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Abstract

Current computational models suggest that paranoia may be explained by stronger higher-

order beliefs about others and increased sensitivity to environments. However, it is unclear

whether this applies to social contexts, and whether it is specific to harmful intent attribu-

tions, the live expression of paranoia. We sought to fill this gap by fitting a computational

model to data (n = 1754) from a modified serial dictator game, to explore whether pre-exist-

ing paranoia could be accounted by specific alterations to cognitive parameters characteris-

ing harmful intent attributions. We constructed a ‘Bayesian brain’ model of others’ intent,

which we fitted to harmful intent and self-interest attributions made over 18 trials, across

three different partners. We found that pre-existing paranoia was associated with greater

uncertainty about other’s actions. It moderated the relationship between learning rates and

harmful intent attributions, making harmful intent attributions less reliant on prior interac-

tions. Overall, the magnitude of harmful intent attributions was directly related to their uncer-

tainty, and importantly, the opposite was true for self-interest attributions. Our results

explain how pre-existing paranoia may be the result of an increased need to attend to imme-

diate experiences in determining intentional threat, at the expense of what is already known,

and more broadly, they suggest that environments that induce greater probabilities of harm-

ful intent attributions may also induce states of uncertainty, potentially as an adaptive mech-

anism to better detect threatening others. Importantly, we suggest that if paranoia were able

to be explained exclusively by core domain-general alterations we would not observe differ-

ential parameter estimates underlying harmful-intent and self-interest attributions.
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Author summary

A great deal of work has tried to explain paranoia through general cognitive principles,

although relatively little has tried to understand whether paranoia may be explained by

specific changes to social learning processes. This question is crucial, as paranoia is inher-

ently a social phenomenon, and requires mechanistic explanations to match with its

dynamic phenomenology. In this paper we wanted to test whether pre-existing and live

paranoid beliefs about others specifically altered how an individual attributed harmful

intent–the live expression of paranoia–to partners over a series of live interactions. To do

this we applied a novel computational model and network analysis to behavioural data

from a large sample of participants in the general population that had played a modified

Dictator game online, and required them to attribute whether the behaviour of their part-

ner was due to their intent to harm, or their self-interest, on two mutually exclusive scales.

Pre-existing paranoid beliefs about others reduced the value of new partner behaviours on

evolving attributions of harmful intent. We suggest that both pre-existing paranoid beliefs

and momentary paranoia may incur an adaptive cognitive state to better track potentially

threatening others, and demonstrate phenomenological specificity associated with mecha-

nisms of live paranoia.

Introduction

Paranoia is the unwarranted belief that others intend to do us harm [1]. Paranoid beliefs are

associated with a range of factors, including psychotic disorders [2,3] recreational drugs [4],

sleep deprivation [5–7], epilepsy [8], and acute stress [9]. Phenomenologically, paranoia exists

as a continuum in the general population ranging from fleeting thoughts to frank paranoid

delusions [10]. Cognitive studies of paranoia have suggested a role for changes in analytic rea-

soning and belief flexibility [11], a jumping-to-conclusions probabilistic reasoning style [12],

greater sensitivity to task reversals [13], and altered reward learning [14].

Social experiments using interactive game theory tasks have found that paranoia reduces

the threshold for attributing harmful intent in ambiguous social exchanges [15–18]. More

recently, Barnby et al. [19] extended this work and additionally found that individuals high in

paranoia were more likely to reduce high harmful intent attributions after a higher initial peak

when interacting with partners who were consistently fair. This finding potentially suggested

increased uncertainty of live paranoid social inferences in those with higher baseline pre-exist-

ing paranoid beliefs. However, other experimental results have been mixed with regard to

social inferences—Wellstein et al. [20] reported reduced flexibility in social sensitivity when

making advice decisions.

Explanations for paranoia have increasingly focused on the role of learning and have been

modelled based on the hypothesis that the brain processes uncertain information and appro-

priately revises beliefs depending on their baseline certainty and the impact of observations.

This is the ‘Bayesian Brain hypothesis’, as appropriate revision of probabilistic beliefs is given

by Bayes’ rule. In these models, predictions or ‘beliefs’ regarding the environment are gener-

ated and updated based on incoming prediction errors. These beliefs are putatively organised

into linked hierarchies ranging from simple predictions regarding sensory data to increasingly

abstract predictions that encode high-level features of the environment. Prediction errors are

weighted to signify their reliability (or ‘precision’) which determines their influence in updat-

ing beliefs. Converging evidence from Bayesian modelling of responses in paranoia [21,13]

and schizophrenia [22] suggest that paranoia is potentially driven by expectations of high
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environmental volatility and higher sensitivity to environmental changes that are not suffi-

ciently updated by previous interactions within a task.

This raises a number of specific questions: whether these findings apply to social learning in

paranoia, to what extent they are specific to social threat attributions, and how they interact

with levels of pre-existing paranoia. Specifically, we wanted to assess whether pre-existing

paranoia was associated with greater social belief uncertainty and less influence of prior part-

ner interactions on intentional harm.

To this end, we built a computational model of participants’ trial-by-trial variability of

harmful intent and self-interest attributions based on a fully normative role of belief uncer-

tainty. Beliefs here are not necessarily beliefs in the form of declarative propositional attitudes

(“I believe Paris is the capital of France”) but representations encoding probability distribu-

tions, necessary for performing approximate probabilistic information processing. Using data

from a previous study [19] participants completed a measure of paranoia and were subse-

quently paired with an opponent for a six-round modified Dictator Game. Here, the dictator

decides how to distribute a sum of money which is split between the dictator and the receiver,

which the receiver must accept. The true motivation for the decision is ambiguous but receiv-

ers rate the extent to which the decision has been motivated by harmful intent (a threat-related

attribution about the partner) and the extent to which it is motivated by self-interest (a non-

threat-related attribution about the partner) for each economic exchange. In this study, all

receivers are paired with fair, unfair, and partially fair dictators for six rounds each in a

counter-balanced fashion.

We applied the model to estimate initial attributional strength (pHI0, pSI0) and uncer-

tainty (uHI0, uSI0), in addition to how informative a partner’s behaviours were in regard to

a change in intentions (uP) and how often attributions were updated from one dictator to

the next (η). We thus used a spectrum of parameters describing uncertainty of different

expectations. For example, a participant might be quite certain that others have high harm-

ful intent (low uHI0) but be very uncertain about their partner’s actions (policy or strategy),

reflected in a high value of uP. This detailed parameterization then allowed us to use the

population variation of these parameters to infer whether a more limited range of cognitive

styles in fact obtains, for example whether uncertainty into all types of beliefs vary together.

The key parts of the model are described in Table 1 and full details of model development

are given in Methods.

Before examining questions of interest, we validated the model predictively. We fitted

parameter values to each participant and used these to create synthetic data. We then tested

model validity by examining if synthetic data reproduced behavioural results which were not

knowingly ‘designed into’ the model. All data and code are available online (https://osf.io/

24urf/).

