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a b s t r a c t 

The black hole sign (BHS) is a rare radiological sign seen in the hyperacute phase of bleed- 

ing. It manifests within a hemorrhage in early hours, with limited studies exploring clot 

formation and evolution over a short duration. Despite various hypothesized mechanisms, 

the precise lifetime and dynamics of black hole sign development remain unclear. We de- 

scribe the rare finding of a black hole sign within a deep brain hemorrhage, initially observed 

in the lateral portion of the clot during the first CT scan. Remarkably, in a subsequent CT 

scan, just 1 hour later, the BHS migrated towards the inner edge. Notably, while the hem- 

orrhage size remained largely unchanged within this short timeframe, hyperacute bleeding 

led to increased perihematomal edema and sulci flattening. Histopathological features of 

the “evolving clot” are initially characterized by heightened cellularity. This increased cell 

density renders the hematoma less resistant to compressive forces, such as heightened en- 

docranial pressure, offering a plausible explanation for the crushing and displacement of 

the BHS. Our study sheds light on the unique radiological progression of BHS within a deep 

brain ICH, emphasizing its association with dynamic clot formation and the consequential 

impact on surrounding structures. 

© 2024 The Authors. Published by Elsevier Inc. on behalf of University of Washington. 
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Introduction 

Deep intracerebral hemorrhage (ICH) accounts for more than
50% of spontaneous cerebral hemorrhage. In about 60% it is
caused by bleeding of arterial origin following hypertensive
spikes [1] . Acute hematoma expansion (within 24 hours) can
occur in up to 20% of patients, increasing the risks of death
and severe disability [2] . Surgical treatment plays a contro-
versial role, especially in large and deep ICH involving basal
ganglia (volume > 60 mL). On considering the elevated mor-
bidity rates, surgical interventions are typically confined to
addressing the drainage of subsequent hydrocephalus [3] . Re-
cently, diverse neuroradiological signs have been delineated
through various imaging modalities, as outlined by Huang and
colleagues [4] . When dealing with ICH, computer tomography
(CT) scan is typically the first imaging modality performed.
Fig. 1 – CT scans depict the motion of black hole signs, showcasi
additional slices from the subsequent CT study (B), conducted 1 
alterations and the migration pattern of BHSs across various ICH
This allows for the identification of various indicators of hy-
peracute bleeding [5] . Among these signs is the “black hole
sign,” characterized as a rounded hypointense area within
the hyperintense clot, exhibiting a density approximately 28
Hounsfield units (HU) lower than the surrounding hemor-
rhage [6] . Being a hyperacute radiological indicator, the “black
hole sign” present a brief and variable duration, indicating
different bleeding moments. This phenomenon may be intri-
cately linked to the dynamic histopathology of the clot, en-
compassing variations in cell and protein composition, as well
as its response to neighboring forces [7] . This paper presents
a case where the Black Hole Sign (BHS) migrated within a siz-
able deep ICH in just a 1-hour brain CT scan. Our investiga-
tion delved into potential mechanisms influencing the resiz-
ing and displacement of the BHS in the early stages, drawing
from a thorough exploration of the literature and considering
the chronohistogenesis of the clot. 
ng 2 distinct slices from the initial CT study (A) and 2 
hour later. These images illustrate morphological 
 sites. 
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Case presentation 

A 74-years old male patient was admitted to our ER depart-
ment due to the sudden onset of impaired consciousness
state, left hemiparesis and slurred speech after a hyperten-
sive spike. Notably, the patient had a history of hyperten-
sion but was not receiving pharmacological treatment. A brain
CT with angiographic sequences done at the time of ad-
mission showed a massive right intra-parenchymal nucleo-
capsular hemorrhage (6.3 × 3.8 × 4.5 cm, 56 mL volume)
with peri-lesional edema and 1.1 cm midline deviation. Angio-
sequences showed active bleeding with extra-vascular con-
trast blush into hemorrhagic volume. Due to the lesion loca-
tion, the blood spreading into the semioval center and basal
ganglia, it was not eligible for surgery. In the second CT re-
evaluation, the hematoma measurements were documented
at (6.6 × 3.9 × 4.5 cm), reflecting a volume of approximately
58 mL volume. Concurrently, there was a worsening of neu-
rological symptoms with increased ventricular dilatation and
midline shift. The BHS sign migrated to the medial compart-
ment of the hematoma ( Fig. 1 ). 
Fig. 2 – The illustration reveals pronounced peri-hematoma edem
subsequently compressing the BHS (B). Notably, the hypercellula
the small box, C) enhances its compliance to ab-extrinsic stimul
displacement of the hyperacute portion. 
Discussion 

