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José Marı́a Sayagués1, Celia Fontanillo2, Marı́a del Mar Abad3, Marı́a González-González1, Marı́a Eugenia
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Abstract

Background: For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques.
However, most of the approaches employed so far have a relatively limited resolution which hampers detailed
characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying
genetic changes and the genes involved in them.

Methodology/Principal Findings: Here we applied 500K SNP arrays to map the most common chromosomal lesions
present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis.
Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q,
11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies
allowed the identification of small (,1.3 Mb) and extensive/large (.1.5 Mb) altered DNA sequences, many of which contain
cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions
for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1;
interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically
targeted the FAM27L gene, whose role in CRC deserves further investigations.

Conclusions/Significance: In summary, in the present study we provide a detailed map of the genetic abnormalities of
primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the
identification of genes potentially involved in development of CRC and the metastatic process.
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Introduction

The development and progression of CRC is a multistep process

leading to the accumulation of genomic alterations that occur at

the single cell level over the lifetime of a tumour, from benign to

invasive and metastatic states leading to patient death [1,2]. For

many years, the genetics of metastatic CRC have been studied

with an increasingly high variety of techniques from conventional

cytogenetics [3] and fluorescence in situ hybridization (FISH) [4] to

comparative genomic hybridization (CGH) [5] and array CGH

(aCGH) [6]. Based on these techniques, many different recurrent

genetic abnormalities have been identified in metastatic CRC

which frequently include gains of chromosomes 8q, 13q and 20q

[7,8] together with losses of the 1p, 8p, 17p and 18q chromosomal

regions [9]. By contrast, detailed characterization of the common

breakpoint regions as well as the identification of the specific genes

targeted by such abnormalities has proven difficult with these

approaches. This is partially due to the fact that these techniques

have a relatively limited resolution which hampers identification of

the specific cancer-associated genes recurrently targeted in such

alterations. In fact, the highest resolution approaches applied so far

to the study of CRC are based on aCGH (i.e. Camps et al who
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applied a 185K oligonucleotide array with an estimated resolution

of 16 kb, to the analysis of 32 primary CRC tumours) [10].

In recent years, the availability of high-density single nucleotide

polymorphism (SNP) arrays has allowed identification of small

regions of chromosomal gains and losses with a much higher

resolution, down to 2.5 kb [11]. Thus, based on genome wide SNP

arrays, fine mapping of chromosomal breakpoints and subsequent

identification of the specific genes recurrently altered (deleted,

gained or amplified) is achieved for individual samples. This allows

for a more precise and detailed comparison of the breakpoint

regions found in different tumours and their correlation with the

clinical features of the disease.

In the present study we used 500K SNP mapping arrays with a

mean distance between interrogated SNPs of 5.8 kb (median

intermarker distance of 2.5 kb) to map genetic lesions present at

diagnosis in primary tumours from a group of 23 sporadic CRC

patients who developed liver metastasis. Our major goal was to

define the most frequent recurrent breakpoint regions in

metastatic CRC and the commonly gained and/or deleted genes

in the altered chromosomes. In order to evaluate the reproduc-

ibility of the SNP-array results we performed parallel interphase

FISH (iFISH) analyses of the same tumour samples using 24

probes directed against an identical number of regions from 20

different human chromosomes frequently altered in sporadic

CRC.

Materials and Methods

Patients and samples
Tissue specimens were obtained from primary tumours from 23

patients (15 males and 8 females; median age of 68 years, ranging

from 48 to 80 years) suffering from metastatic sporadic CRC. The

study was approved by the local ethics committee of the University

Hospital of Salamanca (Salamanca, Spain) and prior to entering to

the study, informed consent was given by each individual.

In each case, the diagnosis and the classification of the tumours

were performed according to the WHO criteria [12]. According to

tumour grade, 13 cases corresponded to well-differentiated CRC,

8 to moderately- and 2 to poorly-differentiated tumours.

Histopathological grade was confirmed in all cases in a second

independent evaluation by an experienced pathologist.

From the 23 primary tumors, 16 were localized at the right

(caecum, ascending or trasverse) or the left (descending and

sigmoid) colon and 7 in the rectum. Mean size of primary tumors

was of 5.261.8 cm with the following distribution according to the

TNM stage [13]: T3N0M1, 3 cases; T3N1M1, 9; T3N2M1, 3;

T4N0M1, 5; T4N1M1, 1 and; T4N2M1, 2 patients. In all cases

paired liver metastases were identified either at the time of

colorectal surgery (n = 14) or during the first year after initial

diagnosis (n = 9); the mean size of the largest liver metastases/

patient was of 5.362.8 cm (range: 2 to 10 cm).

After histopathological diagnosis was established, samples from

representative areas of the primary tumours showing macrosco-

pical infiltration, were used to prepare single cell suspensions to be

stored (220uC) in methanol/acetic (3/1; vol/vol) for further

iFISH analyses [14]. The remaining tissue was either fixed in

formalin and embedded in paraffin or frozen in liquid nitrogen,

and stored at room temperature (RT) and at 280uC, respectively.