We then used measures from the model to test whether each uncertainty parameter

increased with pre-existing paranoid beliefs. Second, we tested whether harmful intent attribu-

tions about the partner depended on pre-existing paranoia (as measured via the Green Para-

noid Thoughts Scale; GPTS, [23]). Third, we tested if higher paranoia predicted how

influential each decision by a partner was on altering social inferences. Finally, we used net-

work modelling to understand the relationship between latent parameters, and the moderation

of these relationships by pre-existing paranoia.

We expected pre-existing paranoia to lead to greater initial attributional uncertainties,

greater initial attributional strength, a reduced influence of previous partner interactions, and

less consistency between partner attributes and observed behaviours.
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Result

All reported statistics are beta-coefficients of the top model following model averaging unless

otherwise stated, and effect sizes (ES) are stated if they differ from the beta-coefficient.

Table 1. Glossary of model terms and model description.

Model measure Technical definition and abbreviation Key roles

Baseline level of Harmful

Intent attribution

Mode of prior probability distribution

of harm intent, pHI0. It is the starting

value of the mode pHIt.

Greater pHI0 leads to greater attributions

of intent to harm initially, but how

persistent this is depending both on

evidence encountered (Dictator decisions

seen) and, crucially, the uncertainty

(inverse-strength) with which this belief is

held.

Baseline uncertainty of

Harmful Intent attribution

Spread of prior probability distribution

of harm intent, uHI0. It is the starting

value of the uncertainty uHIt.

Greater uHI0 denotes reduced confidence

about attributions of harmful intent, and

more willingness to believe that a Dictator

who acts less generously than expected has

higher intent to harm.

The balance of uncertainty about Harm

intent, uHIt, and uncertainty about Selfish

intent, uSIt, determines the balance of

which attribute is updated more on the

basis of the dictator’s observed behaviour.

Greater uncertainty uHIt directly

contributes to greater variability in

harmful intent attributions.

Baseline level of Self-Interest

attribution

Mode of prior probability distribution

of selfish intent, pSI0; the starting value

of the mode pSIt.

Exactly analogous to pHI0 above.

Baseline uncertainty of Self-

Interest attribution

Spread of prior probability distribution

of selfish intent, uSI0; starting value of

the uncertainty uSIt.

Exactly analogous to uHI0 above.

Partner policy uncertainty Uncertainty parameter uP through

which partner attributes are believed to

lead to observed behaviours.

Unlike other uncertainties, this is not a

spread of the distribution of both HI and

SI attributions. The higher this

uncertainty value, uP, the less

informative each observed return by the

dictator is. Low uP means that one can be

certain that the actions of the dictator

were not ‘by chance’, but due to their true

attributes.

Learning rate, a.k.a. belief-

update parameter, from one

dictator to the next

Weight η by which the prior belief

distribution over partner attributes

shifts toward the distribution posterior

to observing Dictator behaviour

A higher η leads the starting assumptions

of dictators after the first one seen to be

influenced by prior dictator behaviour

seen so far. It can be thought of as a

strength of belief that the Dictators seen

during the experiment will resemble each

other.

Model fit Log-posterior probability lp that the

fitted parameters gave rise to the data

for this participant

A high lp means that if given the fitted

parameters, the model would closely

reproduce the attributions of the

participant. Note that a bad fit might be

because the participant is behaving

erratically (e.g. because of a high uP) or

that their pattern of behaviour is

consistent in its own terms, but not

captured by the model (e.g. a ‘magical

thinking’ participant that alternates

between two values in consecutive trials).

https://doi.org/10.1371/journal.pcbi.1008372.t001
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Model fitting

Our model broadly aims to capture the ideal Bayesian inference given the possible decision

policies of a partner–from fair to unfair, selfish to harmful. We initially checked that the model

could detect inferences better than chance (log likelihood = -4.394). The log likelihood that the

model fitted the data were calculated across trials, dictators and divisions of the GPTS. Model-

ling fitting was adequate–for each trial, dictator and division of paranoia, log likelihood values

staying much above -4.394, the value corresponding to a model ‘hedging’ its prediction equally

over all possible participant responses (see Fig 1). Linear mixed model analyses using partici-

pant identification (ID) as a random term suggest that as trials progressed overall from one to

eighteen (-0.012, 95%CI: -0.021, -0.003; ES = -0.04) and at higher values of the GPTS (-0.005,

95%CI: -0.007, -0.003; ES = -0.06) participants were less able to be predicted by our model,

Fig 1. Log Likelihood values of the model. (A) Computed mean log likelihoods for each trial, coloured by dictator type. (B) Density plots of log likelihood values for

each trial, coloured by dictator type. Coloured lines represent group means (C) Computed mean log likelihoods for each GPTS score quantile and clinical score cut off

(Green et al., 2008). (D) Density plots of log likelihood values for each trial across each GPTS score quantile and clinical score cut off (Green et al., 2008). (E) The

association between GPTS scores (minimum score = 32) and loglikelihood values. Dots = mean loglikelihood value across that score of the GPTS. Lines = 95%

confidence intervals. The grey line in each plot (at -4.394) represents the loglikelihood that would be observed if the model was capturing behaviour by chance.

https://doi.org/10.1371/journal.pcbi.1008372.g001
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whereas our model was better able to predict behaviour from partially fair (0.43, 95%CI: 0.32,

0.55; ES = 0.19) and unfair (0.31, 95%CI: 0.25, 0.55; ES = 0.26) dictators than fair dictators.

The mean log likelihood value across all trials and participants was -2.66 and median was -2.45

(range -8.32 - -0.02).

Following analyses of model fit, we wanted to assess the external validity of the model by

checking that it was able to reproduce our behavioural results [19].

Behavioural results for real data

A full analysis for the real data can be found in a previous paper [19]. In sum, Barnby et al.,

found that pre-existing paranoia increases harmful intent attributions (0.35, 95%CI: 0.15, 0.54),

as does increasingly unfair dictator behaviour (2.00, 95%CI: 1.82, 2.18), and initially unfair dicta-

tor exposure leads to lower overall harmful intent attributions (-1.17, 95%CI: -1.52, -0.83). For

self-interest, only increasingly unfair dictator behaviour (4.59, 95%CI: 4.26, 4.93), and initial dic-

tator exposure (-0.71, 95%CI: -1.02, -0.39) were associated with attributions. These results should

be the baseline comparison to assess our model’s ability to generate simulated data in section 2.3.

Behavioural results for simulated data

Simulated participants’ (n = 1754) harmful intent attributions and self-interest attributions

were only slightly negatively correlated with each other overall (rho = -0.06, p < 0.001). Simu-

lated attributions were also highly correlated (harmful intent, rho = 0.83–0.9; self-interest,

rho = 0.64–0.7, ps < 0.0001) with real participant attributions for all levels of GPTS score (as

defined in [19]).

