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Noise filtering of composite pulses 
for singlet-triplet qubits
Xu-Chen Yang & Xin Wang

Semiconductor quantum dot spin qubits are promising candidates for quantum computing. In these 
systems, the dynamically corrected gates offer considerable reduction of gate errors and are therefore 
of great interest both theoretically and experimentally. They are, however, designed under the static-
noise model and may be considered as low-frequency filters. In this work, we perform a comprehensive 
theoretical study of the response of a type of dynamically corrected gates, namely the supcode for 
singlet-triplet qubits, to realistic 1/f noises with frequency spectra 1/ωα. Through randomized 
benchmarking, we have found that supcode offers improvement of the gate fidelity for α  1 and the 
improvement becomes exponentially more pronounced with the increase of the noise exponent in the 
range 1  α ≤ 3 studied. On the other hand, for small α, supcode will not offer any improvement. The 
δJ-supcode, specifically designed for systems where the nuclear noise is absent, is found to offer 
additional error reduction than the full supcode for charge noises. The computed filter transfer 
functions of the supcode gates are also presented.

In recent years, extensive research has been devoted to electron spin qubits in semiconductor quantum dot sys-
tems1, due to their potential to achieve scalable quantum computation and quantum information processing2. 
While long coherence times and reasonably high control fidelities have been demonstrated for various types of 
spin qubits3–11, it remains an incomplete mission to reduce the error of an arbitrary quantum gate operation below 
the stringent fault-tolerant threshold. Such decoherence, the process during which a qubit is destructed through 
its interaction with the environment, occurs in a variety of different channels. However, for solid state spin qubits, 
the following two types of noises are evidently the major causes of decoherence: the Overhauser (or nuclear) 
noise12,13, which arises from the hyperfine interaction between the qubit and its surrounding nuclear spin bath, 
and the charge noise14,15, which originates from unintentionally deposited impurities near the quantum dot where 
an electron can hop on and off uncontrolled.

Some of these errors are being addressed using for example dynamical Hamiltonian estimation which 
tracks the fluctuations in real time16, purposely made device substrates where nuclear spins are almost absent 
(isotope-enriched silicon)9,17,18, or resonantly gating near certain “sweet spots” of the exchange interaction where 
the charge noise is greatly suppressed19–22. On the other hand, the dynamically corrected gates23–29, inspired by 
the vastly successful dynamical decoupling technique in NMR quantum control30, offer considerable reduction of 
both Overhauser and charge noise which can in principle be applied to any experimental platforms with similar 
controls. In a dynamically corrected gate operation, the quantum states are allowed to evolve under carefully 
designed sequences during which errors accumulated on different pieces end up canceling each other to certain 
orders, thereby reducing noises at a cost of extending the gate time. A useful example among such control proto-
cols is the supcode26,31, a type of dynamically corrected gates for the singlet-triplet qubit, which encodes a qubit 
in the singlet and triplet states of two electron spins. Since its conception26, it has been developed into a family 
of control protocols which are robust against both Overhauser and charge noise for single- and two-qubit opera-
tions32–34, thereby fulfilling the requirement for noise-resistant universal control35.

An important assumption behind the entire field of dynamical decoupling and dynamically corrected gates is 
the non-Markovianity of noises, i.e. the noises are assumed to be quasi-static, which is a valid approximation since 
the time scale with which the noise varies is much longer than the typical gate operation time, typically about tens 
of nanoseconds. In particular, supcode is crafted under a model with static fluctuations, with the hope that when 
encountering real noises it will cancel the contribution from their low frequency components. Theoretical valida-
tion of this approximation has been performed33,36 with the 1/f noise bearing the power spectral density propor-
tional to 1/ωα, where the crucial parameter is the exponent α which determines how much the noise is 
concentrated in low frequencies. In refs 33 and 36 we have numerically performed Randomized Benchmarking37,38 
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to investigate the average error per gate for the group of single-qubit Clifford gates under 1/f noises, where it has 
been found that supcode offers great improvement for α 1 but little or no improvement otherwise, as expected 
from the frequency dependence of noises with different α values. Nevertheless, much work remains to be done in 
order to fully understand how supcode sequences filter frequency-dependent noises. Due to the mechanism that 
the 1/f noise is produced, the maximal exponent we could reach was α =  2 (see Methods), and typically α has to 
be no greater than 1.5 to ensure convergence. However, the experimentally measured exponent39,40 is as large as 
2.6 which is out of the range of present simulations, and the extrapolation of the improvement ratio toward 
regimes with such large α values is not obvious. Moreover, in the simulations of refs 33 and 36, both types of 
noises are applied simultaneously to the gate sequences, whereas it is theoretically an interesting open question 
how supcode gates responds to frequency-dependent Overhauser and charge noise individually, as the two 
enters the Hamiltonian in different ways. Last but not least, the filter transfer function27,41–43, a feature of any 
dynamically corrected gate indicating its power to filter frequency-dependent noises offering complementary 
useful information to the benchmarking44,45, has not appeared in the literature for supcode sequences.