From the paraffin-embedded tissue samples, sections were cut

from three different areas representative of the tumoural tissue

used to prepare single cell suspensions and placed over poly L-

lysine coated slides. All tissues were evaluated after hematoxylin-

eosin staining to confirm the presence of tumour cells and evaluate

their quantity in samples to be studied by both iFISH and SNP-

arrays. For SNP-array studies, tumour DNA was extracted from

freshly-frozen tumour tissues mirror cut to those used for iFISH

analyses which contained $65% epithelial tumour cells. In turn,

normal DNA was extracted from matched peripheral blood (PB)

leucocytes from the same patient. For both types of samples

(tumour tissue and PB leucocytes), DNA was extracted using the

QIAamp DNA mini kit (Qiagen, Hilden, Germany) following the

manufacturer’s instructions.

Analysis of single nucleotide polymorphism (SNP) arrays
Paired samples of purified tumoural DNA and normal PB DNA

from individual patients were hybridized to two 250K Affymetrix

SNP Mapping arrays (NspI and StyI SNP arrays, Affymetrix, Santa

Clara, CA) using a total of 250 ng of DNA per array, according to

the instructions of the manufacturer. Fluorescence signals were

detected using the GeneChip Scanner 3000 (Affymetrix). Average

genotyping call rates of 94.4% and 97.3% were obtained for

tumoral and paired normal PB DNA samples, respectively. Only

those SNPs with a call rate $92.3% were used for further analyses.

In order to calculate genome-wide copy number (CN) changes

in tumoural vs. normal samples, the aroma.affymetrix algorithm was

used, following the CRMA v2 method, as described elsewhere (R-

software package, Berkeley, CA) [15]. The following sequential

steps were used for this purpose: i) calibration for crosstalks

between pairs of allele probes; ii) normalization for probe

nucleotide-sequence effects, and; iii) normalization for PCR

fragment length- and probe localization-dependent effects. Then,

data derived from both the 250K StyI and the 250K NspI arrays

was integrated into a single database and raw CN values

calculated as transformed log2 values of the tumoural/normal

ratio obtained for paired SNP fluorescence signals.

Log2 ratio values were then used to identify DNA regions which

showed similar CN values, using the Circular Binary Segmenta-

tion (CBS) algorithm [16]. For the identification of altered (gained

or lost) DNA regions, a threshold was established based on the

changes observed in the log2 CN values (fluorescence intensity

ratio) of sequential tumour DNA segments found for each

individual. Therefore, log2 ratio .0.09 and ,20.09 were used

as cut-off thresholds to define the presence of increased and

decreased CN values, respectively. High-level gains (amplifica-

tions) were defined as regions with a mean log2 CN ratio $0.22

for $3 contiguous SNPs. The specific frequencies of both CN

gains and losses per SNP were established and plotted along

individual chromosomes for each individual case analyzed.

Minimal common regions (MCR) of gain and loss were defined

as the smallest group of contiguous SNPs ($3) with a high

frequency of gains and losses (Z-score threshold $2.1) according to

the overall distribution of CN values found in the entire tumour

cell genome, respectively. Common recurrent breakpoint regions

were defined as those chromosomal regions which recurrently

showed transition from one CN state (gain, loss or no-change) to

another for the whole set of individual samples analyzed, at a

frequency of $35% of the cases (n = 8/23 samples).

Interphase fluorescence in situ hybridization (iFISH)
studies

In all cases, iFISH studies were performed on an aliquot of the

single cell suspension prepared from the tumour sample. A set of

24 locus-specific FISH probes directed against DNA sequences

localized in 20 different human chromosomes, specific for those

chromosomal regions more frequently gained or deleted in

sporadic CRC [4,6,8,17,18] were systematically used to validate

the results obtained with the SNP arrays (Table 1).

Genetics of Colorectal Cancer
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The methods and procedures used for the iFISH studies have

been previously described in detail [19]. Briefly, dried slides

containing both the tumour cells’ and the probes’ DNA were

denatured (1 min at 75uC) and hybridized overnight (37uC) in a

Hybrite termocycler (Vysis Inc, Downers Grove, IL, USA). After

this incubation, slides were sequentially washed (5 min at 46uC) in

50% formamide in a 26 saline sodium citrate buffer (SSC) and in

2XSSC. Finally, nuclei were counterstained with 35 mL of a

mounting medium containing 75 ng/ml of 4,6-diamidino 2-

phenylindole (DAPI; Sigma, St Louis, MO, USA); Vectashield

(Vector Laboratories Inc, Burlingame, CA, USA) was used as

antifading agent.

A BX60 fluorescence microscope (Olympus, Hamburg, Ger-

many) equipped with a 1006 oil objective was used to count the

number of hybridization spots/nuclei for $200 cells/sample. Only

those spots with a similar size, intensity and shape were counted in

areas with ,1% unhybridized cells; doublet signals were

considered as single spots. A tumour was considered to carry a

numerical abnormality for a given chromosomal region when the

proportion of cells displaying an abnormal number of hybridiza-

tion spots for the corresponding probe was at a percentage higher

or lower than the mean value plus two standard deviations (SD) of

the mean percentage obtained with the same probe in control

samples (n = 10).

Quantitative Real-Time PCR
In order to validate the results obtained in the SNP-array

studies, quantitative real-time polymerase chain reaction (RQ-

PCR) was performed using the Step One Plus Real-Time PCR

System (Applied Biosystems, Foster City, CA) in matched normal

and tumoural samples in 18/23 cases. Expression of the MAP2K4,

MYC and BIRC7 genes was analyzed. We employed TaqManH
Gene Expression Assays designed by Applied Biosystems (Applied

Biosystems, Foster City, CA) according to the manufacturers

instructions, and the assays ID for the genes studied were as

follows: Hs_00387426-m1 (MAP2K4), Hs_00153408-m1 (MYC)

and Hs_00223384-m1 (BIRC7).

