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Abstract: Critical temporal changes such as weekly fluctuations in surveillance systems often reflect
changes in laboratory testing capacity, access to testing or healthcare facilities, or testing preferences.
Many studies have noted but few have described day-of-the-week (DoW) effects in SARS-CoV-2
surveillance over the major waves of the novel coronavirus 2019 pandemic (COVID-19). We examined
DoW effects by non-pharmaceutical intervention phases adjusting for wave-specific signatures using
the John Hopkins University’s (JHU’s) Center for Systems Science and Engineering (CSSE) COVID-19
data repository from 2 March 2020 through 7 November 2021 in Middlesex County, Massachusetts,
USA. We cross-referenced JHU’s data with Massachusetts Department of Public Health (MDPH)
COVID-19 records to reconcile inconsistent reporting. We created a calendar of statewide non-
pharmaceutical intervention phases and defined the critical periods and timepoints of outbreak
signatures for reported tests, cases, and deaths using Kolmogorov-Zurbenko adaptive filters. We
determined that daily death counts had no DoW effects; tests were twice as likely to be reported
on weekdays than weekends with decreasing effect sizes across intervention phases. Cases were
also twice as likely to be reported on Tuesdays-Fridays (RR = 1.90–2.69 [95%CI: 1.38–4.08]) in the
most stringent phases and half as likely to be reported on Mondays and Tuesdays (RR = 0.51–0.93
[0.44, 0.97]) in less stringent phases compared to Sundays; indicating temporal changes in laboratory
testing practices and use of healthcare facilities. Understanding the DoW effects in daily surveillance
records is valuable to better anticipate fluctuations in SARS-CoV-2 testing and manage appropriate
workflow. We encourage health authorities to establish standardized reporting protocols.

Keywords: COVID-19; data reliability; day-of-the-week effects; Kolmogorov-Zurbenko filters;
nonpharmaceutical interventions; precision public health; stringency

1. Introduction

One of the most important lessons of the novel coronavirus 2019 pandemic (COVID-19)
has been the importance and utility of real-time infectious disease surveillance for mon-
itoring, tracking, and reducing emerging infectious outbreaks [1–3]. Worldwide, and in
the United States, SARS-CoV-2 surveillance has been made possible by collaborations
between governmental agencies, public health authorities, healthcare systems, academic
institutions, and media outlets to collect, curate, distribute, and communicate spatially
and temporally refined health surveillance records [4,5]. Unlike most publicly available
infectious disease surveillance data, SARS-CoV-2 reported tests, cases, and deaths have
been curated at a daily temporal resolution and state- and county-level geographic areas.
These reporting protocols create unique opportunities for public health professionals to
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explore the patterns associated with broad intervention measures or often common yet
overlooked patterns in reported data. The systematic changes in COVID-19 outcomes
triggered by various interventions are under ongoing investigations by many research
groups, yet a more granular and less obvious weekly variations are less explored.

One such pattern is day-of-the-week (DoW) effects, which describe differences in the
reporting of health outcomes for some weekdays compared to a single reference day. To
date, few studies have aimed to describe and quantify DoW effects in daily SARS-CoV-2
surveillance data. Instead, many studies aggregate or average daily records into weekly
counts or rates or adjust for the DoW effects with various statistical techniques and thus
ignore the potentially substantial and informative variations and differences between
weekday or weekend reporting or their changes over time [6–9]. However, DoW effects
reflect important patterns in the availability and capacity of laboratory testing facilities as
well as popular preferences for seeking testing. The presence of DoW effects help to inform
public health testing facilities and laboratories which days of the week have the highest or
lowest demands for testing. In doing so, these facilities and public health agencies can better
collaborate, anticipate, and manage laboratory testing resources and the scheduling of
personnel to accommodate higher testing demands [10–13]. By examining how DoW effect
sizes change over time, public health professionals can also monitor changes in popular
preferences throughout the year, such as before and during times of federal or religious
holidays or after the relaxation of non-pharmaceutical interventions [14–17]. This real-time
surveillance improves the timeliness of test stockpiling and improves testing availability
using mobile testing, the opening of additional test clinics, or subsidizing at-home, low-cost
testing kits.

Examination of DoW effects has proven extremely beneficial in public health planning
and programming for other respiratory illnesses and burdens. For example, influenza and
influenza-like-illnesses have demonstrated clear increases in the reporting of tests and cases
on weekdays compared to weekends due to laboratory testing capacity [18,19]. These find-
ings have informed patterns of seasonal vaccination rollout and preparations for increased
influenza testing capacity to accommodate increased volumes of seasonal influenza cases.
Other calendar effects, including holiday effects, have identified amplification and dampen-
ing of influenza incidence due to social holidays and school closures, respectively [19–21].
Within environmental health sciences, DoW effects have been recognized for a long time in
both the exposure and outcome variables [22,23].

One of the challenges of studying DoW effects is the need for assuring data quality,
the absence of structural missingness or spikes (say during weekends or holidays), and
consistency in reporting of time-referenced records. Now almost 2 years into the ongo-
ing pandemic, several reports and commentaries have discussed limitations of publicly
available COVID-19 surveillance data and the need for improvement as the pandemic per-
sists [24–31]. For example, many statewide agencies use a variety of dates for reported cases
such that a positive test result could be reported by the date of symptom onset, specimen
collection, positively identified culture, or date of reporting [27,31]. Similarly, the definition
of SARS-CoV-2 deaths may rely on a positive test shortly before or after death (which would
underestimate deaths depending on testing availability) or include individuals who were
not tested but were suspected of having SARS-CoV-2 (likely overestimating deaths) [29].
Despite these criticisms, few studies have quantified patterns to reporting inconsistencies
or missing data in commonly used publicly available surveillance data [32,33].

In this study, we examined DoW effects using publicly available SARS-CoV-2 surveil-
lance data reported from 2 March 2020 through 7 November 2021. We used John Hopkins
University’s (JHU’s) Center for Systems Science and Engineering (CSSE) COVID-19 data
repository in Middlesex County, Massachusetts, USA. We inspected and cross-referenced
JHU data with the records of the Massachusetts Department of Public Health (MDPH)
COVID-19 data dashboard. We defined major waves, their critical periods and points—
constituting so-called outbreak signatures—for reported tests, cases, and deaths using
Kolmogorov-Zurbenko adaptive filters with a 21-day smoothing window. We modeled
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DoW effects using segmented time series analyses that adjusted for linear and quadratic
trends within outbreak signatures’ critical periods. We evaluated differences in DoW ef-
fects by Massachusetts non-pharmaceutical intervention phases and their stringency. By
exploring DoW effects, public health professionals can identify patterns of reporting and
begin to speculate testing capacity limitations and popular testing preferences to precisely
model outbreak signatures.