Along the continuum, pre-existing paranoia in all dictator conditions increased harmful

intent attributions (Unfair: 0.22, 95%CI: 0.18, 0.25; Partially Fair: 0.19, 95%CI: 0.16, 0.23; Fair:

0.18, 95%CI: 0.15, 0.22). Along the continuum, pre-existing paranoia was only associated with

slightly reduced self-interest attributions in unfair dictators only (-0.08, 95%CI: -0.12, -0.04),

using individual cumulative link models with age and first dictator exposure as additional vari-

ables. A global model (Intercept: 0.01, 95%CI: -0.04, 0.05) reiterated the primary findings from

the real behavioural data, namely, that paranoia increases harmful intent (0.11, 95%CI: 0.07,

0.15), as does increasing unfairness of Dictator (0.33, 95%CI: 0.33, 0.34) and being exposed to

an initially unfair dictator (-0.34, 95%CI: -0.42, -0.27). Conversely, pre-existing paranoia did

not affect self-interest attributions, but self-interest attributions were affected by unfairness of

dictator (0.74, 95%CI: 0.73, 0.75) and simulated participants being exposed to a more unfair

dictator first (-0.19, 95%CI: -0.25, -0.13). Fig 2 visually describes behavioural results for simu-

lated data.

As the model was both found to be valid regarding it’s predictive and generative perfor-

mance [24], we then proceeded to assess whether latent parameters of uncertainty and learning

rate varied by live attributions and pre-existing paranoid beliefs.

Latent parameters associated with social inferences and pre-existing

paranoia

Initial uncertainty over initial harmful intent (uHI0) was associated with age (-0.002, 95%CI:

-0.002, -0.001) and pre-existing paranoia (0.04, 95%CI: 0.02, 0.05) but not sex. Likewise, initial

uncertainty over initial self-interest (uSI0) was also associated with age (-0.002, 95%CI: -0.002,

-0.001) and pre-existing paranoia (0.03; 95%CI: 0.01, 0.04), but not sex (Fig 3C). Uncertainty

of partner policies (uP) was associated with pre-existing paranoia (0.09, 95%CI: 0.08, 0.10) but

not age nor sex. Finally, participant’s learning rates (η) were associated with age (0.003, 95%

CI: 0.003, 0.004; ES = 0.05) but not pre-existing paranoia nor sex. See Fig 3 for visualisation of

PLOS COMPUTATIONAL BIOLOGY Reduction in learning and policy uncertainty about social threat underlies paranoia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008372 October 15, 2020 6 / 23

https://doi.org/10.1371/journal.pcbi.1008372


initial and overall uncertainties and learning rates over pre-existing paranoia and in-the-

moment attributions.

When assessing predictors of simulated attributions we found that simulated harmful intent

attributions were associated with greater uHI0 (0.35, 95%CI: 0.31, 0.39), lower learning rates

(-0.20; 95%CI: -0.34, -0.07), older age (0.004, 95%CI: 0.002, 0.006), greater pre-existing para-

noia (0.09, 95%CI: 0.05, 0.13) and greater partner policy uncertainty (0.12, 95%CI: 0.08, 0.16).

Mean simulated self-interest attributions were associated with lower uSI0 (-0.29, 95%CI: -0.31,

-0.27), younger age (-0.003, 95%CI: -0.005, -0.001; ES = -0.05), and lower partner policy

Fig 2. Simulated Behavioural Data. (A) Generated Harmful Intent (HI) attributions for simulated participants at each level of paranoia at each trial within fair and

unfair dictators. Dots represent the mean for each level of paranoia. Lines represent the 95% confidence interval. (B) Generated density distributions for simulated

participant HI attributions (red) for each trial (1–6) within unfair and fair dictators for each level of paranoia. (C) Generated Self-Interest (SI) attributions for simulated

participants at each level of paranoia at each trial within fair and unfair dictators. Dots represent the mean for each level of paranoia. Lines represent the 95% confidence

interval. (D) Generated density distributions for simulated participant SI attributions (blue) for each trial (1–6) within unfair and fair dictators for each level of paranoia.

(E) Smoothed linear splines for both simulated participant harmful intent and self-interest attributions by prior paranoia (minimum score = 32).

https://doi.org/10.1371/journal.pcbi.1008372.g002
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uncertainty (-0.13, 95%CI: -0.16, -0.10) but there was no effect of pre-existing paranoia, learn-

ing rate or sex.

In addition, we examined parameters in relation to the GPTS subscales, specifically its two

main components, Social Reference and Persecutory Ideation, and when dividing the GPTS

into scales of Conviction, Preoccupation, and Distress. When running spearman correlations,

all subscales were highly correlated with each other (rho = 0.76–0.97, ps< 0.001), and all sub-

scales were associated with the parameters to the same magnitude and direction as the GPTS

total score (S7 Fig & S8 Fig).

There were also strong negative correlations between harm-intent, selfishness and policy

uncertainties on the one hand, and model-fit on the other (k = -0.52, -0.43, -0.39 respectively,

all p ~ 0.0).

Network modelling

Finally, we explored the relationships between latent parameters generated by the model and

pre-existing paranoid beliefs (Fig 4A), as well as the changes to network structure between

parameters when moderated over pre-existing paranoia (Fig 4B), to assess whether pre-exist-

ing paranoia altered specific parameter relationships when controlling for all other relation-

ships. We observed a strong positive partial correlation between the probability of attributing

harmful intent (pHI0) and the probability of attributing self-interest (pSI0) (although see

below), as well as a strong negative partial correlation between pHI0 and the uncertainty of

harmful intent attributions (uHI0). Conversely, there was a strong negative partial correlation

between pSI0 and the uncertainty of self-interest attributions (uSI0). Pre-existing paranoia was

only positively partially correlated with pHI0 and uncertainty over partner policies (uP).

When moderating over pre-existing paranoid beliefs, we found that the edges between pSI0

and learning rates (η), and pHI0 and uP became more positively associated, and the relation-

ship between pHI0 and η became more negatively associated when pre-existing paranoia

increased (Fig 5).

Fig 3. Spearman rank correlations between uHI0, uSI0, uP, and η, and pre-existing paranoia and in-the-moment

attributions. (A) Quadratic fit for uncertainty of partner policies across the mean harmful intent attributions scored

over 18 trials. (B) Quadratic fit for uncertainty of partner policies across the mean self-interest attributions scored over

18 trials. (C) Linear fit for uncertainty of partner policies across GPTS scores. (D) Quadratic fit of learning rate by

mean attributions scored over 18 trials.

https://doi.org/10.1371/journal.pcbi.1008372.g003
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uHI0, pHI0 and pSI0 had most influence in the overall network, and all edges were found

to be accurate following bootstrapping (S2 Fig).

Due to the non-normal data distribution, and that model-fitting may itself induce correla-

tions between estimated parameters in the population, we ran our model on simulated data,

generated using parameters that captured a substantial range of each major cluster in our real

data (low, medium & high cluster; see methods). We then ran the same network modelling

procedures as the main analysis. Edges recovered in the networks based on simulated data that

were in the same direction as our ‘true’ data indicated that relationships in the ‘true data’ may

be artefactual. However, the only relationships recovered in the same direction were i) a posi-

tive correlation between pHI0 and pSI0 in our ‘medium cluster’ simulated network and ii) an

inconsistent negative correlation between pSI0 and uSI0 in our ‘high cluster’ network (S3 Fig).

Therefore, these specific relationships should be treated with some caution. Full details of the

procedure are listed in Methods.

In addition, it may be that the complexity of the network itself is generating moderated

effects between parameters due to redundant inclusion of variables around the relationships of

interest [25]. To control for this possibility, we ran the Moderated Network Model with two,

three, four, and five variables in the network to check whether the relationships between learn-

ing rate (eta), partner policy uncertainty (upi), and probability of attributing harmful intent

(pHI0) still existed in absence of other relationships (S4 Fig). We found that the variables in

question were retained and were moderated in the same direction by GPTS score in all net-

work models.

