hearts in the compensated hypertrophy
stage.

In situ confocal imaging has demonstrated that T-tubule
remodeling is a common phenotype in several different models
of heart failure, including rat models of pulmonary artery
hypertension or systemic hypertension (Xie et al., 2012; Shah
et al., 2014), mouse models of ischemic or pressure overload
cardiomyopathy (Chen et al., 2012a; Guo et al., 2014), and
mouse models with genetic modifications (Wu et al., 2011; Tao
et al., 2012). Using a murine model of myocardial infarction,
we have also investigated the severity of T-tubule remodeling in
different regions relative to the infarct (Figure 4) (Chen et al.,
2012a). In situ imaging demonstrated that myocardial infarction
causes remarkable T-tubule remodeling near the infarction
border zone (the area adjacent to the infarction), moderate
remodeling in LV remote from themyocardial infarction (remote

FIGURE 3 | In situ imaging reveals T-tubule damage in both

compensated and decompensated hypertrophy (A). By contrast, the

TTpower in isolated myocytes from sham and hypertrophied TAB hearts is

similar (B), indicating that the isolation process results in damage to T-tubules.

This damage prevents comparative quantitative analysis of T-tubule integrity

following hypertrophy. **P < 0.01 vs. Sham, ††P < 0.01 vs. Hypertrophy,
‡‡P < 0.01 vs. Early heart failure, n = 5–8.
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FIGURE 4 | Differential T-tubule remodeling in the border and remote

zones relative to the infarct region as evidenced by in situ confocal

imaging. Images from different regions of the same heart can be captured

and quantitated to compare the extent of T-tubule damage these various

regions. Representative T-tubule images were acquired from regions as

indicated. Bottom panel shows average data of TTpower from different regions.

**P < 0.01 vs. sham LV, ††P < 0.01 vs. MI border zone, P < 0.01 among

groups. Data are adapted from Chen et al. (2012a).

zone), and no damage to RV T-tubules. Quantitative analysis
showed the TTpower is significantly different between the border
and remote zones, suggesting that the damage to the border
zone is more pronounced but the remote zone is also affected
(Figure 4). Similar to the findings with the pressure overload
model, where T-tubule remodeling began in LV myocytes
and extended to RV myocytes with disease progression, these
data using the MI model support the hypothesis that T-
tubule damage is not due to defects in global neurohormonal
system.

In addition to studies of T-tubule remodeling in diseased
hearts, we also used in situ confocal imaging to determine the
time course of T-tubule maturation in developing rodent hearts
(Chen et al., 2013). In mice, T-tubules are absent in both left
and right ventricular murine myocytes as late as postnatal day 8
and do not appear until day 10. T-tubules progressively increase
between postnatal days 10 and 19, when it is similar to adult
murine cardiomyocytes. Similar results were observed in rat
hearts, though on a delayed time scale. Minimal T-tubules were
apparent at postnatal day 13, significantly increased at day 15,
and continued to gradually mature through day 23. These data
are in line with previous reports using confocal imaging of
isolated myocytes from murine and rat hearts (Ziman et al.,
2010; Hamaguchi et al., 2013), though with in situ imaging we
were able to demonstrate that T-tubule development in murine

hearts begins as early as postnatal day 10. Studies with isolated
myocytes only visualized a T-tubule network beginning at day
14 (Hamaguchi et al., 2013). The development of the T-tubule
system in larger animals is likely later as compared to rodents
(Haddock et al., 1999). Interestingly, our imaging analysis also
revealed that the density of transverse but not longitudinal
tubules gradually increases during development. This study
highlights the utility of in situ confocal imaging to visualize T-
tubule organization in cardiomyocytes from very young mice,
which are difficult to isolate and frequently lose their native
morphology after dissociation.

Prevention of T-tubule Remodeling or Restoration of

T-tubule Integrity
Building on in situ imaging results that establish T-tubule
remodeling as a key mediator of heart failure, we have also
asked if strategies to restore cardiac function prevent or reverse
T-tubule damage. In one study, we used a murine model of
myocardial infarction to examine how β-adrenergic receptor
blockade impacts T-tubule ultrastructure. (Chen et al., 2012a)
β-adrenergic receptor blockers metoprolol and carvedilol are
widely prescribed to improve LV function after infarction, yet
the full mechanism of drug action is not clear. Mice were
administered metoprolol or carvedilol 3 days after surgery, and
then T-tubule integrity quantitated by in situ confocal imaging
at 5 weeks post infarction. Our study demonstrates that both
metoprolol and carvedilol protect against T-tubule remodeling in
both the remote and border zones. These data provide evidence
that the beneficial effect provided by β-adrenergic receptor
antagonist includes protection against T-tubule remodeling post
infarction. In a parallel study, we found that sildenafil, a
phosphodiesterase type 5 inhibitor that was recently approved
for treatment of pulmonary artery hypertension, prevents and
partially reverses ultrastructural remodeling of failing right
ventricular myocytes (Xie et al., 2012).