2. Methods
2.1. Data Extraction and Management

In December 2019, JHU CSSE designed an online interactive dashboard to curate and
report cumulative incidence of SARS-CoV-2 cases, deaths, and recoveries [34]. Scraping
electronic health records from city, state, and national health agencies, this publicly available
data repository provided the most extensive reporting of SARS-CoV-2 information in the
United States [35,36]. We extracted cumulative counts of cases and deaths for all US
counties from Monday, 2 March 2020 through Sunday, 7 November 2021 [37].

Upon extraction, we subset data for Middlesex County, Massachusetts as a case study
to explore DoW effects in publicly available surveillance data. We selected Massachusetts as
it ranked 2nd nationwide in healthcare access and 4th nationwide in public health spending
throughout our study period [38]. These rankings suggested that Massachusetts would
have highly reliable and complete SARS-CoV-2 surveillance data. We selected Middlesex
County as it was the most populous county in the state (~25% of residents) and the New
England region [39].

JHU metadata reported several modifications in historic records as of 10 November 2021
(data download date) [40]. First, JHU back-distributed probable cases previously reported
on 12 June 2020 across 15 April through 11 June 2020 in accordance with revised MDPH
records. Second, MDPH revised reporting methodology of cumulative cases and deaths
on 19 August 2020. New guidelines transitioned from aggregating probable and con-
firmed cases to reporting confirmed cases only. Reporting methodology changed again on
3 September 2020 when MDPH revised definitions of probable cases to exclude antibody
tests, resulting in the removal of 8051 historic reported cases statewide [40].

Similarly, JHU reported that 680 positive cases prior to 1 December 2020 were not
reported by MDPH due to technical issues at laboratory testing facilities [40]. JHU redis-
tributed historic cases, yet no metadata described how such redistribution occurred. Finally,
JHU uploaded electronic records from MDPH weekly on Monday-Friday only; metadata
provided no information on how weekend records were reported. While JHU reported
state and county level test data nationwide from 2 March 2020 through 1 August 2021, no
records were available for Middlesex County or Massachusetts [41].

We extracted MDPH cumulative reports for SARS-CoV-2 cases and deaths to validate
JHU records [42,43]. MDPH reported cumulative cases starting 17 April 2020 while cumu-
lative deaths were reported starting 1 June 2020. Neither cases nor deaths were reported
from 12–18 August 2020, one week prior to changes in statewide case reporting guidelines.
We extracted cases and deaths for Middlesex County, however no county-level reported
tests were available [42,43]. Instead, we extracted state-level reported tests to approximate
DoW effects in Middlesex County.

We estimated daily tests, cases, and deaths by subtracting cumulative counts of health
outcomes from successive days. We estimated daily rates as the ratio of daily counts
to annual population estimates (drawn from the 2010 US Census) and multiplied by
1,000,000. We reported tests, cases, and deaths per 1,000,000 persons (‘tpm’, ‘cpm’, and
‘dpm’, respectively).

2.2. Inspection of Data Reliability

We examined JHU data reliability for health outcomes using 3 metrics. First, we
explored quantities and patterns of completeness, defined as the number of time points
with non-missing records [44]. Completeness reflected the number of days with usable
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health records in our study period. We differentiated incomplete records (i.e., blanks)
from days with 0 counts and examined patterns of completeness by DoW and Gregorian
calendar date.

Next, we examined data precision, defined as the plausibility of case information (e.g.,
negative counts). Data imprecision suggested inaccurately reported or modified records.
We corrected negative counts by replacing negative values with 0 counts and subtracting
1 test, case, or death from as many days as the absolute value of negative counts.

Finally, we explored data interoperability, defined as the concordance between surveil-
lance systems’ records. As JHU extracted data directly from MDPH, we expected strong
concordance between systems for cases and deaths. We identified days with concordant
and discordant data to clarify discrepancies between surveillance systems.

2.3. Defining Outbreak Signatures

By defining outbreak signatures, or the profile of an epidemic curve and its features,
modelers can precisely quantify and adjust for complex temporal trends [45–47]. Signatures
consist of 3 features: (i) rate magnitudes, (ii) critical points (e.g., onset, peak, resolution), and
(iii) critical periods (e.g., acceleration, deceleration, steady state). Critical points represent
time points when rate magnitudes reach local minima and maxima. These time points
define key features of an epidemic curve such as the onset, peak, or resolution of an
outbreak wave. Furthermore, these points reflect transitions between waves of persistent
outbreaks or primary and secondary peaks within a single outbreak wave. Critical periods,
defined as the duration between consecutive critical points, reflect intervals when the pace
of rates accelerate, decelerate, or remain unchanged over time. These periods represent
well-defined linear and non-linear temporal trends of rates.

We estimated rate magnitudes using a version of Kolmogorov-Zurbenko (KZ) adaptive
filters. This smoothing technique delineates trends in noisy time series by generating
average estimates across a moving window of time points [48–51]. We used a 21-day
smoother, which ensured sufficient reduction of daily noise without overly aggregating
daily records (as with monthly smoothers). Furthermore, this smoother ensured low
probability of erroneous critical points (more probable with 7- or 14-day smoothers) and
ensured equal weighting of DoW observations compared to non-7-day smoothing windows.

We defined critical points using rate magnitudes and their trivial derivatives, calculated
as the difference between rates of successive days. We identified peaks as days with maxi-
mum rate magnitudes and low or near-zero trivial derivative values. We identified onset
points as days with local minimum rate magnitudes when trivial derivatives began increas-
ing from near-zero to highly positive values, marking the beginning of an outbreak wave.
We identified resolution points as days with local minimum rate magnitudes when trivial
derivatives declined from highly positive to near-zero or near-minimum values, marking
the conclusion of an outbreak wave.

With respect to critical periods, we defined acceleration periods from outbreak onset
points to peaks when the pace of rates steadily increased. In contrast, we defined decelera-
tion periods from outbreak peaks to resolution or next wave onset points when the pace
of rates steadily decreased. We defined steady state periods as the duration between the
resolution of one outbreak wave and the onset of another when rates remain near-constant
and trivial derivatives were consistently near-zero values.