Discussion

We wanted to test whether differences in uncertainty and learning in those with high paranoia

observed in prior non-social models also apply to social learning. We were also interested in

whether threat and non-threat social attributions would show different relationships to uncer-

tainty and learning parameters and potential interactions with levels of pre-existing paranoia.

To achieve this, we fitted a computational model to a multi-round Dictator task, which allowed

us to estimate the uncertainty of partner choices, or policy, and the learning rate over social

encounters made by participants, using large-scale behavioural data previously reported [19].

Our model was able to reproduce the behavioural effects previously reported, in addition to

showing adequate fit across trials, divisions of GPTS scores, and the different types of Dictator

that each participant encountered in the task. Our results finesse this finding, in that harmful

intent and self-interest attributions are differentiated by their relationship to uncertainty in the

model and moderated to different degrees of pre-existing paranoia.

Overall, we found that paranoia was associated with increased uncertainty regarding

another’s policy (uP), and baseline uncertainty parameters over harmful intent (uHI0) and

selfishness intent (uSI0) to a lesser extent. In other words, pre-existing paranoia led to weaker,

more variable initial assumptions about partners, and continued attributions of harmful intent

regardless of the behaviour observed. Attributing higher harmful intent regardless of pre-exist-

ing paranoia was associated with higher uP and uHI0, and lower learning rates (η). Con-

versely, attributing higher self-interest was associated with reduced uP and uSI0, and greater

η. In other words, self-interest attributions were made with more precision and were more

informed by previous experience than harmful intent attributions, which were more uncertain

Fig 4. Mixed Graphical Models. (A) Gaussian Graphical Model of latent parameters and prior paranoid beliefs. (B) Moderated

Network Model between latent parameters when moderated over prior paranoia from low to high Z-scores (-0.85–4). Red

edges = negative association; green edges = positive association.

https://doi.org/10.1371/journal.pcbi.1008372.g004
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and based more on social context. Interestingly, in convergence with prior studies [14], we

found that baseline GPTS score was negatively correlated with model fit, suggesting pre-para-

noid beliefs lead to less ‘Bayesian ideal’ behaviour in a social task.

Network modelling suggested that pre-existing paranoia most notably moderated the rela-

tionship between pHI0 and η, and pHI0 and uP. Across the board, regardless of pre-existing

paranoia, uHI0 and pHI0 were positively partially correlated, whereas pSI0 and uSI0 were neg-

atively partially correlated. High probabilities of harmful intent attributions were associated

with reduced precision, but high probabilities of self-interest attributions were associated with

increased precision.

Our findings converge with the idea that pre-existing paranoia (a higher-level belief about

others) influences momentary inferences regardless of a partner’s behaviour [20]. Prior non-

social evidence [27] and simulation studies [28] conclude that delusional beliefs can be in part

explained by a deficit in holding stable beliefs about the world. Models developed from social

Fig 5. Moderation effects of pre-existing paranoia on edges within the Moderated Network Model (Fig 4B). The left panel displays the pairwise effects–the overall

relationship between the parameters in the Gaussian Graphical Model of parameters—and the right panel shows the moderation effect of GPTS score on the pairwise

effects–the influence of variable GPTS scores on the relationship between parameters. Both are shown with 95% confidence intervals of the bootstrapped sampling

distributions. The number at the centre of the sampling distribution is the proportion of bootstrap samples in which a parameter has been estimated to be nonzero [26].

https://doi.org/10.1371/journal.pcbi.1008372.g005
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simulations have suggested that those in high risk states may show more uncertainty, whereas

full-fledged delusions may lead to rigid, highly certainty beliefs about others [21].

Additionally, our data converge with Reed and colleagues [13] to suggest that pre-existing

paranoia makes individuals more sensitive and more reliant on current social environmental

conditions. Relevant evidence using non-social tasks has been mixed: some have suggested

that pre-existing paranoid beliefs lead to reduced beliefs updates when playing a non-social

associative task [14], whereas others suggest paranoia leads to rapid associative updates as if

participants expect continually changing rules [13].

Finally, we suggest attributing higher harmful intent to social actions may engender an adap-

tive cognitive state to remain vigilant about a new partner’s future harmful intentions. Previous

experimental work using a predictive task to assess whether individuals could infer their part-

ners future choices, and their impressions of their partner, found beliefs about ‘bad’ actors were

more volatile to allow for correcting an impression [29]. Our findings may extend these conclu-

sions. Indeed, better encoding of harmful agents may be evolutionarily adaptive within-individ-

uals [30]. In contrast, selfish impressions do not pose the same need for vigilance.

We might argue here that if paranoia could be explained solely by domain-general effects

(as argued by [13]), we would have expected pre-existing paranoid beliefs to moderate the rela-

tionship between learning, uncertainty and both social attributions in the same direction, or

find no difference between the two social attributions. The role of delineated social mecha-

nisms in human and animal cognition in shaping interpersonal interaction [31] during evolu-

tionary and individual development warrants a clearer focus on how alterations to these social

mechanisms alone or in tandem with general cognitive functions may shape psychiatric

disorder.

The parameters identified in our study may be useful probes to modulate in future experi-

ments. Psychopharmacological experimental work [32] and PET observations [33] suggest

dopamine may be crucial in the transmission of social threat and attribution of harmful intent,

and D2/3 receptor transmission may modulate the relationship of policy precision [34]. We

hypothesise that interventions to induce heightened dopamine transmission in midbrain

regions specifically at D2 receptors (e.g. from drug use) will result in heightened probabilities

of harmful intent attributions, reduced precision over harmful intent attributions, reduced

learning rates about harmful intent, and greater uncertainty of partner policy overall, although

conversely we may expect greater precision, greater learning, and reduced uncertainty over

non-threat related attributions and behavior, such as self-interest attributions.

We should note some limitations. While we partnered participants against genuine people,

we cannot capture all social nuance that might be present in a real-world interaction. There

may be a host of other social factors that may influence learning rates and uncertainty over

inferred social intentions in paranoia such as eye contact and multiple social actors [35], and

we feel this is an important topic for future research. Additionally, while not a substantial limi-

tation for us to use Bayesian inference rather than its common approximations (e.g. constant

learning rates that differ for the two attributes) given the small amount of data per dictator,

using this data we were not able to fit separately the participants’ own noisy reporting (emis-

sion noise) vs. noisy aspects of their generative model of others (esp. dictator policy uncer-

tainty). Future work may consider validating both inferential and response models using a

greater amount of data per participant and specially designed conditions.

Conclusion

In sum, we suggest that pre-existing paranoia may differentially moderate parameters that gov-

ern harmful-intent attributions compared to those that moderate self-interest attributions. We
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modelled large-scale behavioural data using a ‘Bayesian-brain’ model of others intent and

found that the model fitted adequately across the range of pre-existing paranoia was able to

replicate prior behavioural data. Assessing latent parameters suggested that pre-existing para-

noia may be dissociated from a potentially more universal mechanism between the magnitude

and uncertainty of harmful intent attributions. Pre-existing paranoia led to higher attribution

of harmful intent for any new social interaction, but it also rendered behaviours less dependent

upon inferences about previous encounters. Importantly, we show that pre-existing paranoia

should not be assumed to apply to all inferential processes equally. Parameters derived from

our models may be useful in describing individual variation in psychobiological mechanisms

in future experiments.

