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Abstract: Host adaptive immune responses may protect against 
infection or disease when a pathogen is repeatedly encountered. 
The hazard ratio of infection or disease, given previous infection, 
is typically sought to estimate the strength of protective immunity. 
However, variation in individual exposure or susceptibility to infec-
tion may introduce frailty bias, whereby a tendency for infections 
to recur among individuals with greater risk confounds the causal 
association between previous infection and susceptibility. We intro-
duce a self-matched “case-only” inference method to control for 
unmeasured individual heterogeneity, making use of negative-control 
endpoints not attributable to the pathogen of interest. To control for 
confounding, this method compares event times for endpoints due 
to the pathogen of interest and negative-control endpoints during 
counterfactual risk periods, defined according to individuals’ infec-
tion history. We derive a standard Mantel-Haenszel (matched) odds 
ratio conveying the effect of prior infection on time to recurrence. We 
compare performance of this approach to several proportional haz-
ards modeling frameworks and estimate statistical power of the pro-
posed strategy under various conditions. In an example application, 

we use the proposed method to reestimate naturally acquired pro-
tection against rotavirus gastroenteritis using data from previously 
published cohort studies. This self-matched negative-control design 
may present a flexible alternative to existing approaches for analyz-
ing naturally acquired immunity, as well as other exposures affecting 
the distribution of recurrent event times.

Key Words: natural immunity, frailty, negative control, hazard, self-
matched, Mantel-Haenszel

(Epidemiology 2021;32: 168–178)

Host adaptive immune responses often protect against 
infection or disease when a pathogen is repeatedly 

encountered. Vaccines aim to exploit this protection by expos-
ing hosts to an attenuated infection or to immunizing sub-
units of a pathogen. Evidence of protective naturally acquired 
immunity thus provides a strong rationale for vaccine devel-
opment.1 Quantitative estimates of the strength of naturally 
acquired protection also inform the interpretation of epide-
miologic data, for instance providing a baseline against which 
vaccine performance can be evaluated.2 These estimates are 
further sought to parameterize mathematical models of patho-
gen transmission.3

Naturally acquired immunity is often estimated via the 
hazard ratio of infection or disease, comparing counterfactual 
periods in the presence and absence of prior infection.4–10 Thus, 
inference centers on the distribution of recurrent event times. 
Unmeasured heterogeneity in individuals’ hazards of infection 
or disease presents a challenge in such analyses, originally 
termed a problem of “varying liabilities” by Greenwood and 
Yule11 and subsequently addressed as “accident-proneness”12 
or “frailty.”13 The tendency for events to recur among certain 
individuals must be accounted for in statistical analyses14; 
recurrence of infection or disease among individuals with the 
greatest susceptibility or exposure to a pathogen, irrespective 
of previous infection, may bias estimates of naturally acquired 
protection.15

This consideration may have relevance to several dis-
eases against which immune responses generate imperfect 
protection. Tuberculosis presents a notable example, where 
despite evidence of protective cell-mediated and humoral 
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immunity,16 several epidemiologic studies have reported 
higher rates of new-onset infection or disease among per-
sons previously treated successfully for active tuberculosis, as 
compared to those without history of tuberculosis.17–20 Similar 
conflict about the consequences of prior infection has arisen in 
epidemiologic studies of gonorrhea.21,22 In recent analyses of 
a multi-site pediatric cohort study addressing enteric disease, 
previous infection predicted higher rates of recurrent infec-
tion or disease associated with several pathogens, including 
Shigella spp., Campylobacter spp., and various diarrheagenic 
Escherichia coli strains.23 Evidence supporting the feasibil-
ity of protective vaccines against many of these pathogens 
suggests a need to revisit the impacts of naturally acquired 
immunity.24–26 Similar causal inference challenges arise in the 
relationship between chronic inflammation and repeated infec-
tion in conditions such as cystic fibrosis,27,28 otitis media,29,30 
and environmental enteric dysfunction.31

Formalizing unmeasured heterogeneity as confound-
ing suggests potential strategies to identify naturally acquired 
protection. Terming Y1 and Y2 as primary and recurrent infec-
tion or disease outcomes, respectively, and U as the constel-
lation of unmeasured individual factors influencing exposure 
or susceptibility to a pathogen of interest, a directed acyclic 
graph (Figure 1) reveals that Y1←U→Y2 may introduce bias 
into the estimation of Y1→Y2, the effect of primary infection 
on recurrence. Conditioning on unmeasured individual factors 
by comparing observations during counterfactual risk periods 
from the same individual (Y1←U→Y2) permits unbiased infer-
ence of the effect of Y1. This intuition provides the basis for 
numerous self-matched designs (e.g., case-crossover, case-
time control, and self-controlled case series), which have gar-
nered increasing interest in epidemiology.32