Outbreak waves reflected the duration from onset to resolution critical points. For
many waves, no resolution occurred; the conclusion of one wave marked the onset of the
next. As such, outbreak waves were also defined as the duration between 2 onset points if
no resolution occurred. We identified primary and secondary outbreak peaks for specific
waves when rates reached 2 local maxima after abrupt changes in the trivial derivative
from systematically high negative to systematically high positive values.
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2.4. Defining Intervention Stringency Phases

Stepwise implementation of statewide non-pharmaceutical interventions intended to
improve SARS-CoV-2 testing and reduce disease transmission beginning 15 March 2020 [52].
These interventions included stay-at-home advisories and business closures and reopening
restrictions to reduce SARS-CoV-2 transmission. Statewide policies closely aligned with
county-level mask mandates, business curfews, lock-down restrictions, and school closures
also intending to disrupt SARS-CoV-2 transmission (Supplementary Table S1). As case
and death counts increased and declined, intervention mandates gradually became more
stringent or relaxed their stringency, respectively.

Changes in statewide advisories defined 9 intervention phases beginning 22 January
2020 through 28 May 2021 (Table 1). We scored phases by the stringency of policies for
restricting social mobility and reducing disease transmission. Scores of 5 represented most
stringent policies (e.g., school closures, stay-at-home order) while scores of 0 represented
least stringent policies (e.g., prior to and after the Massachusetts state of emergency). We
examined differences in DoW effects by phase, as statewide mandates influenced reporting
patterns, laboratory testing capacity, and testing preferences. We also compared the align-
ment of outbreak signature critical points and intervention phases to better understand
delays in health policy implementation.

Table 1. Non-pharmaceutical intervention phases in accordance with Massachusetts statewide
COVID-19 health advisories. We defined intervention phases according to the Massachusetts shel-
ter in place order on 15 March 2020 and subsequent reopening of businesses and public venues
thereafter [52]. We assigned a stringency score for each phase where 5 reflects the most stringent
mandates to reduce social mobility and disease transmission while 0 reflects periods before and
after the statewide state of emergency. We report the duration of each phase in days. Phase I du-
ration is reported from the termination of the state of emergency to the end of our study period
(7 November 2021).

Phase Start Date Duration (Days) Description Stringency

A 22 January 2020 53 Period before COVID-19 widespread in
the United States 0

B 15 March 2020 64
Closures of public and private elementary and

secondary schools; prohibited gatherings of more
than 25 people

5

C 18 May 2020 45 Phases I and II reopening 4

D 2 July 2020 89 Phase III-Step 1 reopening 3

E 29 September 2020 70 Phase III-Step 2 reopening 2

F 8 December 2020 79 Return to Phase III-Step 1 3

G 25 February 2021 21 Reentering Phase III-Step 2 reopening 2

H 18 March 2021 71 Phase IV reopening 1

I 28 May 2021 163 Termination of State of Emergency 0

2.5. Modeling DoW Effects

We estimated average (with 95% confidence intervals) and median (with interquartile
range) daily rates and product moments by DoW. We selected L-skewness and L-kurtosis
given their sensitivity for distributions of low rates and smaller sample size [53]. High
values of L-moments indicate a possible surge in tests, cases, or deaths and are necessary
for justifying the use of negative binomial distributions when modeling count-based
distributions. We estimated average rates using generalized linear models adjusted for a
negative binomial distribution and log-link function to accommodate moderately skewed
count-based data:

ln
[
E
(
Yj
)]

= β1(Dt) (1)
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where Yj,d—daily rates of j-outcome (e.g., tests, cases, deaths) for d-DoW. We estimated
average and confidence interval values by exponentiating model coefficients (exp(β0) and
exp(β0 ± 1.96se), respectively).

Next, we compared DoW effects adjusting for linear (t) and quadratic (t2) trends
in outbreak signature critical periods. This adjustment captured general increases and
decreases in rate magnitudes as well as acceleration and deceleration in the pace of rates.
We used a segmented negative binomial regression model, such that:

ln
[
E
(
Yj,t
)]

= β0 + β1(Dt) +
q

∑
k=1

[
β2k(t − tk) + β2k+1(t − tk)

2
]

(2)

where Yj,t—daily rates for j-outcome on t-day; Dt—categorical variable for DoW on t-day
(Reference: Sunday); and (t − tk)—continuous time series variables (in days) for k-critical
period of j-outcome. Here, q corresponded to the total number of critical periods for
tests (10), cases (8), and deaths (8), as defined by our study period and KZ adaptive filters.

We estimated DoW effects for each intervention phase using a similar model:

ln
[
E
(
Yj,t,p

)]
= β0 + β1(Dt,p) +

q

∑
k=r

[
β2k(t − tk) + β2k+1(t − tk)

2
]

(3)

where p—policy intervention phase ranging from A–I as reported in Table 1. Here, r
corresponded to the first outbreak critical period occurring within p-intervention phase.

We compared model fit using Akaike’s Information Criterion (AIC) estimates. We
defined statistical significance as α < 0.05. We performed data extraction, alignment,
management, and cleaning using Excel 2016 Version 2103 and R (4.0.0) software. We
conducted statistical analyses and created data visualizations using SE/16.1 and R (4.0.0)
software. We share all R software codes as Supplementary Materials.

3. Results
3.1. JHU and MDPH Data Cross-Referensing

While JHU data had 100% completeness, we found several discrepancies in daily
counts including 3 days with negative values in cases (3 September 2020, 2 March 2021,
and 27 June 2021) and 4 days with negative values in deaths (30 June 2020, 21 July 2020,
2 September 2020, and 9 July 2021). Negative values ranged from −16 to −69 for cases
and −1 to −11 for deaths. Negative values in September 2020 coincided with revisions in
MDPH guidelines to exclude probable cases with positive antibody tests and were found in
JHU data only. Negative values for cases and deaths in March–July of 2020 and 2021 were
reported by both JHU and MDPH. We detected no negative values for state-level tests.

JHU systematically reported 0 (zero) counts for cases and deaths on federal and religious
holidays. These included Thanksgiving (26 November 2020), Christmas (25 December 2020),
New Year’s (1 January 2021), Easter (4 April 2021), Memorial Day (31 May 2021), Independence
Day (5 July 2021), Labor Day (6 September 2021), and Columbus/Indigenous People’s Day
(11 October 2021). Similarly, JHU systematically reported 0 counts on all weekend days
beginning 3 July 2021. When compared to MDPH, we found incomplete records (blanks)
on these holidays and weekends suggesting no statewide reporting. Thus, JHU reported
0 counts on these holidays and weekends as cumulative counts remained unchanged in
the absence of MDPH reporting.