Methods

Ethics statement

The original studies were approved by the Kings College London ethics board (Study 1: MRS-

17/18-8312; Study 2: LRS-18/19-9281) and preregistered (Study 1: http://aspredicted.org/

blind.php?x=8cj8zk; Study 2: http://aspredicted.org/blind.php?x=ub9z2x). Full formal consent

was obtained by participants through our online platform.

All data in Study 1 were collected in September 2018 and for Study 2 in February 2019

using Prolific Academic (hereafter Prolific; www.prolific.ac), an online crowdsourcing plat-

form. Data from both studies were combined to perform the computational analysis. 1998 par-

ticipants were recruited in total from both studies, but only 1784 participants were used in

analysis due to drop out or failing control questions between the baseline administration of the

GPTS and the serial Dictator game.

Prior to taking part in both studies, participants were informed that their participation was

voluntary and were required to tick a box that consented to the authors using their anonymous

data for research purposes. Using Prolific allowed us to rapidly recruit a more demographically

diverse sample of participants than recruitment from our social media or university networks

[36]. We included participants from the UK who were fluent in English and had no current or

history of mental illness.

Participants first completed the Green Paranoid Thoughts Scale (GPTS; [23]). Participants

were asked to indicate the extent of feelings described in 32 statements using a Likert Scale of 1

to 5, where 1 = Not at All and 5 = Totally. Scores can range from 32–160, with higher scores

indicating a greater degree of paranoia. The GPTS was chosen as a suitable measure as it includes

both core aspects of the definition of paranoia [1]: social concerns about others and perception

of intended harm. It has also shown to be the most reliable and valid scale for measuring para-

noia across the clinical and non-clinical spectrum [37]. Total paranoia scores were obtained for

each participant by summing the response scores to all questions, comprising both the social ref-

erence and the persecution scales. Hereafter, this variable is referred to as ‘paranoia’.

After completing the survey, and in keeping Raihani and Bell [16,17] we allowed a minimum

interval of 7 days to elapse before inviting participants to take part in the Helsinki Summit.

We developed a within-subjects, multi-trial modification on the Dictator game design used

in previous studies to assess paranoia [19]. Each participant played six trials against three dif-

ferent types of dictator. In each trial, participants were told that they have been endowed with

a total of £0.10 and their partner (the dictator) had the choice to take half (£0.05) or all (£0.10)

the money from the participant. Dictators were set to either always take half of the money,

have a 50:50 chance to take half or all of the money, or always take all of the money, labelled as

Fair, Partially Fair, and Unfair, respectively. The order that participants were matched with

dictators was randomised. Each dictator had a corresponding cartoon avatar with a neutral
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expression to support the perception that each of the six trials was with the same partner. After

each trial, participants were asked to rate on a scale of 1–100 (initialised at 50) to what degree

they believed that the dictator was motivated a) by a desire to earn more (self-Interest) and b)

by a desire to reduce their bonus in the trial (harmful intent). Following each block of 6 trials

participants were asked to rate the character of the dictator overall by scoring intention again

on both scales. Therefore, participants judged their perceived intention of the dictator on both

a trial-by-trial and partner level.

After making all 42 attributions (two trial attributions for each of the 6 trials over 3 part-

ners, plus three additional overall attributions for each partner), participants were put in the

role of the dictator for 6 trials–whether to make a fair or unfair split of £0.10. Participants were

first asked to choose an avatar from nine different cartoon faces before deciding on their 6 dif-

ferent splits. These dictator decisions were not used for analysis but were collected in the first

phase of the game to match subsequent participants with decisions from real partners using an

‘ex-post’ matching design.

The modification to the original dictator game design allowed us to track how partner

behaviour, order of partner, and whether attributions were stochastic or consistent as pre-

existing paranoia changed. All participants were paid for their completion of the GPTS,

regardless of follow up. Participants were paid a baseline payment for their completion (See S1

Text for the task instructions given to participants and task schematic)

Analysis

Computational model. Our computational analysis was not preregistered. All data and

analysis scripts are available on the Open Science Framework (https://osf.io/24urf/).

We considered a belief-based modelling framework. Beliefs here are not necessarily, represen-

tational propositions but ’effective’ beliefs, that is, engrams encoding probability distributions,

necessary for performing approximate probabilistic information processing. How such engrams

may be implemented in the brain is a matter of debate. Much evidence suggests that the brain

encodes expectations about what will be observed [38,39] but it is less certain as to how the shape

of belief distributions is represented. Some hold that the width of belief distributions is repre-

sented as activity explicitly reflecting precision, while others claim that the brain may estimate

uncertainty ‘on the fly’ by sampling from available memories or other representations [40,41]. In

our case, the nature of these engrams of expectation and uncertainty is irrelevant, but their func-

tion to provide weights for the updating of different beliefs is crucial. Social actions in the Dicta-

tor game such as ’my partner decided to give me nothing’ can be used to infer the probability or

degree of the partner’s ’hostility’ or self-interest. We further assumed that propositional cogni-

tion, such as ratings on a scale, reflect noisy sampling of the neurally encoded effective beliefs.

We model effective beliefs about dictator’s attributes as ranging along two dimensions,

harmful intent and self-interest attributions. We can discretise them into Likert-like bins, as

long as the bin resolution is sufficient. Here, we discretised along 9 bins, from ’totally altruistic’

(HI = 1, SI = 1) to ’totally antisocial’ (HI = 9, SI = 9). The prior beliefs about Others formed the

most important part of our modelling, parametrized by a central tendency parameter HI0, SI0
and an uncertainty uHI, uSI along each dimension. Inference over such discrete distributions

can be conveniently parametrized the Binomial distribution with n bins and parameter p,

sharpened (or blunted) by an uncertainty parameter u:

Pk / Binðk; p; nÞu

≔NBðk; p; u; nÞ
ð1Þ
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When the exponent in Eq 1 is greater than 1, the distribution keeps the same mode but is

sharpened; when less than 1, it is blunted. The prior belief over both HI and SI can then be

written as a product of the independent prior probabilities, p(0)
HI
� p(0)

SI. This assumption of

independence is conservative, minimizing the number of free parameters.

In order to make inferences based on the feedback they get from dictators, participants

must also hold a correspondence between attributes and behaviours. We emphasise that par-

ticipants hold maps from attributes to behaviour, and not directly from observations of returns

to attributes. Thus, they have to invert these maps to update their beliefs, which will typically

result in asymmetric belief update depending on further detail (so that Eq. uses full joint prob-

abilities, breaking the initial independence p(0)(HI,SI) = p(0)HI � p(0)SI. To build a map from

attributes to behaviour that could capture a full range of possibilities, and thus could be used

to describe all participants, we first provided for a range of possible dictator behaviours, discre-

tizing returns using a similar resolution as attitudes. HI = 0, SI = 0 corresponded to the attribu-

tions of each participant which would result in a dictator preference to give r (return) = n (of n,

i.e. 100%) to the participant (’self-sacrifice’). At the top end of the scale, HI = 1, SI = 1 were

attributions resulting in a high preference for giving r = 1 (of n, i.e. 0%) to the participant.