In this article, we present an adaptation of these meth-
ods harnessing data from “negative control” events to permit 
causal inference in the presence of heterogeneous individual 
frailty. We derive a matched (Mantel-Haenszel) odds ratio 
(ORMH)33,34 estimator for the hazard ratio of infection or dis-
ease, given previous infection. We conduct simulations to 
compare this approach against alternative methods based on 
proportional hazards models common in the analysis of lon-
gitudinal data and to assess statistical power under varying 

conditions. Last, we use the proposed method to reassess pro-
tective effects of rotavirus infection in data from previously 
published birth-cohort studies.4,5

APPROACH

Self-matched Negative-Control Design
Consider an outcome such as acquisition of a pathogen 

of interest, or onset of disease due to this pathogen (Table 1). 
The proposed design only includes individuals who experi-
ence recurrent episodes of this outcome of interest (case-only). 
Define Yi and Xi as variables indicating outcome and exposure 
status for individual i at each observation, with Yi = 1 indicating 
infection or disease with the pathogen of interest and Yi = 0  
indicating a negative-control outcome. Consideration of neg-
ative-control observations is of interest for studies involving 
event-based data capture (e.g., episodes of acute illness) and 
provides a basis for competing risks estimation frameworks 
as we detail below. Last, let Xi = 1  indicate an individual has 
previously experienced infection with the pathogen of inter-
est, and let Xi = 0  indicate the individual has no history of 
infection with the pathogen of interest.

Define Ai to Di as random variables indicating event 
times for observations of Yi = 1 and Yi = 0 , conditioned on 
Xi (Table 2). Ai and Bi are the time to first occurrence of the 
outcome of interest and the negative-control outcome, respec-
tively, for an individual with no history of infection (Xi = 0). 
Ci and Di are the time to the first occurrence of the outcome 
of interest and the negative-control outcome, respectively, 
following infection with the pathogen of interest (such that 
Xi = 1; Figure 2). Here, we note that Bi and Di are censored if 
A Bi i<  and C Di i< , respectively.

Event Time Distributions
Define the hazard for the “positive” outcomes owing to 

infection with the pathogen of interest (P) for individual i as 
λPi, and define θ  as the hazard ratio of this outcome given 

A B

FIGURE 1. Directed acyclic graph addressing unmeasured 
confounding. We illustrate a causal framework wherein the 
effect of previous infection on time to subsequent infection 
(Y1→Y2) is of interest for analysis. One or more unmeasured 
confounding factors (U) creates a backdoor path (A) which 
can be blocked by conditioning on U (B).

TABLE 1. Parameters and Definitions

Parameter Definition

λPi Rate at which individual i experiences a prespecified clinical 

endpoint due to the pathogen of interest (“outcome of 

interest”), in the absence of naturally acquired immunity

λNi Rate at which individual i experiences a negative-control 

outcome
θ Hazard ratio for the outcome of interest, owing to naturally 

acquired protection

β βPi Pi( ) /1 0( ) Hazard ratio for the outcome of interest during the period 

after primary infection, relative to the period before pri-

mary infection, for individual i, due to all (confounding) 

factors other than naturally acquired protection

β βNi Ni1 0( ) ( )/ Hazard ratio for the negative control outcome during the 

period after primary infection, relative to the period 

before primary infection, for individual i
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previous infection (Table 1). Assuming infectious exposures 
occur independently and continuously during the follow-
up period, conditioning on each individual’s unique hazard, 
event times are exponentially distributed at the individual 
level. We note this circumstance gives rise to a nonexpo-
nential event time distribution at the population level, with 
variance augmented (relative to the pure exponential case) 
by heterogeneity in individual frailty. The probability of the 
outcome by time t, for a previously uninfected individual, is 
1− −exp( )λPit , while the probability of the outcome by time t,  
had the same individual counterfactually been previously 
infected, is 1− −exp( )θλPit . We discuss alternative event time 
distributions in a later section.

Consider that data are collected from each individual 
for endpoints besides the primary outcome of interest. Among 

these, suppose a negative-control outcome (N) occurs at a 
rate λNi  for individual i. This rate should be unaffected by 
individuals’ prior exposure to the pathogen of interest, accord-
ing to the definition of a negative control in this context.35 
Under the same assumptions, the probability of experiencing 
the negative-control outcome by time t, for individual i, is 
1− −exp( )λNit .