We assessed the interoperability between JHU and MDPH beginning 17 April 2020 for
cases and 1 June 2020 for deaths. JHU case records were systematically discordant with
MDPH records from 17 April 2020 through 3 September 2020. On 3 September 2020, JHU
reported negative counts, which reflected the correction of cumulative counts needed to
achieve the concordance of JHU records with MDPH records for the remainder of our study
period. The death records for JHU and MDPH were the same for the study period.
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3.2. Outbreak Signatures and Their Features

We identified 5 distinct outbreak waves for statewide reported tests with the highest
peak values on 6 December 2020 (Wave 3; 3213.94 tpm) and 15 September 2021 (Wave 5;
4412.13 tpm) (Tables 2 and 3, Figure 1). Wave 3 peak timing aligned with the onset of
non-pharmaceutical intervention Phase F, which returned to more stringent health man-
dates after an outbreak in reported cases. Tests reached a global minimum at Wave 5 onset
(27 June 2021; 886.56 tpm), with rate magnitudes paralleling Wave 2 onset a year prior
(4 June 2021; 1171.02 tpm). Wave 3 onset (25 September 2021) aligned closely with interven-
tion Phase E (29 September 2020), which relaxed the stringency of health mandates most
compared to prior phases (Figure 2). Wave 5 onset came ~1 month after lifting the Mas-
sachusetts State of Emergency (Phase I; 28 May 2021) and peaked on 15 September 2021.

Table 2. Dates of outbreak signature critical points for reported tests in Massachusetts and reported
cases and deaths in Middlesex County, Massachusetts, USA from 2 March 2020 through 7 November
2021. We identified critical points using rate magnitudes and trivial derivatives defined using 21-day
Kolmogorov-Zurbenko adaptive filter average smoothers. We extracted data from the John Hopkin’s
University’s Center for Systems Science and Engineering (CSSE) COVID-19 data repository and
Massachusetts Department of Public Health COVID-19 data dashboard. Critical points included
the timing of wave onset, the peak of rate magnitudes, and when applicable, the resolution of
outbreak waves.

Tests Cases Deaths

Wave Critical
Point Date Wave Critical

Point Date Wave Critical
Point Date

1 Onset 2 March 2020 1 Onset 2 March 2020 1 Onset 2 March 2020

1 Peak 8 May 2020 1 Peak 20 April 2020 1 Peak 30 April 2020

2 Onset 4 June 2020 2 Onset 1 4 July 2020 1 Resolution 8 August 2020

2 Peak 25 August 2020 2 Peak 1 2 January 2021 2 Onset 12 September 2020

3 Onset 25 September 2020 2 Onset 2 2 March 2021 2 Peak 15 January 2021

3 Peak 6 December 2020 2 Peak 2 1 April 2021 2 Resolution 7 July 2021

4 Onset 10 March 2021 3 Onset 23 June 2021 3 Onset 1 August 2021

4 Peak 4 April 2021 3 Peak 12 September 2021 3 Peak 1 October 2021

5 Onset 27 June 2021

5 Peak 15 September 2021

Table 3. Dates of outbreak signature critical periods for reported tests in Massachusetts and re-
ported cases and deaths in Middlesex County, Massachusetts, USA from 2 March 2020 through
7 November 2021. We identified critical points using rate magnitudes and trivial derivatives defined
using 21-day Kolmogorov-Zurbenko adaptive filter average smoothers. We extracted data from
the John Hopkin’s University’s Center for Systems Science and Engineering (CSSE) COVID-19 data
repository and Massachusetts Department of Public Health COVID-19 data dashboard. We defined
critical periods, including acceleration, deceleration, and steady state, as the duration between
2 consecutive critical points. We report the start date for each period, as the end date was defined by
the following start date. We list the number of periods defined for each outcome, which were used in
segmented time series analyses for modeling day-of-the-week effects.

Tests Cases Deaths

Period Period Type Start Date Period Critical
Point Start Date Period Critical

Point Start Date

1 Acceleration 2 March 2020 1 Acceleration 2 March 2020 1 Acceleration 2 March 2020

2 Deceleration 8 May 2020 2 Deceleration 20 April 2020 2 Deceleration 30 April 2020

3 Acceleration 4 June 2020 3 Acceleration 4 July 2020 3 Steady State 8 August 2020
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Table 3. Cont.

4 Deceleration 25 August 2020 4 Deceleration 2 January 2021 4 Acceleration 12 September 2020

5 Acceleration 25 September 2020 5 Acceleration 2 March 2021 5 Deceleration 15 January 2021

6 Deceleration 6 December 2020 6 Deceleration 1 April 2021 6 Steady State 7 July 2021

7 Acceleration 10 March 2021 7 Acceleration 23 June 2021 7 Acceleration 1 August 2021

8 Deceleration 4 April 2021 8 Steady State 12 September 2021 8 Deceleration 1 October 2021

9 Acceleration 27 June 2021

10 Deceleration 15 September 2021
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Figure 1. Multi-panel, shared-axis time series plots of MDPH-reported Massachusetts statewide 
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respectively) from 2 March 2020 through 7 November 2021. Within each plot, we provide estimated 
rates (grey bars) from reported data and 21-day average smoothers (red lines) estimated using Kol-
mogorov-Zurbenko adaptive filters. Background colors depict acceleration periods (pink), deceler-
ation periods (blue), and steady-state periods (grey) defined independently for each health outcome. 
We embedded text and arrows at the top of each plot to signify the onset timing (O1–O5, short 
dashed arrow), peak timing (P1–P5, solid arrow), and resolution timing (R1–R2, long dashed arrow) 
across outbreak waves. We report rates as tests, cases, and deaths per 1,000,000 persons. 