Very high SI or HI with moderate scores on the other dimension were sufficient for a substan-

tial probability of r = 1 of n (i.e. 0%). We implemented this general template map πgen using a
priori fixed parameters. This is illustrated in Fig 6, and the corresponding equations (Eq 2) are

Fig 6. Mean partner policy depending on attributes. Okra: preference for returning a large amount to the

participant. Blue / purple: preference for returning very little.

https://doi.org/10.1371/journal.pcbi.1008372.g006
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given below for completeness.

pgenðr;HI; SIÞ ¼ pgenðr;HIÞpgenðr; SIÞ

with:

pgenðr;HIÞ ¼ NBðr; 1 � pinit � dp HI; uinit � 2dpðHI þ 1Þ; npÞ

pgenðr; SIÞ ¼ NBðr; 1 � pinit � dp SI; uinit � 2dpðSI þ 1Þ; npÞ

dp ¼
1 � 2pinit
np � 1

pinit ¼ 0:05

uinit ¼ 2:5

np ¼ 9

ð2Þ

However, these preference probabilities were not all available to the dictator. This means

that every modelled participant had the same basic repertoire of attribute-behaviour available

to them, and that HI and SI can be seen as ideographically scaled (each attribute can be scaled

on an individual basis). Then, one additional parameter was introduced, to quantify individual

variation in the consistency agents expected between attitudes and behaviours. On the basis of

previous work, a small, fixed lapse rate ξ = 0.02/n2 was also added to increase numerical stabil-

ity. This was another noise or uncertainty parameter uπ, over the dictator’s policies. We thus

used:

p r; SI;HI; upð Þ / pgenðr; SI;HIÞ
1
up þ x ð3Þ

This completes the participants’ generative beliefs of the Dictator’s behaviour, and provides

for exact, numerically tractable Bayesian updates in the beliefs of the participant when they

receive feedback. For each potential attribute pair (HI, SI) of the Dictator:

pt HI; SIð Þ ¼
pðr;HI; SIÞpt� 1ðHI; SIÞP

HI0 ;SI0pðr;HI0; SI0Þpt� 1ðHI0; SI0Þ
ð4Þ

We then considered that participants inform their beliefs about the second dictator they see

by what they learnt about the first one, and so on. The simplest approximation is to add a

small admixture of the posterior beliefs about the last Dictator to the priors they used for this

last dictator, weighing this posterior by an individually fitted learning rate η.

Finally, as mentioned above, reported attributions were taken to be sampled from the

underlying belief distributions. We note that in our experiment it is not possible to clearly dis-

tinguish between uncertainty participants display due to their own noisy cognition, as opposed

to noisy decision-making that they expect their partners to display. In our case, both of these

would result in greater participant uncertainty and noisier reporting of inferred attributes.

Overall, therefore, each participant is characterized by six parameters: the central tenden-

cies of their initial priors about Harm and Selfishness intent, HI0, SI0, their corresponding

uncertainties, uHI, uSI, their belief about (in)consistency of the Dictators’ actions, uP, and

their learning rate about Dictators, η.

The models were fitted with Maximum A Posteriori (MAP) estimation, i.e. penalizing max-

imum likelihood with a weak, regularizing prior restricting parameter values to their psycho-

logically meaningful ranges (e.g. learning rate between 0 and 1, etc.). A grid-search approach

on parameter values was combined was followed by gradient-ascent on MAP to minimize the

chance of missing important MAP maxima.
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Information theoretic analysis. We primarily aimed to assess our candidate model’s pre-

dictive and generative performance. The ability of a model to simulate data is necessary to

assess its validity and falsification [24]. This centred around our ability to replicate our effects

documented from our previously reported behavioural results [19]. We then aimed to assess

our model fitting by using the log-likelihood values across trials, dictators, and divisions of

GPTS score (z scaled, continuous GPTS scores). Following this, we aimed to statistically inter-

rogate the generated data in the same manner as we did with the behavioural data. Density dis-

tributions of the fitted parameters can be found in Fig 7.

We used an information-theoretic approach for all analyses unless otherwise stated. All analyses

were performed in R (version 4.0.0; 41) on an Apple OSX operating system (Mojave, 10.14.6). We

used general linear, mixed linear or cumulative link models for continuous or ordinal outcome

variables, respectively. We analysed each model using multi-model selection with model averaging

(described in [19]). The Akaike information criterion, corrected for small sample sizes (AICc), was

used to evaluate models, with lower AICc values indicating a better fit [42]. The best models are

those with the lowest AICc value. To adjust for the intrinsic uncertainty over which model is the

true ‘best’ model, we averaged over the models in the top model set to generate model-averaged

effect sizes and confidence intervals [43]. In addition, parameter estimates, and confidence inter-

vals are provided with the full global model to robustly report a variable’s effect in a model [44].

This used package [45]. All visualisations were generated using the package ‘ggplot2’ [46].

Specifically, we used cumulative link models to calculate the behavioural effects in the simu-

lated data for individual dictators. All variables of ‘Prior paranoia’ listed are scaled and centred

GPTS total z-scores.

Ordinal HI=SI � Prior paranoiaþ ageþ order

In our overall global behavioural model, our mixed cumulative link model didn’t converge

as the Hessian was not a positive definite, and thus we used a linear mixed model (package

“lme4”; [47]) with multimodal averaging instead:

Mean HI=SI over 18 trials � Prior paranoiaþ ageþ dictatorþ orderþ ð1jIDÞ

Fig 7. Smoothed density distributions of the fitted parameters derived from the computational model.

https://doi.org/10.1371/journal.pcbi.1008372.g007
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To assess our latent uncertainty parameter associations (uHI0/uSI0/uP), and attributional

updates (η), we used individual general linear models for each parameter with multimodal

averaging, with their respective relevant simulated attributions:

uHI0=uSI0 � Prior paranoiaþ ageþ sex

uP � Prior paranoiaþ ageþ sex

Z � Prior paranoiaþ ageþ sex

Global models to assess predictors of simulated harmful intent and self-interest attribu-

tions, linear mixed models with participant identification number (ID) as a random effect

were used with multimodal averaging:

Mean simulated HI=SI � Prior paranoiaþ ageþ sexþ uHI0=uSI0þ Zþ uPþ ð1jIDÞ

In our models, all continuous scale scores were centred and scaled to produce Z values. All

model statistics reported are beta coefficients unless otherwise stated.

Network modelling. We performed network modelling of the derived parameters using

Gaussian Graphical Models and Moderated Network Modelling (package “mgm”, version 1.2–

8; [26]). Graphical models allow insight into the relational and dependent patterns in multivar-

iate data, specifically as they relate to pairwise relationships [26]. Fundamentally, graphical

models employ partial correlations between variables inputted into the network and allow a

‘model-free’ approach to generate structure from the data itself.