Estimating the Effect of Naturally Acquired 
Immunity

For an individual with no history of previous infection, 
consider the outcome of interest and the negative-control out-
come to be competing risks. The observations Ei to Hi may be 
defined to indicate the relative ordering of event times Ai to Di 
(Table 3), for each individual i. Specifically, take E A Bi i i= ≤  
and G C Di i i= ≤  to indicate the outcome of interest precedes the 
negative-control outcome during the periods with Xi = 0  and 
Xi = 1, respectively. Define F B Ai i i= <  and H D Ci i i= <  

as complements to Ei and Gi. By the memoryless property of 
the exponential distribution, we may start the clock for event 
times Ai and Bi at cohort entry or at any alternative milestone 
of interest (e.g., birth or exposure onset); for Ci and Di, we 
consider time from the most recent infection, although any 
subsequent milestone is likewise appropriate.

As formulated in Appendices A and B, we have

Pr PrE A Bi i i
Pi

Pi Ni

( ) = ≤( ) =
+

λ
λ λ

 (1)

TABLE 2. Contingency Table for Event Time Distributions, 
Given Prior Infection

Exposure Status 

 Outcome Status

 
Outcome  
of Interest

Negative  
Control Outcome

  Yi = 1 Yi = 0

Previously uninfected Xi = 0 Ai Pi~ ( )Exp λ Bi Ni~ ( )Exp λ

Previously infected Xi = 1 Ci Pi~ ( )Exp θλ Di Ni~ ( )Exp λ

FIGURE 2. Schematic presentation of potential outcomes. We illustrate potential outcomes in terms of the sequence of events  
Ai-Di for a given individual. In cases 1 and 2, we observe A Bi i<  (truncating observation of a negative-control event although 
Xi = 0 ). In cases 3 and 4, we observe B Ai i< , with the negative-control outcome preceding infection with the pathogen of inter-

est. We illustrate the corresponding potential outcomes for Ci and Di, when Xi = 1 , in the right-hand side of the figure.
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Pr PrF B Ai i i
Ni

Pi Ni

( ) = <( ) =
+

λ
λ λ  

(2)

Pr PrG C Di i i
Pi

Pi Ni

( ) = ≤( ) =
+

θλ
θλ λ  

(3)

Pr Pr .H D Ci i i
Ni

Pi Ni

( ) = <( ) =
+

λ
θλ λ  

(4)

Consider the Mantel-Haenszel odds ratio33,34 con-
structed from the competing risks of Yi = 1 and Yi = 0, given 
Xi, matching observations from each individual i:

OR
F G

E HMH
i i i

i i i

= ( )
∑
∑

I I

I I

( ) ( )

( )
,

 
(5)

such that

E
Pr

Pr
OR

F G

E HMH
i i i

i i i

( ) =
( )
( )

∑
∑

Pr ( )

Pr ( )
.

 
(6)

Using the above derivations of Pr Ei( )  through Pr Hi( ) ,

E ORMH
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λ
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θλ λ

θ.  (7)

Thus, the ratio of the matched odds for the outcome of 
interest to precede a negative-control outcome, given individ-
uals’ unique hazards and history of prior infection, provides 
an unbiased estimate of the effect of previous infection on 
time to recurrence of the outcome of interest.

Further Considerations
Time-varying Confounding

At a design level, self-matched inference reduces or 
eliminates the potential for bias due to time-invariant factors 
that individually influence risk.36 However, complications 
arise when individuals’ risk of experiencing these endpoints 
differs over time.

Consider continuously varying hazards λPi t( )  and 
λNi t( ). When variation over time is identical for both disease 
of interest and negative-control events (e.g., due to shared 
seasonal patterns, or exposure to interventions affecting both 
conditions equally), E ORMH( )  is unaffected. Formally, we 
express this scenario as

λ λPi Pit f t( ) = ( )  (8)

λ λNi Nit f t .( ) = ( )

Dividing the observation period into small windows 
of length dt , where the hazard is approximately constant 
(i.e., the probability of a negative-control event happening is 
λNi t t o t( )( ) +d d ), we may consider the windows to be multi-
nomial trials, where

P A B
t t

t t t ti i
Pi

Pi Ni

Pi

Pi Ni

≤( ) =
( )

( ) + ( ) =
+

d

d d

λ
λ λ

λ
λ λ

.
 

(9)

We illustrate bias that may occur when hazards do not 
vary synchronously in eFigure 1 (http://links.lww.com/EDE/
B749), identifying the greatest bias under conditions where 
seasonal patterns for the two conditions are inverted in rela-
tion to one another.

Broadly, these findings support the selection of nega-
tive-control outcomes that resemble the outcome of interest 
in their seasonal pattern or association with other time-vary-
ing confounders, such as individuals’ age, health status, and 
sociodemographic exposures. Where time-varying confound-
ers differ in their association with the outcome of interest and 
the negative-control outcome, covariate adjustment via. the 
use of conditional logistic regression models may present a 
strategy to mitigate bias.