Figure 1. Multi-panel, shared-axis time series plots of MDPH-reported Massachusetts statewide
tests (top panel) and JHU-reported Middlesex County cases and deaths (middle and bottom panels,
respectively) from 2 March 2020 through 7 November 2021. Within each plot, we provide esti-
mated rates (grey bars) from reported data and 21-day average smoothers (red lines) estimated
using Kolmogorov-Zurbenko adaptive filters. Background colors depict acceleration periods (pink),
deceleration periods (blue), and steady-state periods (grey) defined independently for each health
outcome. We embedded text and arrows at the top of each plot to signify the onset timing (O1–O5,
short dashed arrow), peak timing (P1–P5, solid arrow), and resolution timing (R1–R2, long dashed
arrow) across outbreak waves. We report rates as tests, cases, and deaths per 1,000,000 persons.
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We identified a global maximum of cases for the primary peak of Wave 2 (2 January 
2021; 591.37 cpm), which trailed peak tests and a return to more-stringent intervention 

Figure 2. Multi-panel, shared-axis time series plots of MDPH-reported Massachusetts statewide
tests (top panel) and JHU-reported Middlesex County cases and deaths (middle and bottom panels,
respectively) by outbreak critical period and non-pharmaceutical intervention phase from 2 March
2020 through 7 November 2021. Within each plot, we provide estimated rates (grey bars) from
reported data with fitted model results (black lines) from segmented negative binomial regression
models adjusted for linear and quadratic trends for each outbreak critical period as defined by
Kolmogorov-Zurbenko adaptive filters. Colored bars above each plot depict acceleration (pink),
deceleration (blue), and steady-state (grey) periods as reported in Table 3 and Figure 1. We embedded
text to signify the onset timing (O1–O5), peak timing (P1–P5), and resolution timing (R1–R2) of
critical periods across outbreak waves. Background colors depict phases of Massachusetts non-
pharmaceutical interventions from most stringent (red) to least stringent (dark green). We label each
intervention phase in accordance with Table 1 (A–I). We report incidence as tests, cases, and deaths
per 1,000,000 persons.
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We identified a global maximum of cases for the primary peak of Wave 2 (2 January 2021;
591.37 cpm), which trailed peak tests and a return to more-stringent intervention Phase F
by ~1 month. We also identified a Wave 2 secondary peak on 1 April 2020 (242.55 cpm),
which trailed the relaxation to less-stringent intervention Phases G and H (25 February 2021
and 18 March 2021, respectively) by ~1 month. Rate magnitudes of the Wave 2 secondary
peak paralleled Wave 1 peak (264.01 cpm). Similarly, Wave 3 onset (23 June 2021; 9.80 cpm)
returned to similar magnitudes as Wave 2 onset (4 July 2020; 21.29 cpm) ~1 year later.
Rates of reported cases reached steady state at ~165 cpm after peaking for Wave 3 on
12 September 2021, which aligned with the global maxima in reported tests.

Wave 1 peak had the highest reported rates of death (22.51 dpm), which were ~3-times
higher than Wave 2 peak rate magnitudes (8.00 dpm). Peaks in reported deaths (30 April 2020,
15 January 2021, 1 October) trailed peaks in reported cases (20 April 2020, 2 January 2021,
12 September 2021) by ~10–20 days. Resolution critical points of similar magnitudes for
reported deaths were observed in Wave 1 (8 August 2020; 1.72 dpm) and Wave 2 (7 July 2021;
0.30 dpm). Like with reported cases, these resolution critical points separated consecutive
outbreak waves by ~1 year.

3.3. Day-of-the-Week Effects

The estimated median values for reported tests, cases, and deaths along with their
confidence intervals and coefficients of skewness and kurtosis are shown in Table 4. As
expected for each death there were about 30 cases of infections, and for each reported case
there were about 10 reported tests. Median rates were high on weekdays for tests and cases
yet low on weekends; we found little differences between mean or median rates of deaths
across all days of the week. Relatively high values of L-skewness and L-kurtosis for daily
death cases suggested the potential for high temporal variability.

Table 4. Descriptive summaries of rates for reported tests, cases, and deaths by DoW from
2 March 2020 through 7 November 2021. We extracted data on state-level tests from the Massachusetts
Department of Public Health COVID-19 data dashboard and data on county-level cases and deaths
from John Hopkin’s University’s COVID-19 data dashboard. We estimated average rates (with 95%
confidence intervals) using negative binomial regression models adjusted for log-link functions. We
also report median rates (with interquartile range), L-skewness values, and L-kurtosis values by DoW
and health outcome.

Day-of-Week Mean [LCI, UCI] Median [LQR, UQR] L-Skewness L-Kurtosis

Tests

Sunday 103.28 [83.73, 127.41] 90.89 [63.90, 145.34] 0.16 0.09

Monday 239.26 [194.06, 294.98] 207.89 [146.08, 332.57] 0.14 0.11

Tuesday 248.50 [201.56, 306.37] 195.28 [149.10, 339.75] 0.23 0.17

Wednesday 233.35 [189.27, 287.71] 199.93 [142.05, 307.45] 0.19 0.17

Thursday 213.99 [173.56, 263.85] 183.75 [135.65, 281.46] 0.18 0.17

Friday 199.09 [161.46, 245.48] 179.83 [129.81, 268.36] 0.14 0.13

Saturday 129.26 [104.80, 159.42] 114.61 [78.54, 173.63] 0.13 0.09

Cases

Sunday 11.69 [9.40, 14.54] 3.85 [0.56, 17.25] 0.47 0.17

Monday 17.06 [13.76, 21.15] 12.69 [3.23, 28.39] 0.25 0.00

Tuesday 14.78 [11.91, 18.34] 12.25 [3.20, 19.33] 0.34 0.17

Wednesday 18.50 [14.93, 22.92] 15.20 [4.25, 24.07] 0.35 0.18

Thursday 18.58 [14.99, 23.02] 14.70 [3.66, 24.23] 0.36 0.19
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Table 4. Cont.

Day-of-Week Mean [LCI, UCI] Median [LQR, UQR] L-Skewness L-Kurtosis

Friday 17.77 [14.34, 22.03] 13.96 [3.66, 23.92] 0.35 0.19

Saturday 15.45 [12.46, 19.17] 5.96 [1.18, 22.03] 0.49 0.21

Deaths

Sunday 0.40 [0.27, 0.59] 0.12 [0.00, 0.47] 0.57 0.32

Monday 0.30 [0.20, 0.47] 0.19 [0.06, 0.37] 0.44 0.26

Tuesday 0.32 [0.21, 0.49] 0.12 [0.06, 0.37] 0.53 0.32

Wednesday 0.50 [0.35, 0.72] 0.28 [0.06, 0.59] 0.50 0.32

Thursday 0.37 [0.25, 0.55] 0.25 [0.06, 0.50] 0.43 0.27

Friday 0.36 [0.24, 0.54] 0.19 [0.06, 0.43] 0.46 0.25

Saturday 0.53 [0.37, 0.75] 0.25 [0.00, 0.56] 0.64 0.47

For the entire study period, reported tests were ~2.00–2.30-times more likely to be
reported on weekdays compared to Sunday (Table 5). For all weekdays, the size of this
effect decreased consistently from more stringent Phase C (RR = 2.45–2.88 [2.01, 3.53])
to less stringent Phase G (RR = 1.72–2.24 [1.63, 2.35]). Effect sizes slightly increased for
Tuesdays-Thursdays in Phases H–I, which aligned with the global maxima of reported
tests in outbreak Wave 5. In contrast to weekdays, tests were only 1.26-times [1.17, 1.35]
more likely to be reported on Saturday compared to Sunday. We found lower effect sizes
for reported tests on Saturday compared to Sunday in least stringent Phases G (RR = 1.19
[1.13, 1.25]) and H (RR = 1.19 [1.12, 1.27]). In the last Phase I, there were substantial
drops in testing on weekends and no significant differences in reported tests on Saturday
compared to Sunday. Analyses for individual intervention phases largely support the
findings observed for the entire study period (Figure 3).