Each PCR was carried out in duplicate in a 10 uL volume

using the TaqManH Fast Universal Mastermix (Applied Biosys-

tems) and the following cycling parameters: incubation at 95uC
(20 sec), followed by 50 cycles at 95uC (1 sec) and an incubation

at 60uC (20 sec). Analysis was made using StepOne software v2.0.

The obtained data were normalized by using the internal

housekeeping gene, GAPDH. Relative quantification was calcu-

lated using the equation 22DCT = CTGENE-CTGAPDH. The final

mRNA expression index in each sample was calculated as follows

(arbitrary units; AU): mRNA expression index = MYC or

MAP2K4 or BIRC7 mRNA value/ GAPDH mRNA value X

10,000 AU.

Table 1. A panel of 24 locus-specific FISH probes directed against 24 different regions localized in 20 different human
chromosomes were used to validate the results obtained with the SNP arrays.

iFISH probe chromosome
localization iFISH probe length (kb) Target gene

N. of SNPs inside the region identified by the iFISH
probe

1p36 110 P58 120

1q25 620 ABL2 68

2p24 200 NMYC 38

3q26 839 HTERC 52

5p15.2 450 D5S721 118

6q23 740 MYB 88

7q31 200 D7S486 33

8p22 170 LPL 39

8q24 600 CMYC 159

9p21 190 P16 37

9q34 270 ABL1 33

10q23 370 PTEN 49

11q22 184 ATM 69

12p13 350 TEL 98

13q14 220 RB1 14

13q34 550 LAMP1 92

14q32 1500 IGH 82

15q22 540 DAPK2 38

17p13 145 TP53 12

18q21 750 BCL2 153

19q13 340 CD37 21

20q13.2 320 ZNF217 53

21q22 500 AML1 111

22q11.2 300 BCR 36

All probes were purchased from Vysis Inc (Chicago, IL, USA), except for the 3q26, 15p22 and 19q13 probes, which were obtained from QBIOgene Inc (Amsterdam, The
Netherlands).
doi:10.1371/journal.pone.0013752.t001
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Figure 1. Metastatic colorectal cancer genome for the 23 CRC patients studied. In panel A an overall view of both the gained (blue areas)
and lost (red areas) chromosome regions across the genome are shown for the 23 patients genotyped on the Affymetrix 500k SNP array platform. In
panel B a summary plot showing the frequency of CN gains (plotted above zero values in the x-axis) and losses (plotted below zero values the x-axis)
detected for each individual chromosome, is displayed. Those chromosome regions most frequently showing recurrent losses and gains by SNP

Genetics of Colorectal Cancer
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Statistical methods
For all continuous variables, mean values (and SD) and range

were calculated using the SPSS software package (SPSS 12.0 Inc,

Chicago, IL USA); for dichotomic variables, frequencies were

reported. In order to evaluate the statistical significance of

differences observed between groups, the Mann-Whitney U and

X2 tests were used for continuous and categorical variables,

respectively (SPSS).

A multivariate stepwise regression analysis (regression, SPSS)

was performed to determine the correlation between the structural

and/or numerical abnormalities found for both iFISH, SNP-array

techniques and their relationship with the expression of those

genes analyzed by RQ-PCR. Only those iFISH probes with $12

SNPs localized in the iFISH mapped region (Table 1) were used

for correlation studies with the CN status identified by the SNP

array (gain vs. loss vs. no change) for those SNPs localized at each

iFISH region. P-values ,.01 were considered to be associated with

statistical significance.

Results

Map of CN changes by SNP arrays
Overall CN changes for at least one chromosomal region were

detected in all 23 tumors studied. The highest frequency of CN

losses detected corresponded to chromosomes 1p (n = 17; 74%), 8p

(n = 18; 78%), 14q (n = 15; 65%), 17p (n = 19; 83%), 18 (n = 21;

91%) and 22q (n = 17; 74%); in turn, CN gains more frequently

involved chromosomes 1q (n = 10; 43%), 7 (n = 20; 87%), 8q

(n = 17; 74%), 13q (n = 18; 78%), 20q (n = 20; 87%) and X (n = 13;

57%) (Figure 1); these (gained) chromosomes/chromosomal

regions also revealed the highest level of genomic amplification

(Table S1). In addition, gains and losses of many other

chromosomal regions were identified at lower frequencies

(Figure 1). An illustrating map of the most frequently gained/lost

chromosome regions according to SNP-array studies, is shown in

figure 2.