Event Time Distributions
We may also relax the assumption that event times 

are exponentially distributed conditional on individual haz-

ards and exposures, as long as P A Bi i
Pi

Pi Ni

<( ) ≈
+

λ
λ λ

;  this 

equivalence is key to canceling out the individual effects in 
the exponential case. For gamma-distributed ( , )k θ  event 
times, P A Bi i<( )  is the regularized incomplete beta function 

IB k kA

A B
B A

θ
θ θ

, ,
+







while for Weibull-distributed event times 

it is 1 1/ ( )+






λ
λ

Ni

Pi

k , where k is the shared shape parameter of 

TABLE 3. Contingency Table for Competing Risks, Given 
Prior Infection

Exposure Status  Outcome Status

  Outcome of Interest 

Precedes Negative 

Control Outcome

Negative Control 

Outcome Precedes 

Outcome of Interest

  t Y t Yi i| |= < =1 0 t Y t Yi i| |= < =0 1

Previously uninfected Xi = 0 E A Bi i i= ≤ F B Ai i i= <

Previously infected Xi = 1 G C Di i i= ≤ H D Ci i i= <

http://links.lww.com/EDE/B749
http://links.lww.com/EDE/B749
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the distributions. We illustrate potential bias under these alter-
native parameterizations in eFigures 2 and 3 (http://links.lww.
com/EDE/B749).

COMPARISON TO COHORT DESIGN USING 
PROPORTIONAL HAZARDS ANALYSIS

Simulation Study
We conducted a simulation study across various under-

lying distributions of λPi  and λNi  to test for bias of point 
estimates under the proposed approach and under alternative 
methods often used in the analysis of cohort study data (with-
out consideration of negative controls). As comparisons, we 
considered several proportional hazards models, which could 
be applied to time-to-event data for recurrent observations of 
the outcome of interest. We considered four approaches to 
control for differences in hazards among individuals:

1. “Naive” proportional hazards model without inclusion 
of additional terms to account for differences in event 
times among individuals. We define the resulting hazard 
ratio θ�Naive .

2. Proportional hazards model accounting for variation in 
individual frailty via. “random effects.” Fitting this model 
yields θ�RE for the effect of previous infection, as well as 
σ̂ 2  representing the estimated variance in (log) individ-
ual-specific event rates, assumed to represent indepen-
dent draws from a Normal distribution with mean 0.37,38

3. Proportional hazards model including Gamma-
distributed frailty terms.13 Fitting this model yields 
θ�Frailty  for the effect of previous infection, along with 
the parameters of the underlying Gamma distribution 
describing individual-specific frailties.

4. Proportional hazards model with “fixed effects” for 
individual subjects. Fitting this model yields θ�FE  for 
the effect of previous infection and estimates subject-
specific rates of infection (via. individual-specific inter-
cepts), which have no preassumed distribution.

We defined θ�MH MHOR=  for the proposed analysis 
strategy of a self-matched, negative-control design and con-
sidered various distributions for λPi:

1. Truncated Normal distribution (with a prespecified 
lower bound at a = 0);

2. Truncated Cauchy distribution (with a prespecified 
lower bound at a = 0);

3. Uniform distribution;
4. Gamma distribution;
5. Mixtures of Gamma distributions.

We considered multiple parameterizations of each of 
these distributions (Table 4), holding the mean rate (or location 
parameter of the Cauchy distribution) constant at one infection 
per year across all simulations to determine effects of inter-
individual heterogeneity on estimates of θ . We illustrate the 

distributions in Figure 3. Considering cohorts of 500 individu-
als, we drew λPi  values at random and sampled exponentially 
distributed event times of first and second infections for each 
individual, truncating observations at five years. We repeated 
simulations 500 times for each θ ∈ …{ . , . , . }0 01 0 02 0 99 ,  
drawing λPi  values independently for each simulation. We 
used the simulated datasets to estimate θ� Naive , θ� RE , θ�FE ,
and θ�Frailty, taking the average of estimates obtained across 
all 500 iterations to obtain a single point estimate for each 
parameterization.

To compute θ�MH, we drew hazards (λPi)  and event times 
for negative-control observations for each subject, assuming 
event times were exponentially distributed with respect to the 
sampled, individual-specific rate parameters. To standardize 
comparisons of θ̂ MH  under differing distributions of λPi, we 
defined λNi = 1 ∀i  under each simulation.