T-tubule imaging also provided key mechanistic insights
into how the increase in microtubule density upon cardiac
stress is linked to LV contractile dysfunction. Microtubules are
ubiquitous cytoskeletal fibers formed by polymerization of α-
and β-tubulin dimers. Excessive microtubule polymerization
(“densification”) is a common observation in multiple animal
models of cardiac disease and is associated with adverse
cardiac phenotypes in humans. (Tsutsui et al., 1993, 1994;
Heling et al., 2000; Zile et al., 2001) Our recently reported
study showed that microtubule depolymerization with colchicine
profoundly attenuates T-tubule impairment and improves
cardiac function following cardiac stress. Our study further
suggests that microtubule densification mediates junctophilin-2
mis-trafficking and thus abnormal localization, causing T-tubule
alterations and contractile dysfunction under pressure overload
stress (Zhang et al., 2014).

In our studies of T-tubule remodeling in multiple models of
heart failure, we consistently observed a loss in the structure
protein junctophilin-2, which is implicated in the formation of
T-tubule/SR junctions and thereby E–C coupling. For example,
we and others have observed a significant loss in the expression
of junctophilin-2 in multiple different models of heart failure.
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FIGURE 5 | T-tubule damage is reversible. Top panel displays in

situ images of T-tubules from the LV of wildtype (WT – left) and

Gαq mice (center) treated with tamoxifen for 2 weeks, and Gαq

mice treated with tamoxifen for 2 weeks following by tamoxifen

withdrawal for 3 weeks (recovery – right). Bottom panel shows

quantitative assessment of T-tubule organization by power spectrum

analysis (TTpower). T-tubule integrity in the Gαq recovery group was

almost restored to normal levels. **P < 0.01 vs. WT, ††P < 0.01 vs

Gαq mice treated with tamoxifen for 2 weeks. Data are adapted

from Wu et al. (2014).

(Minamisawa et al., 2004; Landstrom et al., 2007; Xu et al.,
2007; Wei et al., 2010; Chen et al., 2012a; Wu et al., 2012;
Xie et al., 2012). Furthermore, deficiency of junctophilin-2
prevents maturation of the T-tubule system in developingmurine
hearts (Chen et al., 2013). In light of the emerging importance
of junctophilin-2 in cardiac excitation–contraction coupling
and T-tubule remodeling in health and disease, we generated
transgenic mice with inducible cardiac specific overexpression
of junctophilin-2 protein. While mice are normal at baseline,
constitutive transgenic junctophilin-2 overexpression protects
against heart failure by maintaining T-tubule structural integrity
following cardiac stress (Guo et al., 2014). The design of this
model will allow in the future to determine whether augmenting
junctophilin-2 expression is a strategy to reverse T-tubule
damage.

The most compelling evidence that T-tubule remodeling can
be reversed was obtained through studies of a reversible model
of heart failure via inducible transgenic expression of the G
protein coupled receptor Gαq (Wu et al., 2014). Upon Gαq
activation, the transgenic mice exhibit heart failure which is
reversed by cessation of Gαq activation. More importantly, we
found transgenic Gαq expression causes a severe disruption of
the T-tubule network and loss of junctophilin-2 expression in

transgenic Gαq hearts, which could also be reversed by turning
offGαq (Figure 5). In addition, treatment with a calpain inhibitor
at the time of Gαq induction prevents T-tubule remodeling and
junctophilin-2 loss. The proposed mechanism is that cardiac
stress results in calpain-mediated degradation of junctophilin-2,
T-tubule remodeling and E–C coupling dysfunction. Strategies
to prevent the loss of junctophilin-2 may therefore represent
an approach to restore cardiac function after initial T-tubule
damage.

Conclusions

The power of in situ confocal imaging to provide novel insights
into the cardiac ultrastructure and function in intact hearts
is undeniable. However, this methodology has not achieved
wide-spread application because of technical considerations and
experience. For example, in situ T-tubule imaging requires a
dedicated confocal microscope with a Langendorff perfusion
system, which is not practical for laboratories that rely on core
facilities for microscopy needs. In addition, a certain degree
of technical skill is required to acquire high quality images.
The applicability of in situ confocal imaging is not restricted
to T-tubules. Indeed, it can be used to image other parameters
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critical for cardiac function, such as action potential (Bu et al.,
2009), Ca2+ dynamics (Kaneko et al., 2000; Rubart et al., 2003;
Aistrup et al., 2006, 2009; Fujiwara et al., 2008; Chen et al.,
2012b; Zhang et al., 2013), mitochondrial structure (Wei et al.,
2010; see Supplemental data of this reference) and function
(Zhang et al., 2013) and studies of free radicals (Wang et al.,
2008), etc.
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