Of note, SNP arrays allowed the identification of 43 small DNA

sequences (arbitrarily defined as regions of ,1300 kb) which

displayed recurrent CN changes (gains and losses). Interestingly,

most of those regions which showed recurrent CN changes

(n = 28/43) contained at least one known well-characterized gene,

five contained known cancer-associated genes and one region held

a microRNA gene (MIR1208), localized at chromosome 8q24.21

(Table 2). The exact number of small regions characterized by CN

changes, as well as the relative proportion of CN gains vs. losses

varied widely among the different chromosomes. The 43 small

regions containing CN gains and losses were coded in those

chromosomes more frequently affected by CN changes and their

arrays were localized in chromosomes 1p, 8p, 17p and 18, and involved the whole chromosome 7 and the 8q, 13q and 20q chromosome regions,
respectively.
doi:10.1371/journal.pone.0013752.g001

Figure 2. Representative karyotype of a primary metastatic colorectal tumor as determined by the Affymetrix 500K SNP array
genotyping platform, showing summary results for those chromosome gains/losses more frequently detected in the colorectal
tumor samples analyzed (n = 23).
doi:10.1371/journal.pone.0013752.g002
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distribution was as follows: chromosomes 1p, 1 region; 7p, 3; 8p, 4;

8q, 16; 13q, 7; 17p, 3; 18q, 4; 20q, 3, and; Xq, 2 region. In

addition, other regions carrying recurrent large-scale CN gains

and losses (arbitrarily defined as regions of .1500 kb) were

identified at the 8q21.13, 17p12, 17p11.2, 22q13 and Xq25

chromosome segments (one in each chromosome). Interestingly,

Table 2. Most frequently detected small regions (,1300 kb) of gain and loss in primary sporadic colorectal tumors genotyped on
the Affymetrix 500K SNP array platform (n = 23).

Minimal common altered
regions (bp)

Region length
(bp) N. of SNPs

Chromosome
band Event

% of altered
cases Gene list

Chr 1: 26,131,131-26,191,419 60,288 16 1p36.11 Deletion 74 PAFAH2

Chr 7: 8,255,230-8,280,496 25,266 10 7p21.3 Gain 74 ICA1

Chr 7: 10,461,770-10,486,412 24,642 8 7p21.3 Gain 74 –

Chr 7: 12,514,442-12,576,898 62,456 9 7p21.3 Gain 74 SCIN

Chr 8: 32,105,734-32,675,812 570,078 196 8p12 Deletion 70 –

Chr 8: 198,834-392,556 193,722 46 8p23.3 Deletion 70 FAM87A, FBXO25

Chr 8: 400,640-539,716 139,076 29 8p23.3 Deletion 70 C8orf42

Chr 8: 23,264,737-23,277,681 12,944 8 8p21.3 Deletion 70 –

Chr 8: 86,214,670-86,946,337 731,667 52 8q21.2 Gain 65 LRRCC1, E2F5, CA13, CA1, CA3, CA2

Chr 8: 87,377,186-87,789,535 412,349 65 8q21.3 Gain 65 WWP1, FAM82B, CPNE3, CNGB3

Chr 8: 88,872,540-89,066,702 194,162 24 8q21.3 Gain 65 WDR21C

Chr 8: 91,462,487-91,474,759 12,272 2 8q21.3 Gain 65 –

Chr 8: 91,686,333-91,735,940 49,607 10 8q21.3 Gain 65 TMEM64

Chr 8: 94,759,374-95,077,320 317,946 44 8q22.1 Gain 65 RBM12B, C8orf39, TMEM67, PPM2C

Chr 8: 95,294,349-95,435,061 140,712 28 8q22.1 Gain 65 GEM

Chr 8: 95,593,385-95,776,644 183,259 36 8q22.1 Gain 65 KIAA1429, RBM35A

Chr 8: 128,638,191-128,724,583 86,392 25 8q24.21 Gain 65 –

Chr 8: 129,180,096-129,268,067 87,971 43 8q24.21 Gain 65 MIR1208

Chr 8: 130,906,244-131,222,249 316,005 35 8q24.21 Gain 65 FAM49B

Chr 8: 133,845,345-133,868,639 23,294 9 8q24.22 Gain 65 PHF20L1

Chr 8: 133,882,656-133,900,665 18,009 6 8q24.22 Gain 65 –

Chr 8: 135,527,585-135,836,235 308,650 97 8q24.22 Gain 65 ZFAT

Chr 8: 136,498,075-136,866,133 368,058 74 8q24.23 Gain 65 KHDRBS3

Chr 8: 137,055,200-137,091,177 35,977 12 8q24.23 Gain 65 –

Chr 13: 73,603,130-73,627,939 24,809 10 13q22.1 Gain 78 KLF12

Chr 13: 74,972,248-75,117,835 145,587 26 13q22.2 Gain 78 COMMD6, UCHL3, LMO7

Chr 13: 75,689,304-75,689,865 561 2 13q22.2 Gain 78 –

Chr 13: 76,352,482-76,366,765 14,283 11 13q22.3 Gain 78 KCTD12

Chr 13: 78,098,212-78,143,588 45,376 7 13q31.1 Gain 78 C13orf7

Chr 13: 78,805,700-79,077,299 271,599 46 13q31.1 Gain 78 RBM26, NDFIP2

Chr 13: 79,621,013-79,845,948 224,935 40 13q31.1 Gain 78 SPRY2

Chr 17: 10,693,238-11,021,844 328,606 89 17p13.1 Deletion 78 –

Chr 17: 14,234,746-14,967,525 732,779 214 17p12 Deletion 78 –

Chr 17: 14,984,724-15,082,587 97,863 18 17p12 Deletion 78 PMP22

Chr 18: 41,130,655-41,494,986 364,331 134 18q12.3 Deletion 91 SLC14A2

Chr 18: 45,410,728-45,497,910 87,182 29 18q21.11 Deletion 91 –

Chr 18: 45,654,114-46,036,475 382,361 144 18q21.11 Deletion 91 MYO5B, CCDC11

Chr 18: 46,252,199-46,288,353 36,154 12 18q21.11 Deletion 91 –

Chr 20: 37,766,095-38,339,016 572,921 131 20q12 Gain 83 HSPEP1

Chr 20: 51,012,908-51,013,194 286 2 20q13.2 Gain 83 –

Chr 20: 52,991,500-54,234,439 1,242,939 325 20q13.2 Gain 83 CBLN4

Chr X: 134,159,698-134,160,254 556 2 Xq26.3 Gain 57 –

Chr X: 151,650,011-151,652,710 2699 2 Xq28 Gain 57 –

Genes which have been associated with cancer are shown in bold.
doi:10.1371/journal.pone.0013752.t002
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each of these larger regions has been previously associated with