In this paper, we present a comprehensive theoretical treatment on how supcode pulses perform under a 
broad range of realistic 1/f noises. We present the filter transfer functions of supcode sequences for Overhauser 
noise and charge noise respectively, and have simulated randomized benchmarking with uncorrected and 
corrected single-qubit Clifford gates. We find that the improvement afforded by supcode continues into the 
experimentally relevant regime of larger α, and that the “δJ-supcode”36—a type of supcode optimized for the 
presence of charge noise only—provides a remarkably pronounced improvement on errors caused by charge 
noise, although it would obviously fail for the nuclear noise. These finding are complementary to the prelimi-
nary results presented in refs 33 and 36 and they together offer a complete theoretical picture on the filtration of 
frequency-dependent noises by supcode dynamically corrected gates in singlet-triplet spin qubit systems.

Results
We start with the control Hamiltonian for a singlet-triplet qubit, which can be expressed in the computational 
bases as3,26


σ σ= +H t h J t( )

2
[ ( )]

2
, (1)x z

where σx and σz are Pauli matrices. The bases are = = ↑↓ + ↓↑T0 ( )/ 20  and = =S1
↑↓ − ↓↑( )/ 2 , where ↑↓ = ↓ ↑

† †c c vacuum1 2  with σ
†ci  being the creation operator of an electron having spin σ 

in the dot labelled by i. The Bloch vector representing any computational state may be rotated around the x axis of 
the Bloch sphere with the help of a magnetic field gradient across the double-quantum-dot system, which in 
energy units reads h =  gμBΔ Bz. This magnetic field gradient can be generated experimentally by either the 
dynamical nuclear polarization4,46 or a micromagnet47–49. The Heisenberg exchange interaction J, which is essen-
tially the energy level splitting between |S〉  and |T0〉  states, defines the rotating rate of a Bloch vector around the z 
axis. Control of the z rotation is achieved via gate voltages by either detuning the double-well confinement poten-
tial3–6 or heightening and lowing the middle potential barrier50,51, which consequently changes the magnitude of 
J. In this work we consider the former case, i.e. J is a function of the detuning , which is in turn a function of t 
because  can be rapidly tuned by all-electrical means. In contrast, we regard h as non-changeable throughout the 
execution of a given computational task since it may not be efficiently tuned within the time scale for such oper-
ations. Nevertheless, the ability to rotate around two axes suffices for universal single-qubit control35.

One of the main challenges in controlling the spin qubits is to compensate the deteriorating effect due to 
noises on the fidelity of the quantum gates performed. Two major channels of noises are considered in this work: 
the Overhauser (nuclear) noise12,13, arising from the fluctuations in the background nuclear spin bath due to the 
hyperfine interaction, and the charge noise14,15, which stems from the shift in the electrostatic confinement poten-
tial of the double-quantum-dot system due to background electrons hopping on and off unintentionally deposited 
impurities. In the language of Eq. (1), the effects of these noises boil down to shifts in the control parameters, 
namely h →  h +  δh and J →  J +  δJ.