We first estimated an overall network model that included 8 variables: all latent parameters

and prior paranoia using bootnet (version 1.4.3; [48]. All variables were z-scaled. We used the

‘ggmModselect’ function in bootnet that allows a search for the optimal gaussian graphical

model through minimisation of the extended Bayesian information criterion (EBIC) in a step-

wise manner. This has been shown to lead to consistent estimates [49]. The function first

obtains 100 regularised possible models using least graphical absolute shrinkage estimation

(glasso) and then refits all models without regularisation. The best models are based on their

EBIC values. All possible models are then tested stepwise by adding or removing edges and

reassessing the model fit. When edges being added or removed do not change the EBIC, the

algorithm stops.

We also estimated the accuracy of edges and stability of edges and centrality metrics in the

overall network. Accuracy of the network is calculated in ‘bootnet’ by resampling each pairwise

edge 1000 times with a resample-with-replacement method. The original sample is then com-

pared with the bootstrapped sample. Small confidence intervals and similarity between the

bootstrapped and original sample represents good accuracy of the network. Stability of the net-

work is calculated using a ‘case-dropping’ bootstrap method in ‘bootnet’. Centrality metrics

are recalculated for the whole network after removing cases in the population 10% at a time,

with stability of each centrality measure considered good if it does not drop below 0.5, and

excellent if it does not drop below 0.7 [50]).

Finally, we assessed the changes to edge weights between nodes in the network when mod-

erating over prior paranoia using Moderated Network Models (MNM). This allows for

changes in edge weights to be estimated as a moderator–here prior paranoia–is set to different

z-score values. This method allows the effect of the moderator to be estimate without splitting

the data using a linear moderation effect (for full details of the moderation method see: [26]).

We also ran bootstraps on the moderation effect estimates to assess the stability of the modera-

tion effects.
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The null hypothesis against which a network should be tested is not that the nodes are

uncorrelated, but that the correlations are not accounted for by artefacts of the measuring pro-

cess. The network does not represent the marginal distributions of the node variables in the

population, but the relationships between them. Therefore, the appropriate null hypothesis is

whether the measuring process would artificially induce the observed correlation structure if

the node variables were sampled from uncorrelated regions of real distribution. This possibil-

ity is well recognised in cognitive modelling, as correlations may be induced by so-called ‘trad-

ing off’ of parameters against each other [51]. Insignificant correlations in the simulated

model, or correlations in the opposite direction to those found in real data, suggest that the

relationships actually found in the data are not due to model-fitting artefacts.

To test this, we considered the key regions of high density in the joint distribution of fitted

parameters (S5 Fig). This produced high (pHI0 = 0.01–0.98; pSI0 = 0.8–0.98), medium

(pHI0 = 0.25–0.5; pSI0 = 0.5–0.75), and low-density (pHI0 = 0.01–0.2; pSI0 = 0.01–0.2) clus-

ters of pHI0 x pSI0, and single dense cluster for each of uHI0, uSI0, eta, and upi, independent

of other parameters. We thus formed three high-density clusters in the entire parameter space.

From these, we sampled three simulated behavioural datasets of 200 pseudo-participants that

included either high, medium, or low pHI0 and pSI0 with each of the other four parameters.

Each simulated behavioural dataset was then run through the same MAP procedure as before,

to produce re-fitted parameters: a grid-search approach on parameter values was followed by

gradient-ascent on MAP. Correlations between refitted parameters from each pseudo-data set

were then analysed to assess their strength, direction, and significance versus the real data (S6

Fig).
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20. Wellstein KV, Diaconescu AO, Bischof M, Rüesch A, Paolini G, Aponte EA, et al. Inflexible social infer-

ence in individuals with subclinical persecutory delusional tendencies. 2019.

21. Diaconescu AO, Hauke DJ, Borgwardt S. Models of persecutory delusions: a mechanistic insight into

the early stages of psychosis. Molecular psychiatry. 2019; 1.

22. Deserno L, Boehme R, Mathys C, Katthagen T, Kaminski J, Stephan KE, et al. Volatility estimates

increase choice switching and relate to prefrontal activity in schizophrenia. Biological Psychiatry: Cogni-

tive Neuroscience and Neuroimaging. 2020; 5(2):173–183.

23. Green CE. L., Freeman D, Kuipers E, Bebbington P, Fowler D, Dunn G, Garety PA. Measuring ideas of

persecution and social reference: the Green et al. Paranoid Thought Scales (GPTS). Psychological

medicine. 2008; 38(1):101–111. https://doi.org/10.1017/S0033291707001638 PMID: 17903336

24. Palminteri S, Wyart V, Koechlin E. The importance of falsification in computational cognitive modelling.

Trends in cognitive sciences. (2017); 21(6):425–433. https://doi.org/10.1016/j.tics.2017.03.011 PMID:

28476348

PLOS COMPUTATIONAL BIOLOGY Reduction in learning and policy uncertainty about social threat underlies paranoia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008372 October 15, 2020 21 / 23

https://doi.org/10.1017/S0033291710001546
https://doi.org/10.1017/S0033291710001546
http://www.ncbi.nlm.nih.gov/pubmed/20735884
https://doi.org/10.1016/j.cpr.2015.09.001
https://doi.org/10.1016/j.cpr.2015.09.001
http://www.ncbi.nlm.nih.gov/pubmed/26407540
https://doi.org/10.1016/j.eplepsyres.2009.03.017
https://doi.org/10.1016/j.eplepsyres.2009.03.017
http://www.ncbi.nlm.nih.gov/pubmed/19442490
https://doi.org/10.1017/S0033291708004613
https://doi.org/10.1017/S0033291708004613
http://www.ncbi.nlm.nih.gov/pubmed/18940024
https://doi.org/10.1016/j.schres.2017.03.022
http://www.ncbi.nlm.nih.gov/pubmed/28318838
https://doi.org/10.1016/j.brat.2018.12.006
https://doi.org/10.1016/j.brat.2018.12.006
http://www.ncbi.nlm.nih.gov/pubmed/30580159
https://doi.org/10.7554/eLife.56345
http://www.ncbi.nlm.nih.gov/pubmed/32452769
https://doi.org/10.7717/peerj.7403
http://www.ncbi.nlm.nih.gov/pubmed/31440431
https://doi.org/10.1017/S0033291717003075
https://doi.org/10.1038/s41598-017-04805-3
https://doi.org/10.1098/rsos.180569
http://www.ncbi.nlm.nih.gov/pubmed/30225050
https://doi.org/10.1017/S0033291707001638
http://www.ncbi.nlm.nih.gov/pubmed/17903336
https://doi.org/10.1016/j.tics.2017.03.011
http://www.ncbi.nlm.nih.gov/pubmed/28476348
https://doi.org/10.1371/journal.pcbi.1008372


25. Stramaglia S, Cortes JM, Marinazzo D. Synergy and redundancy in the Granger causal analysis of

dynamical networks. New Journal of Physics. 2014; 16(10):105003.

26. Haslbeck JM, Borsboom D, Waldorp LJ. Moderated network models. Multivariate behavioral research.

2019;1–32.