Like statewide tests, county-level cases were ~1.75–2.00-times more likely to be re-
ported on weekdays compared to Sunday; cases reported on Saturday were only 1.32-times
[1.04, 1.67] higher as compared to Sunday. For all weekdays, the effect size decreased con-
sistently from more stringent Phase B (RR = 2.06–2.25 [1.81, 2.56]) to less stringent Phase D
(RR = 1.53–1.87 [1.13, 2.54]). However, DoW effects changed substantially in less stringent
Phases E–H, which aligned with the overall testing and case reporting. Furthermore, cases
were significantly less likely to be reported on Mondays (RR: 0.66–0.93 [0.47, 0.97]) in Phases
E–G and Tuesdays (RR: 0.51–0.85 [0.44, 0.88]) in Phases F–G during the large second wave.

Overall, we found minimal or no significant differences in reported deaths between
any days of the week, especially in the most stringent Phases B–C. As later intervention
phases had many weeks without reported deaths, confidence intervals were exaggerated in
regression analyses. The observed increase in reported deaths on Wednesdays and Thurs-
days (1.46-times [1.15, 1.85], p = 0.002) and 1.28-times ([1.00, 1.64], p = 0.047, respectively)
were driven by spikes in deaths in individual critical periods and intervention phases.
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Table 5. Rate ratios (with 95% confidence intervals) of DoW effects relative to Sunday for the full
study period (Overall) and by public health policy intervention phase from 2 March 2020 through
7 November 2021. We examined DoW effects using segmented negative binomial regression models
adjusted for log-link functions. We adjusted each model with linear and quadratic trends for the
outbreak signature critical periods occurring within each intervention phase. We supplement model
findings with Akaike’s Information Criterion (AIC) values used to assess model fit. We report results
beginning in Phase B, as this marks the first complete phase aligning with our study period. We
exclude Phase I for cases and deaths, as no weekend reporting occurred during this phase.

Phase Monday Tuesday Wednesday Thursday Friday Saturday AIC

Tests

Overall 2.27 [2.11, 2.45] a 2.33 [2.16, 2.51] a 2.20 [2.05, 2.37] a 2.05 [1.90, 2.21] a 1.94 [1.80, 2.09] a 1.26 [1.17, 1.35] a 9188.30

B 2.26 [2.04, 2.52] a 2.45 [2.20, 2.72] a 2.50 [2.25, 2.78] a 2.41 [2.17, 2.68] a 2.59 [2.34, 2.88] a 1.48 [1.34, 1.65] a 790.47

C 2.45 [2.01, 2.98] a 2.73 [2.24, 3.32] a 2.88 [2.35, 3.53] a 2.72 [2.22, 3.33] a 2.51 [2.05, 3.08] a 1.33 [1.08, 1.63] b 627.75

D 2.56 [2.25, 2.91] a 2.60 [2.28, 2.96] a 2.45 [2.15, 2.79] a 2.30 [2.03, 2.62] a 2.16 [1.90, 2.45] a 1.29 [1.14, 1.47] a 1298.50

E 2.58 [2.12, 3.14] a 2.63 [2.16, 3.21] a 2.46 [2.02, 3.00] a 2.25 [1.84, 2.74] a 2.17 [1.79, 2.65] a 1.43 [1.17, 1.74] a 1107.60

F 2.32 [1.82, 2.97] a 2.23 [1.75, 2.83] a 2.10 [1.65, 2.66] a 1.79 [1.40, 2.28] a 1.61 [1.26, 2.06] a 1.35 [1.05, 1.72] c 1276.10

G 2.24 [2.14, 2.35] a 2.01 [1.92, 2.11] a 1.91 [1.82, 2.01] a 1.83 [1.74, 1.92] a 1.72 [1.63, 1.80] a 1.19 [1.13, 1.25] a 223.09

H 2.27 [2.14, 2.42] a 2.06 [1.93, 2.19] a 1.93 [1.82, 2.06] a 1.79 [1.68, 1.90] a 1.74 [1.63, 1.85] a 1.19 [1.12, 1.27] a 868.16

I 2.07 [1.84, 2.32] a 2.27 [2.02, 2.54] a 2.07 [1.85, 2.33] a 1.96 [1.75, 2.20] a 1.74 [1.55, 1.95] a 1.10 [0.98, 1.23] 2429.90

Cases

Overall 2.00 [1.56, 2.57] a 1.74 [1.36, 2.22] a 1.94 [1.53, 2.47] a 1.91 [1.50, 2.43] a 1.98 [1.56, 2.53] a 1.32 [1.04, 1.67] c 6783.20

B 2.06 [1.81, 2.35] a 2.24 [1.97, 2.56] a 2.24 [1.97, 2.56] a 2.24 [1.97, 2.55] a 2.25 [1.97, 2.56] a 1.41 [1.23, 1.61] a 587.67

C 2.04 [1.50, 2.79] a 2.20 [1.62, 3.00] a 2.18 [1.60, 2.97] a 2.11 [1.54, 2.90] a 2.01 [1.46, 2.77] a 1.13 [0.81, 1.59] 343.92

D 1.53 [1.13, 2.07] b 1.58 [1.16, 2.16] b 1.87 [1.38, 2.54] a 1.66 [1.22, 2.26] b 1.84 [1.35, 2.50] a 1.21 [0.90, 1.64] 713.90

E 0.66 [0.47, 0.92] c 0.82 [0.58, 1.15] 0.99 [0.70, 1.39] 0.92 [0.65, 1.29] 1.14 [0.81, 1.60] 1.07 [0.76, 1.50] 811.69

F 0.93 [0.89, 0.97] b 0.85 [0.81, 0.88] a 1.23 [1.19, 1.28] a 1.32 [1.27, 1.37] a 1.00 [0.96, 1.04] 1.42 [1.36, 1.47] a 4204.20

G 0.81 [0.71, 0.92] b 0.51 [0.44, 0.59] a 1.17 [1.03, 1.33] c 1.11 [0.97, 1.27] 1.14 [1.02, 1.29] c 1.03 [0.91, 1.15] 365.18