In order to combat the Overhauser and charge noises, two families of composite pulse sequences (supcode) 
have been developed for the singlet-triplet qubit system: the full supcode, originated from ref. 26 and developed 
in ref. 32, capable to cancel both the Overhauser and charge noise simultaneously, as well as the so-called 
“δJ-supcode”36, which is specifically crafted for situations where the Overhauser noise is almost completely 
absent such as in systems of isotope-enriched silicon9,17. In both cases, the fundamental idea is the 
“self-compensation” of the leading order effect of noises by supplementing a naïve pulse with an uncorrected 
identity operation, tailored in a way such that the error arising during the execution of the identity operation 
would exactly cancel that of the uncorrected operation. In order for the noise cancellation to work, the noises are 
assumed to be quasi-static. Namely, the Overhauser noise δh is assumed to be an unknown constant during a 
given run while its value may change for different runs. The charge noise δJ is control dependent, but it can be 
related to the fluctuations in the electrostatic potential, or detuning, δ , as   δ δ δ= ′ ≡J J g J( ) ( )  where δ is 
assumed to be quasi-static. In this work, we replace δh and δ by 1/f noises and study the filter transfer function of 
supcode sequences and their responses to a wide range of 1/f noises. To facilitate the simulations, we take the 
phenomenological form of  =J J exp( / )1 0  implying δ δ~J J 52,53. As has been demonstrated in ref. 33, other 
forms of J ( ) can be straightforwardly accommodated. Throughout this work, we denote t0 as our arbitrary time 
unit. We have also fixed h =  1/t0 while J is allowed to vary between 0 and 50 h as is also the case in experiments. 
Typical values of h for a double-quantum-dot experiments range from a few MHz to ~100 MHz. Taking 
h ~ 100 MHz, our corresponding time unit is t0 ~ 10 ns.
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Figure 1 shows our generated 1/f noises and their power spectral densities. For details on how these noises cor-
responding to the desired power spectra are generated, please see the Methods section. The power spectral density 
S(ω) =  A/(ωt0)α has a unit of energy 1/t0. The exponent α, therefore, is the crucial parameter characterizing the 
noise: For α =  0, the noise is essentially the white noise. As α increases, the noise becomes less Markovian (more 
correlated). Figure 1(a) clearly illustrates this evolution of the noise ξ(t) as functions of α. The uppermost panel of 
Fig. 1(a) indicates that the noise ξ(t) for α =  0 is completely random. Such randomness reduces as α is increased 
from 0 to 0.5, while at α =  1 one can already clearly see a correlation within the noise, i.e. the noise has an overall 
tendency of rising and lowering with a much longer time scale. As α further increases, the correlations become 
much stronger, and for α =  2, 3 the noises become smooth, in sharp contrast with those of lower α values. The 
panels of Fig. 1(b) show the power spectral densities corresponding to the respective panels of Fig. 1(a), where 
the results are presented on a log-log scale as straight lines with different slopes corresponding to the α values in 
the expression of S(ω) (the small dip at the far right end is due to the time discretization of the noise signal and 
we have verified that these deviation from ideal power law do not affect our results in any important way). Again, 
the uppermost panel is for the white noise α =  0 which possesses a constant power spectrum. A close inspection 
of other panels reveals that the noises concentrate more at lower frequencies for larger α values. We note here that 
in the results shown in this figure, the noise amplitude A has been adjusted such that S(ω =  1/t0) ≈  1/t0 for the sole 
purpose of presentation. In practice, we multiply the noise by a factor which is determined by the noise amplitude 
in its desired power spectral density.

While supcode gates are designed for static or quasi-static noises, it does not mean that it would completely 
fail for the noise with a broader power spectrum as shown in Fig. 1. The ability of certain quantum gate to cancel 

Figure 1. 1/f noises and their power spectral densities. (a) Noises as functions of time (in terms of an 
arbitrary time unit t0) for different power spectral densities. (b) Corresponding power spectral densities 
S(ω) =  A/(ωt0)α for different α values indicated on the figure. The noise amplitude A has been adjusted such 
that S(ω =  1/t0) ≈  1/t0. The small dip at the far right end of (b) is due to the discretization of the noise signal in 
the time domain and we have verified that these deviation from ideal power law do not affect our results in any 
important way.
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noises with different frequencies is encapsulated in the filter transfer function27,41–43, which, for the Overhauser 
noise (denoted by h in the superscript), is defined as