malignancy and contained genes i) relevant to the metastatic

process (i.e.: TPD52, FABP5, MAP2K4, LLGL1, TOP3A,

ALDH3A2, UPK3A, FBLN1, TYMP), ii) associated with intracellu-

lar signaling processes (i.e.: PAG1, ELAC2, RASD1 and

TNFRSF13B) and iii) genes involved in the regulation of the cell

cycle (i.e.: FLCN, PEMT and XIAP); in turn, three of these large

CN regions showing CN losses and one with CN gains contained a

total of 8 known microRNAs (Table 3).

Chromosomal regions showing high-level CN gains
The highest levels of genetic amplification were detected for the

7p15.2, 8q24.21, 13q12.13 and 20p12.3 chromosome bands with

maximum fluorescence intensity log2 ratios of 0.99 (0.2360.11),

1.45 (0.3560.15), 1.47 (0.3160.22) and 0.96 (0.2860.11), respec-

tively (Table 4). Several genes which are potentially involved in the

pathogenesis of CRC are localized in these four chromosomal

regions. Among others, these include the CYCS and UPP1 genes on

chromosome 7p, the MYC gene at chromosome 8q24.21, the

HSPH1 and CDX2 genes at chromosome 13q and the CDC25B,

PLCB4, TNFRSF6B, OGFR, NTSR1, CDH4, CYP24A1 and RGS19

genes in chromosome 20. The most commonly amplified single

region (18/23 cases; 78%) corresponded to a region localized at

chromosome 20q11.22 identified by the SNP_A-2220183 and the

SNP_A-2039695 at the 33,776,127 bp and 33,954,944 bp posi-

tions, respectively (Table S1).

Interestingly, we recorded a statistically significant association

between tumour grade and presence of gains/amplifications at the

20p13 chromosomal region localized between the 2,574,587 and

2,993,797 bp positions and assessed by 66 SNPs with a greater

frequency of well- vs moderately-differentiated tumours- (11/13

(85%) vs 2/8 (25%); p = 0.005) among cases with this chromo-

somal alteration.

Recurrent chromosomal breakpoints identified by SNP-
arrays

Based on the analysis of the distribution of chromosomal

breakpoints defined by the SNP-arrays, four recurrent chromo-

somal breakpoints (arbitrarily defined as DNA segments showing

CN changes in more than one third of the cases) were identified at

chromosomes 1p12, 8p12, 17p11.2 and 20p12.1 (Figure S1).

Chromosomes 1, 8 and 20 showed a high number (.145) of

different breakpoint regions with a variable and heterogeneous

distribution; in contrast, a highly prevalent breakpoint region was

identified in the centromeric portion of chromosome 17p, between

the genome coordinates 20,156,497 bp and 22,975,771 bp (15/19

patients with abnormalities for this chromosome), and a minimum

size of 28.2 Mb for the recurrent breakpoint. In these 15 cases, the

first gene affected on the retained telomeric side of the breakpoint

region was the CYTSB gene and the first constantly deleted gene

on the centromeric side was the FAM27L gene. Interestingly, in 13

of these 15 patients a preferential breakpoint occurred at the

21,769,828–22,975,771 genome coordinate where the FAM27L

gene is coded.

Correlation between the chromosomal changes detected
by SNP-arrays and both iFISH and RQ-PCR studies

In order to evaluate the consistency of the chromosomal

changes identified by the SNP-arrays, iFISH analysis were

performed in parallel for a total of 24 chromosome regions from

20 different chromosomes. Overall our results showed a high

degree of correlation (mean r2 of 0.73602; range: 0.65 to 0.91)

between both methods, including when such analysis was

restricted to the most frequently altered regions (r2$0.67)

(Table 5).

In order to assess the impact of the information generated by

SNP arrays, the expression of three genes (MAP2K4, MYC and

Table 3. Most frequently detected extensively altered chromosome regions with CN changes (.1500 kb) in primary sporadic
colorectal tumors genotyped on the Affymetrix 500K SNP array platform (n = 23).