27. Adams RA, Napier G, Roiser JP, Mathys C, Gilleen J. Attractor-like dynamics in belief updating in

schizophrenia. Journal of Neuroscience. 2018; 38(44):9471–9485. https://doi.org/10.1523/

JNEUROSCI.3163-17.2018 PMID: 30185463

28. Rolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modula-

tion in the prefrontal cortex. Nature Reviews Neuroscience. (2008); 9(9):696–709. https://doi.org/10.

1038/nrn2462 PMID: 18714326

29. Siegel JZ, Mathys C, Rutledge RB, Crockett MJ. Beliefs about bad people are volatile. Nature Human

Behaviour. (2018); 2(10):750. https://doi.org/10.1038/s41562-018-0425-1 PMID: 31406285

30. Raihani NJ, Bell V. An evolutionary perspective on paranoia. Nature human behaviour. (2019); 3

(2):114–121. https://doi.org/10.1038/s41562-018-0495-0 PMID: 30886903

31. Olsson A, Knapska E, Lindström B. The neural and computational systems of social learning. Nature

Reviews Neuroscience. 2020;1–16. https://doi.org/10.1038/s41583-019-0252-z PMID: 31796912

32. Barnby JM, Bell V, Deeley Q, Mehta MA. Dopamine modulates paranoid social inferences: a double-

blind, within-subject, randomised control study in a healthy population. BioRxiv. 2019. https://doi.org/

10.1101/2019.12.18.874255

33. Bloomfield MA, McCutcheon RA, Kempton M, Freeman TP, Howes O. The effects of psychosocial

stress on dopaminergic function and the acute stress response. Elife. 2019; 8.

34. Adams RA, Moutoussis M, Nour MM, Dahoun T, Lewis D, Illingworth B, et al. Variability in Action Selec-

tion Relates to Striatal Dopamine 2/3 Receptor Availability in Humans: A PET Neuroimaging Study

Using Reinforcement Learning and Active Inference Models. Cerebral Cortex. 2020.

35. Riches S, Bird L, Chan N, Garety P, Rus-Calafell M, Valmaggia L. Subjective experience of paranoid

ideation in a virtual reality social environment: A mixed methods cross-sectional study. Clinical Psychol-

ogy & Psychotherapy. 2020

36. Berinsky AJ, Huber GA, Lenz GS. Evaluating online labor markets for experimental research: Amazon.

com’s Mechanical Turk. Political analysis. 2012; 20(3):351–368.

37. Statham V, Emerson LM, Rowse G. A systematic review of self-report measures of paranoia. Psycho-

logical assessment. 2019; 31(2):139. https://doi.org/10.1037/pas0000645 PMID: 30234319

38. Friston KJ, Stephan KE. Free-energy and the brain. Synthese. 2007; 159(3):417–458. https://doi.org/

10.1007/s11229-007-9237-y PMID: 19325932

39. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997; 275

(5306):1593–1599. https://doi.org/10.1126/science.275.5306.1593 PMID: 9054347

40. Aitchison L, Lengyel M. With or without you: predictive coding and Bayesian inference in the brain. Cur-

rent opinion in neurobiology. 2017; 46, 219–227. https://doi.org/10.1016/j.conb.2017.08.010 PMID:

28942084

41. Echeveste R, Aitchison L, Hennequin G, Lengyel M. Cortical-like dynamics in recurrent circuits opti-

mized for sampling-based probabilistic inference. bioRxiv. 2020; 696088.

42. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. Multimodel inference in ecology and evolution: chal-

lenges and solutions. Journal of evolutionary biology. 2011; 24(4):699–711. https://doi.org/10.1111/j.

1420-9101.2010.02210.x PMID: 21272107

43. Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection.

Sociological methods & research.2004; 33(2):261–304.

44. Galipaud M, Gillingham MA, David M, Dechaume-Moncharmont FX. Ecologists overestimate the impor-

tance of predictor variables in model averaging: a plea for cautious interpretations. Methods in Ecology

and Evolution.2014; 5(10):983–991.

45. Barton K. (2009) Mu-MIn: Multi-model inference. R Package Version 0.12.2/r18. http://R-Forge.R-

project.org/projects/mumin/. 2009.

46. Wickham H. ggplot2: elegant graphics for data analysis. springer. 2016

47. Bates D, Maechler M, Bolker B, Walker S, Christensen RH. B., Singmann H, et al. Package ‘lme4’. Lin-

ear mixed-effects models using S4 classes. R package version, 1–1. 2011

48. Epskamp S, Fried EI. bootnet: Bootstrap methods for various network estimation routines. R-Package.

2015. Available at: https://rdrr. io/cran/bootnet.

49. Foygel R, Drton M. Extended Bayesian information criteria for Gaussian graphical models. In Advances

in neural information processing systems 2010 (pp. 604–612).

PLOS COMPUTATIONAL BIOLOGY Reduction in learning and policy uncertainty about social threat underlies paranoia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008372 October 15, 2020 22 / 23

https://doi.org/10.1523/JNEUROSCI.3163-17.2018
https://doi.org/10.1523/JNEUROSCI.3163-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/30185463
https://doi.org/10.1038/nrn2462
https://doi.org/10.1038/nrn2462
http://www.ncbi.nlm.nih.gov/pubmed/18714326
https://doi.org/10.1038/s41562-018-0425-1
http://www.ncbi.nlm.nih.gov/pubmed/31406285
https://doi.org/10.1038/s41562-018-0495-0
http://www.ncbi.nlm.nih.gov/pubmed/30886903
https://doi.org/10.1038/s41583-019-0252-z
http://www.ncbi.nlm.nih.gov/pubmed/31796912
https://doi.org/10.1101/2019.12.18.874255
https://doi.org/10.1101/2019.12.18.874255
https://doi.org/10.1037/pas0000645
http://www.ncbi.nlm.nih.gov/pubmed/30234319
https://doi.org/10.1007/s11229-007-9237-y
https://doi.org/10.1007/s11229-007-9237-y
http://www.ncbi.nlm.nih.gov/pubmed/19325932
https://doi.org/10.1126/science.275.5306.1593
http://www.ncbi.nlm.nih.gov/pubmed/9054347
https://doi.org/10.1016/j.conb.2017.08.010
http://www.ncbi.nlm.nih.gov/pubmed/28942084
https://doi.org/10.1111/j.1420-9101.2010.02210.x
https://doi.org/10.1111/j.1420-9101.2010.02210.x
http://www.ncbi.nlm.nih.gov/pubmed/21272107
http://R-Forge.R-project.org/projects/mumin/
http://R-Forge.R-project.org/projects/mumin/
https://rdrr
https://doi.org/10.1371/journal.pcbi.1008372


50. Epskamp S, Fried EI. A tutorial on regularized partial correlation networks. Psychological methods.

2018; 23(4):617. https://doi.org/10.1037/met0000167 PMID: 29595293

51. Daw N. D. Trial-by-trial data analysis using computational models. Decision making, affect, and learn-

ing: Attention and performance XXIII. 2011; 23(1).

PLOS COMPUTATIONAL BIOLOGY Reduction in learning and policy uncertainty about social threat underlies paranoia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008372 October 15, 2020 23 / 23

https://doi.org/10.1037/met0000167
http://www.ncbi.nlm.nih.gov/pubmed/29595293
https://doi.org/10.1371/journal.pcbi.1008372