∑ω τ ω τ ω τ=
=

⁎
F R R( , ) ( , )[ ( , )] ,

(2)
xx
h

k x y z
xk
h

xk
h

, ,

where ω τR ( , )jk
h  is the Fourier transform of the control matrix R t( )jk

h ,

∫ω τ ω= −
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h
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h i t

0

and the control matrix is defined, in terms of the evolution operator = ∫− ′ ′U t e( )c
i H t dt( )t

0 0  without the action of 
noise, as

σ σ= .†R t U t U t( ) Tr( ( ) ( ) )/2 (4)jk
h

c j c k

In Eqs (2) and (3), although τ can be in principle arbitrary, for the purpose of noise compensation it should 
be understood as the time at the conclusion of certain noise-canceling pulse sequences. Therefore we define the 
filter transfer function for the Overhauser noise of a gate (or a gate sequence) with duration T, which accomplish 
certain desired net operation in either noise-resistant or non-resistant fashions, as

ω ω= .F F T( ) ( , ) (5)h
xx
h

On the other hand, the filter transfer functions for the charge noise is defined in a slightly different way 
because the charge noise δ δ=J t g J t t( ) [ ( )] ( ) where the fluctuations in the detuning, δ t( ) , is the one which 
should exhibit the 1/f noise spectrum in our work. Therefore

∑ω τ ω τ ω τ=
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where ω τR ( , )jk
J  is defined in a similar way as Eq. (3), but the control matrix R t( )jk

J  is now given by

σ σ= .†R t g J t U t U t( ) [ ( )]Tr( ( ) ( ) )/2 (7)jk
J

c j c k

We then define

ω ω=F F T( ) ( , ), (8)J
zz
J

as the filter transfer function for the charge noise of a gate (or a gate sequence) with duration T accomplishing 
certain designated task. With the filter transfer functions defined above, the gate fidelity can be expressed, to a 
good approximation, in terms of the known spectra of the nuclear noise Sh(ω) and SJ(ω) as

 ∫π
ω
ω

ω ω ω ω= − + .
∞ d S F S F1 1 [ ( ) ( ) ( ) ( )]

(9)
h h J J

0 2

In Fig. 2 we present the pulse shapes and filter transfer functions corresponding to two selective supcode 
gates: the Hadamard gate π+ˆ ˆR x z( , ) and π+ +ˆ ˆ ˆR x y z( , 2 /3). We have calculated the filter transfer functions 
for all single-qubit Clifford gates, and since they all exhibit very similar behavior we only show the two aforemen-
tioned representative cases in the figure. Figure 2(a) shows the pulse shapes for uncorrected and corrected gates 
of π+ˆ ˆR x z( , ). We can see that the full supcode achieves simultaneous cancellation of both Overhauser and 
charge noise at the cost of prolonging the uncorrected pulse by roughly an order of magnitude, while the 
δJ-supcode is about 40% shorter since it focuses on compensating the charge noise only. The case is very similar 
in Fig. 2(d) for π+ +ˆ ˆ ˆR x y z( , 2 /3) except that the uncorrected pulse here consists of four pieces due to the 
complexity of the rotation, and the corresponding δJ-supcode is about 50% shorter than the full one. Moving on 
to the filter transfer functions, we show the results for π+ˆ ˆR x z( , ) in Fig. 2(b,c), and those for π+ +ˆ ˆ ˆR x y z( , 2 /3) 
in Fig. 2(e,f). We see from Fig. 2(b) that for Overhauser noise, the curves of Fh(ω) for the uncorrected pulse and 
the δJ-supcode are very similar (indicating no noise-compensation offered), while that for the full supcode has 
a higher order scaling in terms of the frequency, indicating powerful noise cancellation for a range of frequencies. 
A closer examination of the figure reveals that the reduction of noise happens for frequencies up to ωt0 ≈  0.1, 
demonstrating that the power of noise cancellation afforded by supcode is not only focused on very low frequen-
cies as it was originally conceived, but also extends to a reasonably broad noise spectrum. As far as only the 
Overhauser noise is concerned, δJ-supcode is necessarily not providing any improvement. However, when the 
charge noise is considered, the δJ-supcode should possess comparable, if not more, noise-cancelling power than 
the full supcode. This is demonstrated in Fig. 2(c) where both the full supcode and δJ-supcode have a higher 
order of scaling in terms of the frequency, and the noise reduction occurs in a reasonably broad frequency range, 
as in the previous case. The same discussion holds true for all other gates that we have investigated, but we only 
show additional results for π+ +ˆ ˆ ˆR x y z( , 2 /3) in Fig. 2(e,f ), where similar behavior with Fig. 2(b,c) is as 
expected.