Extensively altered
regions (bp)

Region length
(bp)

Chromosome
band Event

% of altered
cases Gene list

Chr 8: 80,831,670-82,390,493 1,558,823 8q21.13 Gain 65 HEY1, MRPS28, TPD52, ZBTB10, ZNF704, PAG1, FABP5

Chr 17: 11,135,229-14,009,355 2,874,126 17p12 Deletion 78 DNAH9, ZNF18, MAP2K4, MIR744, MYOCD, ELAC2,
HS3ST3A1, MIR548H3, COX10

Chr 17: 16,270,540-19,616,367 3,345,827 17p11.2 Deletion 78 TRPV2, C17orf45, C17orf76, ZNF287, ZNF624,
CCDC144A,TNFRSF13B, C17orf84, FLCN, COPS3, NT5M,
MED9, RASD1, PEMT, RAI1, SREBF1, MIR33B, TOM1L2,
LRRC48, ATPAF2, C17orf39, DRG2, MYO15A, ALKBH5,
LLGL1, FLII, SMCR7, TOP3A, SMCR8, SHMT1, NOS2B,
TBC1D28, TRIM16L, FBXW10, FAM18B, PRPSAP2, SLC5A10,
FAM83G, GRAP, EPN2, B9D1, MIR1180, MAPK7, MFAP4,
ZNF179, SLC47A1, ALDH3A2, SLC47A2, ALDH3A1, ULK2

Chr 22: 43,616,234-49,576,671 5,960,437 22q13 Deletion 57 ARHGAP8, PHF21B, NUP50, C22orf9, MIR1249, UPK3A,
FAM118A, SMC1B, RIBC2, FBLN1, ATXN10, WNT7B,
C22orf26, MIRLET7A3, MIRLET7B, PPARA, PKDREJ, GTSE1,
TRMU, CELSR1, GRAMD4, CERK, TBC1D22A, FAM19A5,
C22orf34, BRD1, ZBED4, ALG12, CRELD2, PIM3, IL17REL,
TTLL8, MLC1, MOV10L1, PANX2, TRABD, TUBGCP6,
HDAC10, MAPK12, MAPK11, PLXNB2, FAM116B, SAPS2,
SBF1, ADM2, MIOX, TMEM112B, NCAPH2, SCO2, TYMP,
KLHDC7B, CPT1B, CHKB, MAPK8IP2, ARSA,SHANK3, ACR,
RABL2B

Chr X: 120,721,375-126,726,076 6,004,701 Xq25 Gain 57 GRIA3, THOC2, MIR220A, XIAP, STAG2, SH2D1A, ODZ1,
WDR40C, WDR40B, CXorf64

Genes which have been associated with cancer are shown in bold.
doi:10.1371/journal.pone.0013752.t003
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BIRC7) was further analyzed in detail using RQ-PCR. As expected

from the SNP-array data, the MYC and BIRC7 relative transcript

levels were up-regulated in 15/18 (83%) and 14/18 (78%) tumours

analyzed, respectively. Conversely, the MAP2K4 gene was down-

regulated in 16/18 (89%) tumours (Figure 3). Upon comparing the

results obtained with the two methods, a significant (p,0.001)

correlation was observed between the microarray data and the

expression of the three genes evaluated by RQ-PCR techniques

with correlation coefficients (r2) of 0.88, 0.66 and 0.64 for

MAP2K4, MYC and BIRC7 genes, respectively.

Discussion

In this study we describe a comprehensive map of the genetic

abnormalities present in primary tumors from metastatic CRC

through the usage of high-resolution 500K SNP arrays. To our

knowledge this is the most extensive study using high-resolution

SNP-arrays to define the genetic alterations in this subgroup of

CRC patients. Overall, our results confirm previous analyses using

chromosome banding techniques [20], CGH [5], SKY [21],

aCGH [6,10] and low-resolution 50k SNP-arrays [22].

Previous reports in which similar SNP-array tools have been

applied to investigate the genetic profile of non-metastatic CRC

[23] have shown in a subset of patients with advanced carcinomas

in the absence of liver metastases (n = 18), a relatively low

frequency of 1p, 8p, 9q, 14 and 17p losses and unique

amplifications at chromosome 20q. Interestingly, among our series

of metastatic CRC patients the frequency of losses at the same

chromosomal regions was strikingly higher: 1p, 74% vs 11%; 8p,

78% vs 33%; 9q, 35% vs 6%; 14, 65% vs 39%; and; 17p, 83% vs

33%. In turn, we also detected additional amplifications at 7p, 8q

and 13q, as well as at the 20q chromosomal region. In line with

our observations, Al-Mulla et al [24] also found that, once

compared to patients without metastatic disease (n = 30) CRC

patients with liver metastases (n = 26) more frequently displayed

losses of chromosomes 1p, 4, 5q, 8p, 9p, and 14q. Altogether,

those results indicate that the genetic profile of metastatic CRC is

defined by imbalanced gains/amplifications of chromosomes 7p,

8q, 13q and 20q together with losses of the 1p, 8p, 9p, 14q and

17p chromosomal regions [5,20,25–27]. In addition, here we

describe new recurrently altered regions that contain cancer genes,

many of which have been previously involved in the pathogenesis

of CRC, at the same time, we provide detailed characterization of

recurrent chromosomal breakpoints most frequently occurring in

primary tumours from CRC patients who had developed liver

metastases.

Interestingly, a relatively high degree of correlation was found

between the cytogenetic alterations detected by SNP-arrays and

iFISH studies. Despite this, slight differences were noted between

both techniques. On one hand, these were due to the lower

Table 4. Most frequently detected high-level amplified chromosome regions (average log2 copy number ratio $0.22) containing
genes commonly associated with cancer in primary sporadic colorectal tumors genotyped on the Affymetrix 500K SNP array
platform (n = 23).