To investigate how the different modeling frameworks 
performed in capturing the distribution of individual-spe-
cific hazards, we saved estimates of individual-specific fixed 
effects, random effects, and frailties alongside estimates of θ̂ .  
We fitted a single density kernel to the distribution of indi-
vidual-specific estimates across 10 simulated cohorts for each 
true value of θ  and underlying distribution of λPi.

RESULTS
We plot distributions and estimates under each approach 

in Figure 3. The naive hazards ratio tended to overestimate of 
the causal effect θ , leading to under-estimation of the degree 
of protection (1−θ ). Bias was minimized as θ  approached 
zero, consistent with a scenario of strong protective immunity. 
Values of θ̂ Naive  often exceeded 1 in scenarios where θ < 1 ; 
in practice, such an estimate would lead to inference that prior 
infection increases susceptibility to infection or disease attrib-
utable the pathogen of interest, when in fact prior infection 
is protective. For all distributions considered, bias in θ̂ Naive  
was greatest under parameterizations yielding the highest 
between-individual variance in λPi .

Alternative methods performed variably under the differ-
ing conditions (Figure 3). Lower degrees of bias were evident 
in θ̂ MH  as compared to estimates generated under the other 
methods assessed. Gamma frailty models and random effects 
models tended to yield less-biased estimates of θ  than θ̂ Naive .  
However, the same direction of bias (resulting in under-estima-
tion of the reduction in susceptibility, or θ θˆ > ) was evident 
with all three of these approaches. Bias was worst when λPi  val-
ues were drawn from Gamma or Gamma mixture distributions 
and tended to increase under distributions with greater variance 
in λPi, or greater irregularity in the case of Gamma mixture 
distributions. In contrast, fixed-effects models estimating mul-
tipliers on hazards for each individual tended to under-estimate 
θ  under most distributions of λPi , although both θ θF̂E >  
and θ θˆ

FE <  were apparent in simulations using the truncated 
Cauchy distribution for λPi . For the truncated Normal distri-
bution, bias in θ̂ FE  decreased with greater variance in λPi ,  

http://links.lww.com/EDE/B749
http://links.lww.com/EDE/B749
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whereas for the Uniform, Gamma, and Gamma mixture distri-
butions, bias increased with greater variance in λPi.

Biased estimation of θ  occurred in connection with a 
failure to accurately recover the underlying individual-specific 
frailty distributions. For each modeling approach, the extent 
of this misspecification in individual frailties varied over val-
ues of θ  and distributions of λPi  (eFigures 4 to 6; http://
links.lww.com/EDE/B749).

SAMPLE SIZE CONSIDERATIONS

Simulation Study
To inform applications of the proposed method, we next 

assessed statistical power under differing conditions. A test 
statistic (ξMH ) has previously been identified for ORMH  under 
the null hypothesis of no difference in risk given exposure.39 
For the contingency structure (Table 3) formulated from the 
terms Ei to Hi, this statistic can be written generally as

ξMH

i

N

i
i i i i

i

N i i i i i i i

E
E F E G

E F E G F H G
=

−
+ +

+ + + +
∑

∑

( (
( )( )

))

( )( )( )(
2

2

HHI )
,

4  

(10)

which can then be simplified according to E Fi i+ = 1, 
G Hi i+ = 1 , and F H E Gi i i i+ = − −2 . Thus,

ξMH
i

N

i i

i

N

i i i i

E G

E G E G
=

−

+ − −

∑
∑

( ( ))

( )( )
,

2

2
 (11)

which is expected to follow a χ 2  distribution with one 
degree of freedom under the null hypothesis. We calculated 
values of ξMH  obtained for cohorts of varying sizes under 
differing parameterizations of θ , λPi, and λNi. For values of 
θ ∈ …{ . , . , , . }0 1 0 2 0 9 , we sampled individual event times Ai to 
Di for a population of 100,000 individuals whom we subse-
quently partitioned (without replacement) into 2,000 hypo-
thetical study cohorts each of sizes from N=25 to N=1,000. 
For these analyses, we considered λPi values drawn from 
truncated Normal, Gamma, and Gamma mixture distributions, 
under the parameterizations of each of these distributions with 
greatest and least variance listed in Table 4. We determined 
statistical power via. the proportion of simulated cohorts for 
which the upper bound of a 95% confidence interval around 
ORMH  would be expected to correctly exclude the null value, 
that is, Pr( . ).. %ξ ξˆ