For time-dependent noises, it is cumbersome to predict the fidelity of a quantum algorithm involving many 
gates using their individual fidelities. Randomized Benchmarking37,38 is a powerful technique to extract the aver-
age gate fidelity using a subset of arbitrary quantum gates, namely the Clifford group. In doing this, it also avoids 
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the error introduced during initialization and read-out, the feature of which is particularly useful in experiments. 
We have numerically performed Randomized Benchmarking37,38 for uncorrected and corrected single-qubit 
Clifford gates under different 1/f noises in order to understand and compare their performances. The benchmark-
ing procedure is implemented by averaging the fidelity over random sequences consisting of single-qubit Clifford 
gates, and over many different noise realizations for a varying number of gates. In actual simulations we averaged 
results from at least 500 random gate sequences undergoing different noise realizations for a given noise spectrum 
to ensure convergence. The gate fidelity is calculated using the state fidelity as defined in ref. 54. The fidelity of 
such sequences behave as [1 +  (1 −  2d)n]/2, where d is the average error per gate, and n the number of Clifford 
gates applied37. Figure 3 shows representative results for three different noises having spectra S(ω) =  A/(ωt0)α 
with the exponent α =  0.5 [panels (a) and (b)], α =  1.25 [panels (c) and (d)] and α =  2 [panels (e) and (f)] respec-
tively. Furthermore, to separate the effects of different noise channels, we have simulated benchmarking with the 
Overhauser noise only for the results shown in Fig. 3(a,c,e), while for those shown in Fig. 3(b,d,f) we consider 
the charge noise only. We emphasize that the results shown here are extracted from simulations of sequences of 
gates undergoing 1/f noises which are actually generated in the time domain, rather than integrating the product 
of the noise spectra and filter transfer functions in the frequency domain. We also note that although the noise 
amplitude A are chosen to be 1/t0 for all cases, it is not meaningful to compare results for different noises with the 
same A since their energies may be drastically different. We therefore focus on comparing the performances of 
uncorrected and corrected sequences for a given noise.

Qualitatively, for α close to zero, the noise behaves like the white noise and the supcode sequences are not 
expected to offer any improvement. On the other hand, for a relatively large value of α, the noise is concentrated 
at low frequencies, in which case supcode sequences should cancel a large portion of error induced by noises. 
There exists an intermediate value of α for which the error arising from both uncorrected and corrected pulses are 
comparable, which was previously found to be around αc ≈  1 (refs 33 and 36). In Fig. 3(a,b) (α =  0.5) the noise is 
very close to the white noise, and the average gate fidelity   drops down to 0.5 even faster for the corrected pulses 
than the uncorrected ones. These results are as expected because for a noise close to the white noise, there are a lot 
of spectral weight in higher frequencies where supcode sequences are unable to perform correction. At the same 
time, the longer gate duration of the corrected sequences leads to an accumulation of error, causing corrected 
sequences to have larger gate error than the uncorrected ones. For α =  1.25 [as shown in Fig. 3(c,d)] the uncor-
rected and corrected sequences have very similar performances (except that the δJ-supcode has larger error than 
the uncorrected one for Overhauser noise) indicating that the α value is close to the intermediate value αc. For a 
larger α (e.g. α =  2) we expect that the full supcode should outperform the uncorrected ones for both Overhauser 
noise and the charge noise, while the δJ-supcode should offer improvement for the charge noise but not the 
Overhauser noise. This observation is confirmed by the results shown in Fig. 3(e,f), where for the Overhauser 
noise, the fidelity for the uncorrected gates drops to ~0.7 after 100 gates, while that for the full supcode remains 
around 0.9. Similarly for the charge noise with the corresponding detuning noise having the same spectra, the 