H 0.89 [0.65, 1.22] 0.75 [0.55, 1.03] 1.37 [1.01, 1.87] c 1.29 [0.95, 1.75] 1.30 [0.95, 1.77] 1.37 [1.01, 1.87] c 766.20

Deaths

Overall 0.98 [0.77, 1.27] 0.92 [0.72, 1.19] 1.46 [1.15, 1.85] b 1.28 [1.00, 1.64] c 1.13 [0.89, 1.45] 1.24 [0.98, 1.57] 2356.60

B 0.44 [0.14, 1.41] 0.96 [0.32, 2.96] 1.08 [0.37, 3.15] 0.76 [0.25, 2.38] 0.70 [0.24, 2.09] 1.43 [0.50, 4.06] 399.09

C 1.29 [0.74, 2.27] 0.90 [0.50, 1.63] 1.50 [0.87, 2.64] 1.18 [0.66, 2.13] 1.36 [0.77, 2.43] 1.17 [0.65, 2.12] 238.51

D 1.45 [0.67, 3.19] 0.87 [0.36, 2.08] 2.05 [0.97, 4.46] 3.02 [1.48, 6.36] c 1.30 [0.59, 2.90] 2.20 [1.06, 4.68] c 342.27

E 0.72 [0.43, 1.18] 0.39 [0.20, 0.72] b 1.04 [0.66, 1.66] 0.88 [0.54, 1.41] 0.99 [0.62, 1.57] 0.69 [0.41, 1.13] 264.52

F 0.69 [0.49, 0.96] c 0.84 [0.61, 1.14] 1.32 [1.00, 1.75] c 0.77 [0.56, 1.06] 0.90 [0.66, 1.23] 1.05 [0.78, 1.42] 401.37

G 0.47 [0.18, 1.08] 0.67 [0.30, 1.45] 0.81 [0.38, 1.70] 0.87 [0.42, 1.80] 0.65 [0.29, 1.39] 0.99 [0.49, 1.99] 92.87

H 2.93 [1.47, 6.37] b 0.81 [0.30, 2.10] 2.47 [1.20, 5.49] c 1.70 [0.81, 3.81] 2.06 [1.00, 4.56] 1.68 [0.78, 3.80] 216.62

Asterisks indicate statistical significance at p < 0.001 (a), p < 0.01 (b), and p < 0.05 (c).
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critical periods as defined by Kolmogorov-Zurbenko adaptive filters. We denote each day of the 
week from Monday to Saturday (Reference: Sunday). We report effects as risk ratio (RR) estimates 
(markers) and 95% confidence intervals (horizontal error bars) denoting RR = 1 with a vertical 
dashed line across all panels. We report results beginning in Phase B, as this marks the first complete 
phase aligning with our study period. We exclude Phase I for cases and deaths, as no weekend 
reporting occurred during this phase. 

Figure 3. Shared axis, multi-panel forest plot diagrams describing day-of-the-week (DoW) effects
for reported tests (left), cases (middle), and deaths (right) by Massachusetts non-pharmaceutical
intervention phase. We report DoW effects for the entire study period (Overall, top panels) and by
intervention phase from most historic (Phase B) to most recent (Phase I). We used embedded text
to list the stringency level (ranging 0–5) for each policy phase. We estimated these effects using
segmented negative binomial regression models adjusted for linear and quadratic trends in outbreak
critical periods as defined by Kolmogorov-Zurbenko adaptive filters. We denote each day of the
week from Monday to Saturday (Reference: Sunday). We report effects as risk ratio (RR) estimates
(markers) and 95% confidence intervals (horizontal error bars) denoting RR = 1 with a vertical dashed
line across all panels. We report results beginning in Phase B, as this marks the first complete phase
aligning with our study period. We exclude Phase I for cases and deaths, as no weekend reporting
occurred during this phase.
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4. Discussion

The presented investigation described and compared patterns in the reporting of
publicly available statewide SARS-CoV-2 tests and Middlesex County reported cases
and deaths from 2 March 2020 through 7 November 2021. First, we identified distinct
waves with their critical periods using a novel application of Kolmogorov-Zurbenko
adaptive filters that allowed us to define, describe, and compare features of outbreak
signatures. We found patterns in the timing of wave onset, peak, and resolution critical
points compared to non-pharmaceutical intervention phases. Given such characterization,
we identified significant DoW effects for Massachusetts statewide tests and Middlesex
County cases with distinct patterns across intervention phases. We also identified and
reconciled systematic reporting inconsistencies between JHU and MDPH surveillance
systems, including dissimilar missing data reporting protocols and the reporting of negative
counts to correct historic records. These findings provide critical insight on the systematic
features in daily patterns of major pandemic outcomes, such as tests, cases, and deaths.
These findings help to understand the utilization of laboratory capacity and popular
preferences of testing that can assist public health agencies in effectively distributing testing
resources and managing laboratory personnel. The combination of these findings indicates
health professionals must place greater attention to investigating DoW effects and other
reporting inconsistencies in public surveillance data.

In Massachusetts, the signature of statewide reported tests aligned closely with
the transition between non-pharmaceutical intervention phases. Wave 3 onset timing
(25 September 2021) aligned with the relaxation to less-stringent Phase E (29 September 2020)
while Wave 3 peak timing (6 December 2020) aligned with the return to more-stringent
Phase F (8 December 2020). Similarly, Wave 4 onset timing (10 March 2021) aligned closely
with the relaxation to less-stringent Phase H (18 March 2021). The acceleration of reported
tests after phase stringency relaxation reflects increased anxiety of disease transmission
with greater social mobility or necessity for pooled testing in schools or workplaces and
inpatient testing even among those without presenting symptoms [54–59].

Alternatively, increased testing may reflect premature relaxation in the stringency
of non-pharmaceutical intervention phases. We found that the onset timing of reported
cases in Wave 2 (4 July 2020 and 2 March 2021) aligned closely with the relaxation to
intervention Phase D (2 July 2020) and Phase G (25 February 2021). We also found that the
peak timing of reported deaths trailed the peak timing of reported cases by ~10–20 days.
Thus, increases in social mobility and business/workplace re-openings resulted in almost
immediate increases in reported cases of high morbidity/mortality [60,61].