MH MH> =97 5 5 02

TABLE 4. Event Rate Distributions Applied to Simulation Study

Distribution Parameters 

Parameterizationsa

I II III IV V

Truncated Normal Mean µ µ =1 µ =1 µ =1 µ =1 µ =1

 Variance σ 2 σ = 1 4/ σ = 1 2/ σ = 1 σ = 2 σ = 4

 Lower bound a a = 0 a = 0 a = 0 a = 0 a = 0

 Upper bound b b = ∞ b = ∞ b = ∞ b = ∞ b = ∞
Truncated Cauchy Location x0

x0 1= x0 1= x0 1= x0 1= x0 1=

 Scale γ γ = 1 8/ γ = 1 4/ γ = 1 γ = 4 γ = 8

 Lower bound a a = 0 a = 0 a = 0 a = 0 a = 0

 Upper bound b b = ∞ b = ∞ b = ∞ b = ∞ b = ∞
Uniform Lower bound a a = 7 8/ a = 3 4/ a = 1 2/ a = 1 4/ a = 0

 Upper bound b b = 9 8/ b = 5 4/ b = 3 2/ b = 7 4/ b = 2

Gamma Shape k k = 8 k = 4 k = 1 k = 1 4/ k = 1 8/

 Scale θ k = 1 8/ k = 1 4/ k = 1 k = 4 k = 8

Gamma mixture (i) Shapes k1, k2  k1 1 8= / k1 1 8= / k1 1 8= / k1 1 8= / k1 1 8= /

 k2 3 8= / k2 15 8= / k2 15 16= / k2 3 32= / k2 3 320= /

 Scale θ1, θ2
θ1 1= θ1 1= θ1 1= θ1 1= θ1 1=

 θ2 1 5= / θ2 1= θ2 2= θ2 20= θ2 200=
 Weightb ω ω = 0 5. ω = 0 5. ω = 0 5. ω = 0 5. ω = 0 5.

Gamma mixture (ii) Shapes k1, k2  k1 1 2= / k1 1 2= / k1 1 2= / k1 1 2= / k1 1 2= /

 k2 3 10= / k2 3 2= / k2 3= k2 3 10= / k2 3 10= /

 Scale θ1, θ2
θ1 1= θ1 1= θ1 1= θ1 1= θ1 1=

 θ2 1 5= / θ2 1= θ2 2= θ2 20= θ2 200=
 Weightb ω ω = 0 5. ω = 0 5. ω = 0 5. ω = 0 5. ω = 0 5.

aParameterizations are listed in order of increasing variance from I to V.
bThe weight parameter of the Gamma mixture distribution indicates the proportion of individuals whose rates are parameterized according to k1, θ1; the proportion with rates 

parameterized according to k2, θ2  is 1 − ω .
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A

B

C

D

E

F

FIGURE 3. Simulated distributions and hazard ratio estimates under “naive” inference approaches and under the proposed 
approach of self-matched inference with negative controls. Panels are organized to present, in each row, the assumed distribu-
tion (column 1), the estimate θ�Naive  based on a Cox proportional hazards model without any correction for inter-individual 
heterogeneity (column 2), proportional hazards models employing various frailty frameworks (columns 3–5), and the estimate 
θ�MH  based on the proposed approach (column 6). One-to-one lines plotted in gray in columns 2–6 indicate where estimates 
would recover the true value, that is, θ θ�= . Horizontal gray lines plotted at θ�= 1  indicate where estimates exceed 1, indicating 
directionally misspecified estimates of the causal effect of interest. Values are plotted on a red-to-blue color ramp corresponding 
to the parameterizations I-V, respectively, in order of least (I; red) to greatest (V; blue) variance as detailed in Table 4. (A) Truncated 
normal distribution; (B) truncated Cauchy distribution; (C) uniform distribution; (D) Gamma distribution; (E) mixture of Gamma 
distributions (i) with means at 0.125 and 1.875; and (F) mixture of gamma distributions (ii) with means at 0.5 and 1.5.
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To assess how correlation between λPi
 and λNi

 could 
affect the statistical power of estimates, we conducted simula-
tions under two sets of assumptions. Under the first, we con-
sidered λNi i= ∀1  (equal to the expected value of λPi

 under 
all parameterizations), so that ..; under the second, we defined 
λ λNi Pi= , under the assumption that individuals with greater 
risk of the outcome of interest would also experience higher 
incidence of the negative-control condition. These conditions 
provided upper and lower bounds on power, corresponding to 
assumptions of no correlation and perfect correlation between 
λNi

 and λPi
, respectively.

RESULTS
We present results of the power analyses in Figure  4. 