Figure 2. Pulse shapes and filter transfer functions of selective supcode gates. (a) Pulse shapes for 
π+ˆ ˆR x z( , ), where the black line indicates the uncorrected operation, the blue line full supcode, and the red 

line δJ-supcode. The bullets mark the end of respective pulse sequences. (b) Filter transfer functions for the 
Overhauser noise Fh(ω) of the uncorrected and corrected operations π+ˆ ˆR x z( , ) corresponding to those shown 
in (a), with the meaning of different colors of lines being the same. (c) Filter transfer functions for the charge 
noise FJ(ω) of operations π+ˆ ˆR x z( , ). (d–f) Pulse shapes, filter transfer functions Fh(ω) and FJ(ω) for 

π+ +ˆ ˆ ˆR x y z( , 2 /3).
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fidelity of uncorrected gates drops down to below 0.7 after 100 gate operations while for supcode sequences the 
fidelity remains about 0.9, with the δJ-supcode having even higher fidelity than the full one due to its optimized 
gate length.

The average error per gate d can be extracted from exponentially fitting the resulting fidelity curve of the ran-
domized benchmarking procedure to (1 +  e−γn)/2. In Fig. 4 we show the results of the extracted average error per 
gate d as functions of noise amplitudes from the randomized benchmarking results. We see that the d v.s. A curves 
are largely parallel especially for smaller noises, even for α =  2 where the noise-compensating pulse are expected 
to be working. This is due to the fact that the leading order error is not completely cancelled for non-static noises 
and the error curve should show similar scaling between corrected and uncorrected cases. Nevertheless, the error 
resulted from corrected and uncorrected pulse sequences are consistent with what shown in Fig. 3: For α =  0.5 
the corrected pulses are not providing any improvement but rather deteriorate the gate further; for α =  1.25 
corrected and uncorrected pulses are largely comparable as far as the average gate errors are concerned (with 
the exception of the δJ-supcode under Overhauser noise having a larger error). For α =  2 Overhauser noise, the 
full-supcode shows powerful error reduction about two orders of magnitude, and for α =  2 charge noise both 
full and δJ-supcode offers two orders of magnitude of error reduction with the latter outperforms the former. 

Figure 3. Randomized benchmarking for uncorrected and corrected single-qubit Clifford gates for 
different 1/f noises. n denotes the number of gates. The left column (a,c,e) includes the Overhauser noise only, 
whereas in the right column (b,d,f) we consider the charge noise only. The Overhauser noises δh(t) ~ ξh(t) which 
exhibits a power spectra density S(ω) =  A/(ωt0)α with amplitude A =  1/t0. The charge noises δJ(t) ~ J(t)ξJ(t) 
where ξJ(t) is defined in the same way as ξh(t). For (a,b), α =  0.5; (c,d) α =  1.25; (e,f) α =  2. The results for 
uncorrected operations, full supcode and δJ-supcode pulses are shown as black, blue and red lines respectively. 
The values of A are, respectively, At0 =  (a)10−3, (b)10−2, (c)10−3.5, (d)10−2.5, (e)10−4.5, and (f)10−3.75.
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These are all consistent with qualitative consideration from the nature of supcode sequences and their response 
to time dependent noises.

Using the results of Fig. 4 one may define the supcode improvement ratio κ as the error resulted from the 
uncorrected pulses divided by that from the corrected ones under the same noise. In Fig. 5 we show the improve-
ment ratio κ as functions of the noise exponent α. Figure 5(a) shows the results for Overhauser noise. We see that 
the improvement factor of the full supcode surpasses 1 at about α ≈  1.1 and rises almost linearly on the semi-log 
plot for a range of α indicating that the corrected pulse sequences are much more powerful in reducing the error 
for a noise system with a larger α. However it starts to bend down when α approaches 3, the limit in our numer-
ical simulation. This is probably due to the fact that even at the limit of static noise the supcode sequences will 
not completely compensate errors to all orders26; instead, it only cancels the leading order error and the improve-
ment factor must saturate at the reciprocal ratio between the remaining part of the error and those resulting from 
uncorrected operations. For δJ-supcode under Overhauser noise, almost no dependence on α is found, which 
is consistent with the fact that δJ-supcode is simply not designed to respond to Overhauser noise. Turning to 
Fig. 5(b) while we see similar behavior for both full and δJ-supcode, an additional interesting feature is that 