Spontaneous deep ICHs typically result from vascular le-
sions affecting the basal ganglia or capsular region, including
ruptured Charcot-Bouchard microaneurysms (0.3-0.9 mm) or
lenticulo-striate arteries dissection. These lesions often occur
in anterior circulation terminal branches, particularly follow-
ing hypertensive spikes [8] . The bleeding phases are catego-
rized as hyperacute ( < 24 h), acute (24-72 h), subacute (72 h-13
days), and chronic ( > 14 days) [9] . Hematoma expansion risk
peaks within the first 3 hours after neurological onset, ob-
served in approximately 33% of cases [10] . During the acute
phase, the clot appears hyperdense compared to normal brain
tissue, following a hyperacute phase characterized by iso-
hypodensity due to the challenge of ionizing radiations to cap-
ture blood turbulence [11] . CT scans, with their prompt avail-
ability and ability to display evolving lesion radiodensity pat-
terns, serve as the primary diagnostic tool [5] . 

BHS presents as a hypointense area with well-defined mar-
gins within a hyperintense component, unrelated to the sur-
rounding hematoma [12] . It is defined by a density 28 HU lower
a (A), exerting pressure on the hematoma walls and 

rity of the clot during its initial formation (as indicated in 

i. This composition facilitates the intralesional 
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than the surrounding hemorrhage [6] . Although similar signs
like the Swirl Sign (SS) is seen in rapidly expanding ICH, it
is more typical of acute extradural hematomas, serving as a
negative prognostic factor associated with an increased risk
of death [13] . 

Xiong and colleagues [14] suggested that BHS is less sen-
sitive but more specific in predicting cerebral hematoma ex-
pansion compared to SS itself (33.8% and 95.3% vs. 46, 71%
and 71.3%). ICH outcomes are influenced by factors such as
lesion volume, site, age, Glasgow Coma Scale (GCS), intraven-
tricular clot and extension of perilesional edema [15 ,16] . In our
report, while the size of ICH remained grossly unchanged in
both controls, increased perilesional edema in the second CT
scan should be considered. Indeed, a study by Appelboom and
colleagues [17] found that peri-hematoma edema volume is
a negative prognostic factor, even in patients with medium-
sized hemorrhage. 

Analyzing the histological composition of the hematoma
might offer a plausible explanation for this radiological sign.
During the initial stages of hematoma organization, defor-
mation, edema, and necrosis of surrounding tissues occur
[18] . Hence, it’s conceivable that elevated intracranial pres-
sure (ICP) caused flattening of sulci in the ipsilateral hemi-
sphere, along with compression of the hematoma walls. Con-
sequently, this alteration in clot plasticity may have led to
changes in both the size and location of the BHS. Indeed, the
early high radiodensity is associated with increased cellular
density, including a higher concentration of red blood cells
(RBCs) and martial stock within erythrocytes [19–21] . Further-
more, the clot observed in the early phases exhibits hyperden-
sity due to its composition featuring lower fibrin and higher
erythrocyte content. This results in a reduced friction coeffi-
cient, making it more susceptible to compression by extrinsic
forces [22] ( Fig. 2 ). 

Literature lacks consensus on the exact lifespan of BHS,
with some evidence suggesting its persistence in 6-hour con-
trols but not throughout the entire hyperacute period. This
might be attributed to the absence of short-term distance CT
scans (about 1 or 2 hours). 

Changes in hematoma components and the migration of
hyperacute signs, such as BHS or SS, can impact the radio-
heterogeneity of blood collection. Studies by Takeda [23] and
Zhang [24] demonstrated that hematoma heterogeneity is
linked to higher risk of rapid ICH expansion and, conse-
quently, a worse outcome. However, interpreting this param-
eter can be challenging, making hyperacute neuroimaging
markers crucial for diagnosis and prognosis. 

Conclusion 

BHS stands out as a valuable imaging marker in the assess-
ment of ICH and its potential for rapid expansion. Since it is
not always possible comparing 2 CT studies at close range, the
precise timing and morphological modifications of this sign
remain uncertain. However, it is established that the presence
of this sign may not extend throughout the entire hyperacute
phase. While the precise cause for its transformation within 1
hour is not fully elucidated, considering the histopathological
modifiers of the clot in its early stages suggests a potential link
to hematoma plasticity [25] . Indeed, reacting to external stim-
uli, such as heightened edema, a comprehensive centripetal
force presses onto the clot walls, resulting in the crushing of
BHS and influencing its evolution within the hematoma. 

Patient consent 

Written informed consent was obtained from the patient for
use in this case report. No identifiable protected health infor-
mation was utilized. 
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