Shared signatures of reported tests and cases also reflect potential seasonal patterns
of testing behaviors. Tests peak timing in December 2020 preceded cases peak timing
in January 2021 by ~1 month. Yet, both health outcomes peaked at nearly the same
time in April and September 2021. These changes reflect increased testing volumes in
anticipation of seasonal travel in December as well as increased cases after wintertime
social mixing [62–66]. Additionally, reported tests and cases reached near-identical rate
magnitudes in June/July 2020 as June/July 2021 after their wintertime peaks. These
signatures resemble seasonal patterns of influenza, which are often associated with patterns
of school openings and increased social mixing [20,67,68]. While research already suggests
an underlying endemic seasonality of SARS-CoV-2 [69,70], no definitive seasonal pattern
can be determined without further research across a longer time series length.

DoW effects in reported tests reflect a combination of laboratory testing capacity
and popular testing preferences. Tests were more likely to be reported on weekdays
than on Saturday or Sunday. These patterns reflect the limited testing and reporting
capacity, particularly at the beginning of the COVID-19 pandemic [71,72]. Greater DoW
effects across weekdays also reflects greater required or preferred testing during weekdays.
Furthermore, we found changes in testing across intervention phases that likely reflect
changes in health safety precautions throughout the pandemic, such as preparation for
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weekend social activities and travel [73] or mandates for testing in workplaces, schools,
and other transmission-prone environments [74,75].

We found similar patterns in county-level reported cases as with statewide tests. Like
tests, DoW effect sizes for reported cases decreased consistently from more stringent Phase
B to less stringent Phase D. Changes in weekday DoW effects for reported cases might
reflect changes in hospitalization patterns, severity of infections, and potential delays due
to high testing volumes earlier in the week or during wave peaks. DoW effects for tests
and cases may also reflect changes in transmission and social mixing when stay-at-home
policies and business and retailer closures were relaxed in 2021. Alternatively, we found
no DoW effects for deaths, as the likelihood of death was equally probable on any day
of the week. Yet, we found several spikes in death counts we can’t explain; those spikes
triggered occasional significant effects. These spikes are supported by high values of
L-skewness and L-kurtosis suggesting temporal variability of deaths within our time series.
Future studies must examine compound effects of additional contributors, like local air
quality [76], extreme weather [77], specific calendar events (see Supplementary Table S1),
an introduction of rapid over-the-counter tests [11] influencing viral transmission and
thus, daily COVID-19 outcomes. Studies may also consider more exhaustive adjustment of
confounding factors expected to influence case or death onset such as age, chronic health
conditions, body mass index, etc.

Our findings demonstrate serious concerns over how longitudinal public health
surveillance death records are curated and reported. This largely stems from discrepancies
in how dates are reported, such as the date of death or the date of reporting SARS-CoV-2 as
the cause of death, and potential weekly batch reporting rather than consistent reporting
throughout every week [78]. These reporting patterns question the reliability and usability
of SARS-CoV-2 death records for examining temporal patterns in case severity. We en-
courage the public health community to incorporate how test, case, and death dates are
reported in standardized case definitions of infectious disease health outcomes.

One of the major advantages of publicly available SARS-CoV-2 surveillance data are
their temporal and spatial granularity that allow not only a more precise estimation of
outbreak signatures but also highlights the need for improved standardization of reporting
protocols for publicly available infectious disease surveillance data. We found that both
JHU and MDPH reports of cumulative counts produce biologically implausible negative
values that aligned closely with historical record modifications in September 2020 [40]. After
negative value corrections on 3 September 2020, JHU reported cases were concordant with
MDPH records. While metadata report the presence of historic changes, neither database
thoroughly explains techniques used to make these corrections. The appearance of negative
values creates well justified distrust, which can lead data users to question the reliability
and precision of highly granular public data for reuse. As inconsistencies might occur in
any system, data curators and modelers should better communicate the techniques used
to correct unplausible values and thus improve the reproducibility and generalizability of
results. We encourage health and media agencies responsible for curating public data to
report daily records in a standardized form, avoid using cumulative trend that often masks
discrepancies, and provide documentation on the applied corrections of historic records.

We found systematic reporting of 0 counts for federal holidays and weekends through-
out our study period. Zero counts corresponded to missing MDPH records. This demon-
strates the limitations of cumulative count surveillance reporting: unchanging totals be-
tween days will mistake records with missing data as 0 counts. This discrepancy reflects a
broader systematic flaw of non-standardized surveillance reporting protocols for infectious
disease data repositories [79]. Replacing missing records with 0 counts underreports health
outcomes and reduces the precision of near-term forecasts for early outbreak detection.
Furthermore, these anomalies introduce greater noise within daily time series that can
distort the detection of outbreak events. We implore the scientific community to create
standardized protocols and metadata explaining when, why, and how much missing data
are present within publicly available records.
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Our study did not explore differences in DoW effects according to the introduction
and availability of COVID-19 vaccines. We believe that this topic deserves special attention;
future research should explore temporal trends and DoW effects for health outcomes
including hospitalization, intensive care unit, and vaccination rates. This analysis can utilize
the analytic approach demonstrated here to explore segmented temporal trends in DoW
effects according to the timing of vaccination rollout by vaccine-accessible subpopulation,
type of vaccine, and COVID-19 strain.

In this study we demonstrated applications of adaptive filters as a standardized
data-driven approach for defining and comparing outbreak signatures. Public health
professionals can apply average smoothers in real-time to monitor the spread, speed, and
severity of infectious outbreaks. Rate magnitudes and their trivial derivatives can identify
critical points in outbreak signatures so that health professionals might anticipate the
acceleration or deceleration in rates of health outcomes. Using these findings, local, state,
and national health agencies can identify geographic hotspots of infection, build laboratory
testing capacity in locations with emerging outbreak threats, and improve the timeliness of
mobilizing medical supplies and personnel to reduce peak rate magnitudes.

5. Conclusions

The systematic DoW effects in major outcomes of the COVID-19 pandemic at the
different stages of interventions highlight important features of public health responses.
The observed patterns across non-pharmaceutical intervention phases reflect the changes in
testing capacities, access to healthcare, and preferences imperative for efficiently managing
laboratory supplies and public health personnel. Using real-time surveillance and presented
methodology, public health agencies can better anticipate testing demands as the COVID-
19 pandemic persists. Furthermore, exploration of outbreak signatures can improve the
timeliness of mobilizing testing resources and laboratory personnel in anticipation of
increased rates of testing and infection. The study also revealed underlying discrepancies
in publicly reported health data threatening to underreport SARS-CoV-2 cases and reduce
the reproducibility of time series modeling analyses. Public health agencies curating
publicly disseminated data must devise universal standards for reporting missing data,
correcting historical records, and further improve the reporting infrastructure.
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