Figure 4. The average error per gate v.s. noise amplitudes. The average error per gate d is found via an 
exponential fit of the results of randomized benchmarking as described in the main text. The results in the left 
column (a,c,e) are calculated using only Overhauser noise with amplitude Ah, while those in the right column 
(b,d,f) are calculated for the charge noise with amplitude AJ only. For (a,b), α =  0.5; (c,d) α =  1.25; (e,f) α =  2. 
The results for uncorrected operations, full supcode and δJ-supcode pulses are shown as black, blue and red 
lines respectively.
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when α is increased up to approximately 1.03 the δJ-supcode starts to outperform the full supcode due to its 
optimized structure crafted specifically for this situation. The results of Fig. 5 implies that for an experimentally 
relevant noise exponent of about 2.6 (cf. refs 39 and 40) one should expect that the average gate errors stemming 
from corrected pulses are less than 1% of those arising from uncorrected operations; and if that noise happens in 
a Si sample one should also expect further error reduction of a factor of about four, a great improvement of the 
gate fidelities.

Discussion
In this paper we have studied the response of the supcode composite pulse sequences to time-dependent noises, 
in particular the 1/f noises. We have calculated the filter transfer functions of the supcode gates, and through the 
two typical examples shown in this paper we see that while these gates are originally conceived to cancel static 
noises, they should still offer considerable noise reduction up to frequencies ωt0 ≈  0.1. Recent experiments in a 
silicon system have shown that the gate fidelity is mostly affected by charge noises in the 10 kHz to 1 MHz range11. 
Assuming t0 =  10 ns, the upper frequency limit that supcode sequences offer reduction of noise is ω ≈  10 MHz, 
which well covers the frequency range of charge noise found experimentally. We have also find that although the 
filter transfer functions corresponding to the charge noise are defined in a slightly different way than the nuclear 
noise, their behaviors are largely the same after the control-dependent part of the charge noise has been appropri-
ately treated. We have generated the 1/f noise with a wide range of the exponents (0 ≤  α ≤  3). Through 
Randomized Benchmarking, we have extracted the average error per gate for uncorrected pulses as well as the two 
types of the supcode pulses. We found that for small α the corrected sequences actually deteriorate the gate error 
due to accumulation of uncanceled noise, and for intermediate α values the corrected and uncorrected sequences 
are comparable. For large α supcode sequences start to show significant power in noise reduction and in particu-
lar the δJ-supcode outperforms the full supcode as far as only the charge noise is concerned, offering superior 
ability in compensating error. This indicates that for experiments on isotopically enriched silicon δJ-supcode 
pulses are suitable to be used in performing high-fidelity control. In the experiment of ref. 40, the strength of the 
nuclear noise at α 2 can be estimated to be Aht0 ≈  10−6 using t0 =  10 ns. Figure 4(e) indicates that the error will 
be at least one order of magnitude smaller if the full supcode is used, compared to the uncorrected case. For the 
charge noise, we convert the data from a very recent experiment11 to AJt0 ≈  10−8 at α ≈  2. Extrapolation of the 
curves in Fig. 4(f ) shows that there would be an additional two orders of magnitude reduction on the 
already-small gate error for the experimental system studied in ref. 11. Further developments of supcode 
sequences and their benchmarking include optimization of supcode sequences specific to a given type of 
time-dependent noise55 and extension to two-qubit as well as non-Clifford gates56.