Amplified chromosome regions (bp)
Chromosome
band

Mean Log2

Ratio
Maximum Log2

Ratio
% of altered
cases Cancer associated genes

Chr 7: 21,060,948-21,773,238 7p15.3 0.22 0.51 57 SP4

Chr 7: 25,072,457-29,780,614 7p15.2 0.23 0.99 52 CYCS, CHN2, JAZF1, HOXA1,
HOXA4, HOXA5, HOXA7, HOXA9,
HOXA10, HOXA11, HNRPA2B1

Chr 7: 30,433,934-47,043,330 7p15.1 0.24 0.69 52 SFRP4, AMPH, RALA, INHBA,
PPIA, IGFBP3

Chr 7: 47,249,414-48,538,115 7p12.3 0.23 0.51 57 UPP1

Chr 7: 50,305,027-50,512,587 7p12.2 0.24 0.51 61 DDC, IKZF1

Chr 8: 128,130,968-129,218,353 8q24.21 0.35 1.45 61 MYC

Chr 13: 22,371,210-23,251,245 13q12.12 0.29 0.81 57 SACS

Chr 13: 23,722,973-24,224,179 13q12.12 0.30 0.90 57 ATP12A, PARP4

Chr 13: 25,516,360-33,070,797 13q12.13 0.31 1.47 61 BRCA2, RXFP2, HMGB1, HSPH1,
SLC7A1, FLT1, FLT3, CDX2, PDX1,
GTF3A

Chr 20: 3,590,646-3,775,309 20p13 0.28 0.62 52 CDC25B, SIGLEC1, GFRA4

Chr 20: 6,077,268-10,228,083 20p12.3 0.28 0.96 52 PLCB4, PLCB1

Chr 20: 33,776,127-33,954,944 20q11.22 0.27 0.51 78 RBM39, PHF20

Chr 20: 47,898,202-49,082,996 20q13.13 0.27 0.55 74 ADNP, BCAS4, PTPN1, CEBPB,
SNAI1

Chr 20: 52,203,846-52,261,791 20q13.2 0.27 0.55 74 CYP24A1

Chr 20: 59,237,873-59,740,719 20q13.33 0.27 0.59 74 CDH4

Chr 20: 59,926,031-62,297,793 20q13.33 0.28 0.82 74 TAF4, SS18L1, LAMA5, GATA5,
SLCO4A1, NTSR1, OGFR, TCFL5,
DIDO1, BIRC7, EEF1A2, PTK6,
STMN3, NFRSF6B, TPD52L2,
SOX18, RGS19, OPRL1,

Genes which have been commonly associated with colorectal cancer are shown in bold.
Only those regions with recurrently amplified DNA copy-number found in at least half of the cases, are listed.
doi:10.1371/journal.pone.0013752.t004
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sensitivity of the SNP-array vs. iFISH for the identification of

chromosomal abnormalities present in only a small proportion of

all cells in the sample (i.e. secondary genetic lesions absent in the

ancestral tumour cell clones) [28]. On the other hand, they were

attributable to the increased sensitivity of the SNP-array vs. iFISH

studies as regards identification of small interstitial changes [11].

In this regard, our results show occurrence of a high number of

CN changes involving minimal/small regions (,1.3 Mb) and to a

less extent, also extensive/large (.1.5 Mb) regions which

frequently went undetectable by iFISH. Interestingly, several of

these small and large altered regions contain cancer-associated

genes known to be involved in CRC and/or the metastatic

process: i.e. the TPD52 [29], FABP5 [30], MAP2K4 [31], LLGL1

[32], FBLN1 [33] and TYMP [34] genes.

Among all human chromosomes, chromosomes 17 and 18 were

those more frequently found to be altered in our series, their

abnormalities typically consisting on extensive deletions involving

the TP53 and DCC genes, respectively, in addition to other tumor

suppressor genes, such as MAP2K4 at 17p12. A potential role for

chromosome 18q in the development of CRC with associated liver

metastases has been previously reported [35]; in this regard,

decreased expression of Smad4 in addition to DCC, has been

pointed out as a potential target protein coded in chromosome 18q

since it is associated with both liver and lymph node metastases

[36]. In line with these findings we also identified loss of the

SMAD4 gene in the great majority (83%) of the metastatic cases

analyzed. By contrast, the most frequently (78% of cases) amplified

region was found in chromosome 20, at 20q11.22. This is a

relatively small region of 178,817 bp which harbors 8 known

genes, half of which have been associated with CRC: TNFRSF6B

[37], OGFR [38], NTSR1 [39] and CDH4 [40]. Among these

genes, overexpression of TNFRSF6B -a gene that belongs to the

tumor necrosis factor receptor (TNFR) super-family- has been

reported in advanced stages of CRC [37] and other tumors of the

gastrointestinal tract [41], in association with an increased

resistance to adjuvant chemotherapy [42]; in turn, increased

NTSR1 expression has been reported as an early event in colon

tumorigenesis that contributes to tumor progression and an

aggressive clinical behavior [39]. Similarly, we also identified

amplification and overexpression of the MYC gene at 8q24 in the

great majority of the primary tumors, which have both been

previously suggested to be involved in disease progression to a

metastatic tumour [28;43].

From the clinical point of view, gain/amplification of 20p13 was

associated with a higher frequency of well vs. moderately-

differentiated tumours. Noteworthy, this chromosomal region

contains genes which have been previously associated with disease

progression. Accordingly, Miyoshi N et al have recently suggested

that overexpression of the TGM2 gene in CRC patients is

associated with a shorter overall survival [44] and expression of the

PTPRA gene has been recurrently associated with progression of

gastric cancer, including lymphovascular invasion and liver/

peritoneal dissemination [45,46].