Analyses with as few as 50 subjects had roughly 80% power 
or greater to estimate θ = 0 1.  (corresponding to 90% protec-
tion) under all conditions explored; analyses with 500 subjects 
had 80% power or greater to estimate θ ≤ 0 5.  (corresponding 
to 50% protection or greater) under all conditions. No scenar-
ios revealed 80% or greater power for estimation of θ ≥ 0 8.  
(corresponding to less than 20% protection), even with 1,000 

subjects; statistical power for estimation of θ = 0 9.  was 10% 
or lower under nearly all conditions explored. This limita-
tion makes our proposed method potentially inefficient for 
scenarios where immunity is very weak; generally, the use of 
stochastic negative-control observations for inference dimin-
ishes statistical power in comparison to approaches that do not 
require such data.

For simulations with λ λNi Pi⊥ , statistical power was 
weaker under parameterizations resulting in greater variance 
in λPi

. In contrast, for simulations with λ λNi Pi ,=  differences 
in statistical power were less strongly apparent with increasing 
variance in λPi. Taken together, these findings suggest statisti-
cal power is maximized when negative-control endpoints are 
chosen which tend to occur more commonly among individu-
als who are at greatest risk of the outcome of interest.

APPLICATION TO ROTAVIRUS BIRTH-COHORT 
DATA

Last, we applied the proposed method to real-world data 
collected in two birth-cohort studies of rotavirus infection and 
disease among 200 children in Mexico City, Mexico, and 373 

A B C

FIGURE 4. Statistical power for simulated analyses using the proposed approach of self-matched inference via. negative controls. 
Each panel presents the statistical power for rejecting the null hypothesis with two-sided P < 0.05 under varying conditions. Lines 
plotted in red to blue correspond to decreasing values of θ : 0.9 (red), 0.8, 0.7, …, 0.1 (blue), corresponding to increasing pro-
tection from 10% to 90%. Plots are presented in groups of four panels, each corresponding to analyses with values drawn from 
the following distributions: (A) Truncated Normal distribution; (B) Gamma distribution; (C) Mixture of Gamma distributions with 
means at 0.125 and 1.875 (as detailed in Table 4). Panels in the top row (A.1, A.2, B.1, B.2, C.1, C.2) represent analyses in which 
no correlation is assumed between rates of the outcome of interest and negative control outcome ( λi

N i= ∀1 ). Panels in the bot-
tom row (A.3, A.4, B.3, B.4, C.3, C.4) represent analyses in which the correlation between rates of the outcome of interest and the 
negative control outcome are is maximized ( λ λi

N
i
P= ) . Within each grouping, panels on the left-hand side (A.1, A.3, B.1, B.3, C.1, 

C.3) correspond to distributions with the least variance in individual rates of the outcome of interest ( λi
P ; i.e., parameterization I 

in Table 4). Panels on the right-hand side within each grouping (A.2, A.4, B.2, B.4, C.2, C.4) correspond to distributions with the 
greatest variance in individual rates of the outcome of interest ( λi

P ; i.e., parameterization V in Table 4).
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children in Vellore, India. These datasets have been described 
extensively in primary study publications4,5 and subsequent 
reanalyses15,40; we present details in the Supplemental Digital 
Content (http://links.lww.com/EDE/B749).

Initial analyses of the datasets gave differing conclu-
sions about the strength of protection against rotavirus gas-
troenteritis (RVGE). Based on Cox proportional hazards 
models that did not account for variation in individual frailty, 
children in Mexico City were estimated to have experienced 
77% (95% confidence interval = 60, 88), 83% (64–92), and 
92% (44–99) lower rates of RVGE following one, two, and 
three previous infections, respectively, as compared to zero 
infections.4 In contrast, children in Vellore, where the rate of 
rotavirus acquisition was higher, were estimated to have expe-
rienced 43% (24–56%), 71% (59–80%), and 81% (69–88%) 
lower rates of RVGE after one, two, and three previous infec-
tions, as compared to zero infections, based on a parametric 
(exponential) survival model allowing Gamma frailty terms.5 
Subsequent analyses of the datasets revealed substantial varia-
tion in rates of rotavirus infection and risk of RVGE among 
individual children, as well as a potential for confounding due 
to declining risk of RVGE when infections were acquired at 
older ages, irrespective of previous infection.40 In contrast, 
model-based analyses accounting for the independent effects 
of age and previous infection on children’s susceptibility to 
RVGE estimated that children experienced 33% (23–41%), 
50% (42–57%), and 64% (55–70%) lower rates of RVGE after 
one, two, and three previous infections, respectively, as com-
pared to zero infections.15