Spin qubits based on semiconductor quantum dots are one of the most promising candidates for scalable 
fault-tolerant quantum computing. Dynamically corrected gates, in particular supcode sequences and related 
control protocols are among the most viable approaches to improve the gate fidelity, keeping the error below the 
quantum error correction threshold. In this paper we have studied how supcode sequences filter noises with a 
range of frequency spectra and have shown that under experimentally relevant circumstances supcode, when 
properly used, offers considerable error reduction. We therefore believe that experimental realization of supcode 
sequences in semiconductor quantum dot systems will be of great interest to spin-based quantum computation.

Methods
Generation of 1/f noises. In this section we explain our methods to generate 1/f noises. The power spectral 
density of certain noise [which is essentially a random process f(t)] may be defined as

ω ω=
→∞

S
T

f( ) lim 1 ( ) (10)T T
2

Figure 5. The improvement ratio κ v.s. the noise exponent α. supcode (a) Results for Overhauser noise only. 
(b) Results including the charge noise only. The blue and red lines represent respectively the improvement ratio 
of the full supcode and δJ-supcode compared to the uncorrected sequences. The inset of (b) is a zoom-in of 
the curves near α ≈  1.
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where

∫ω ≡ .ω
−

−f dtf t e( ) ( ) (11)T T

T i t

/2

/2

is the Fourier transform of f(t).
Alternatively, the power spectral density of the noise can be defined in terms of the auto-correlation function 

C(τ) =  〈 f(t)f(t +  τ)〉  as

∫ω τ τ= ωτ

−∞

+∞ −S e C d( ) ( ) , (12)
i

and the Wiener-Khinchin theorem57 mandates that Eqs (10) and (12) are equivalent.
1/f noises refer to noises having a power spectral density of S(ω) =  A/(ωt0)α where t0 is the energy unit in this 

work, A is the amplitude of the noise, and the behavior of the noise is mostly encapsulated in the exponent α, 
which determines the distribution of the spectral density over a range of frequencies.

In this work we have employed two ways to generate 1/f noises. One is a standard way to generate such kind 
of noise, which is a weighted combination of Random Telegraph Noises (RTN), which we briefly explain below.

An RTN is a random process of f RTN(t) describing fluctuations between two discrete values 1 and − 1 with the 
switching rate ν [cf. ref. 58]. The power spectral density of RTN is

ω ν
ν ω

=
+

.S ( ) 8
4 (13)

RTN
2 2

Using the fact that

∫
ν

ν ω ν
ω

π π α
ω+






 =

−α

α

∞ −

d8
4

1
2

2 sec[ ( 1)/2] ,
(14)0 2 2

1

One may perform a weighted combination of RTNs to obtain the desired 1/f noise with exponent α as

∫π π α ν
ω=

−







α∞ −

f t f t d( ) 1
2 sec[ ( 1)/2]

1
2

( ) ,
(15)0

1
RTN

which in practice reduces to summations. While this method is widely used in simulating 1/f noises, it suffers 
from a difficulty that it cannot generate noises with exponent α >  2, and good convergence is typically achieved 
for a even narrower range 0.5 <  α <  1.5, a severe limit of previous works.

Therefore, in this work we primarily rely on another method to generate the 1/f noise following the guidelines 
provided in ref. 59. Where applicable, we compare the results from this method to those generated from the sum-
mation of RTNs to verify our results, and we have found good agreements. Here we briefly introduce the method: 
One first generate a noise in the frequency domain as

ω ω=
α φ ω−f g e( ) ( ) , (16)i2 ( )

where g(ω) is generated from a Gaussian white process ω µ σ~g ( ) ( , )2  (with expectation μ =  0 and standard 
deviation σ =  1), and the phase factor φ(ω) is drawn from a uniform distribution between 0 and 2π. The actual 1/f 
noise desired in the time domain is therefore an inverse Fourier transform of the above equation, which is written 
in the discretized form as

ω

ω
=











∆

∆

=
≤ <
=
< ≤

α φ ω

α

− ∆

−

−
⁎

f
g k e
g k
f

k
k N

k N
N k N

0
( )
( )

0,
1 /2,

/2,
/2 , (17)

k

i k

N k

/2 ( )

/2

where the integer N is the number of time slices in the duration of the desired noise with step size 1/Δ ω, and Δ ω 
are taken to be the same as t0, the energy unit used in this work.
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