Apart from defining the most frequently altered genes in

metastatic CRC, this study was also aimed at detailed character-

ization of the most frequent recurrent breakpoint regions

associated with such genetic changes. The number of different

breakpoints detected within individual chromosomes is usually

considered as a surrogate marker for chromosomal instability in

cancer. In the present study, we found 245 different breakpoints

for chromosome 1. This frequency is significantly higher than that

reported by others using aCGH analyses of CRC without distant

metastases: 16 different chromosomes breakpoints found, in a

group of 32 patients [10]. These results suggest that advanced-

stage and metastatic CRC could be associated with a greater

number of breakpoints and higher chromosomal instability. In line

with this hypothesis, Knutsen et al [21] found 407 chromosomal

breakpoints in 15 CRC cell lines, using spectral karyotyping with a

high frequency of recurrent breakpoints in the centromeric (p11 to

q11) or pericentromeric (p11.2 and q11.2) regions of chromosomes

12, 13, 14, 15, 17 18 and 20. Interestingly, in this latter study

Knutsen et al [21] also found recurrent breakpoints at 17p11.2 in

6/15 cell lines.

In the present study, a high percentage of cases showed

recurrent breakpoints for chromosomes 1, 8, 17 and 20. Most

interestingly, breakpoints at chromosome 17p were preferentially

localized at the genome coordinate 20,156,497–22,975,771 bp at

17p12 (15/23 cases); in most of these cases (12/15 cases), the

breakpoint was restricted to the genome coordinate (21,769,828–

22,975,771 bp) which maps for the FAM27L gene, a gene whose

function remains to be elucidated. Whether, disruption of the

FAM27L gene may also play a role in the malignant transforma-

tion and/or the metastatic process of CRC into the liver in

addition to, inactivation of TP53 and inhibition of apoptosis

[47,48], remains to be elucidated. Nevertheless, it should be noted

that Camps et al [10] have shown a higher frequency of 17p11.2

breakpoints in CRC patients with positive (8/16) vs. negative (4/

Table 5. Primary colorectal cancer with liver metastasis
(n = 23): correlation between the numerical changes detected
by each individual iFISH probe used and the CN changes
identified for the corresponding single nucleotide
polymorphisms (SNPs) through SNP array studies.

Chromosomal region identified by the
iFISH probe R2/P-value

1p36 0.75/,0.001

1q25 0.75/,0.001

2p24 0.65/0.001

3q26 0.81/,0.001

5p15.2 0.65/0.001

6q23 0.67/,0.001

7q31 0.67/,0.001

8p22 0.81/,0.001

8q24 0.79/,0.001

9p21 0.91/,0.001

9q34 0.77/,0.001

10q23 0.68/,0.001

11q22 0.82/,0.001

12p13 0.76/,0.001

13q14 0.74/,0.001

13q34 0.78/,0.001

14q32 0.82/,0.001

15q22 0.72/,0.001

17p13 0.80/,0.001

18q21 0.75/,0.001

19q13 0.65/,0.001

20q13.2 0.80/,0.001

21q22 0.74/,0.001

22q11.2 0.83/,0.001

R2: Coefficient of correlation.
doi:10.1371/journal.pone.0013752.t005
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16) lymph nodes using aCGH. This breakpoint has been

previously associated with an homogeneous genetic profile defined

by a higher frequency of abnormalities of chromosomes 1p, 7, 8,

13q, 18q and 20q and an adverse clinical outcome [35,49–52].

Other recurrent chromosomal breakpoints found in our patients

were localized in the 1p12, 8p12 and 20p12.1 chromosomal

regions. Previous studies suggest that genes typically deregulated

by these chromosome breaks included the REG4 [53] and

NOTCH2 [54] genes at chromosome 1p12, EIF4EBP1 [55] and

FGFR [56] at chromosome 8p12, and the FOXA2 [57] gene at

chromosome 20p12; all these genes have been associated with the

development and progression of CRC and the metastatic process

in a variety of human cancers, including the development of liver

metastases in CRC [53–57]. Additional GEP and functional

studies as well as direct comparison of paired primary and

metastatic tumours are required to validate our findings and to

gain further insight into their role in metastatic CRC patients.

Supporting Information

Figure S1 Primary colorectal cancer with paired liver metastasis

(n = 23): Identification of recurrent chromosomal breakpoint

regions for the 1p12, 8p12, 17p11.2 and 20p12.1 chromosome

regions as defined by the Affymetrix 500K SNP array genotyping

platform. Breakpoints occurred in 9 cases (39%) at the 118097448-

120939802 genome coordinate for chromosome 1 (panel A), in 8

cases (35%) at the 37770635-38405382 coordinate for chromo-

some 8 (panel B), in 15 cases (65%) at the 20156497-22975771

position for chromosome 17 (panel C) and in 9 cases (39%) at the

14921777- 16089156 genome coordinate for chromosome 20

(panel D).

Found at: doi:10.1371/journal.pone.0013752.s001 (4.70 MB TIF)

Table S1 Most frequently detected amplified regions (for .3

contiguous SNPs with average log2 copy number ratio .0.22) in

primary colorectal tumours from metastatic CRC patients

genotyped on the Affymetrix 500K SNP array platform (n = 23).

Only recurrently amplified DNA copy-number regions found in at

least half of the cases, are listed.

Found at: doi:10.1371/journal.pone.0013752.s002 (0.10 MB

DOC)
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