We used the proposed self-matched negative-control 
design to reestimate naturally acquired protection against 
RVGE in the cohort datasets. Here, RVGE episodes (acute, 
new-onset diarrhea with rotavirus detected in the stool) were 
the outcome of interest and acute, new-onset diarrhea episodes 
without rotavirus detection were the negative controls. Our 
analyses did not adjust for age (owing to the limited number of 
children with 2 or 3 infections observed) or seasonality (due 
to year-round rotavirus transmission in these high-incidence 
settings). We compared the times of RVGE and rotavirus-neg-
ative diarrhea episodes from each child beginning from birth 
and thereafter following detection of the first, second, and 
third rotavirus infection, generating confidence intervals via. 
resampling of individual children. This yielded estimates of 
27% (–1–48%), 50% (13–73%), and 48% (0–77%) lower rates 
of RVGE following one, two, and three previous infections, 
as compared to zero infections (Figure  5). Notwithstanding 
lower statistical power for the proposed method, these esti-
mates are in agreement with previous findings15 suggesting 
lower strength of naturally acquired protection than what was 
estimated in initial analyses of the studies.4,5

DISCUSSION
We propose a novel self-matched negative-control 

method for estimating naturally acquired protection against 

recurrent infection or disease endpoints associated with a 
pathogen of interest. Analytically and via. simulation, we 
show this method recovers unbiased estimates under a range 
of conditions, including when individual hazards are drawn 
from highly irregular or skewed distributions. We find such 
scenarios may lead to bias under proportional hazards models 
with commonly used frailty estimation frameworks. Desirably, 
the proposed approach requires no parametric assumptions 
about individual-specific frailty. While our approach assumes 
exponentially distributed event times, this can be expected 
to hold provided infectious exposures occur continuously 
and independently, according to the individual-specific haz-
ards. Beyond infectious disease natural history studies, this 
approach may have value for assessing the effects of other 
exposures on recurrent event times.

Our findings provide several practical insights for 
real-world longitudinal cohort studies. Collecting data on 
multiple endpoints affords the opportunity to leverage neg-
ative-control observations to support causal inference. For 
studies applying the proposed approach, negative-control 

FIGURE 5. Estimated protection against rotavirus gastroen-
teritis associated with previous infection. We plot point esti-
mates and 95% confidence intervals (lines) for estimates of the 
hazard ratio of rotavirus gastroenteritis associated with having 
previously experienced one, two, and three previous infec-
tions, versus zero previous infections, estimated via. reanalysis 
of the Mexico City and Vellore rotavirus birth-cohort studies.4,5 
Analyses include rotavirus-negative diarrhea occurrences as a 
negative control endpoint.
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endpoints affected by the same risk factors or exposures as 
the outcome of interest are desirable both to reduce poten-
tial risks of confounding due to time-varying factors and to 
maximize statistical power based on the correlation between 
event rates for the outcome of interest and the negative-
control outcome. “Test-negative” control conditions which 
resemble the outcome of interest, but are not attributable to 
the same pathogen,41,42 may provide a compelling choice, 
particularly if their occurrence is predicted by similar fac-
tors. For instance, shared risk factors are well-documented 
for rotavirus-positive and rotavirus-negative diarrhea.15,31 
Considering respiratory illness, multiple etiologic viruses 
may share similar seasonal transmission patterns,43 routes 
of transmission via. high-risk contact,44 and predictors of 
severe illness.45 For sexually transmitted infections, particu-
lar risk behaviors46 differing among individuals or over time 
could alter risk of any infection, rather than infection with 
the pathogen of interest alone.25 In the context of real-world 
cohort studies, test-negative control conditions that are clini-
cally similar to the outcome of interest would likely result 
in a study visit or other recorded interaction with similar 
probability. This further supports consideration of inference 
methods making use of test-positive and test-negative occur-
rences of a particular clinical syndrome.

In summary, self-matched inference via. negative con-
trols may provide a flexible strategy to circumvent bias intro-
duced by variation in individual frailty for analyses of naturally 
acquired immunity. Applications to other exposures affecting 
the distribution of recurrent event times merit consideration, 
given the possible limitations we identify in existing analysis 
frameworks.
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APPENDIX A: COMPETING RISKS
To derive equations (1)–(4), consider two competing, 

independent times τ j and τk for events occurring at rates rj 
and rk. We may obtain the probability for τ j to precede τk from 
the improper integral

Pr Pr Pr .τ τ τ τj k k jt t t<( ) = >( ) =( )∞

∫ d
0

 (12)

Under the assumption of exponentially distributed event 
times,

Pr ( ) exp .τ τj k k j
j

j k

r t r t t
r

r r
<( ) = − −( ) =

+
∞

∫ exp r dj0

 

(13)

APPENDIX B: TRUNCATION OF OBSERVATIONS
This appendix supports equations (6) and (7). The deri-

vation above considers the improper integral

Pr Pr Prτ τ τ τj k k jt t t<( ) = >( ) =( )∞

∫ d
0  

(14)

We obtain the same results when observations end at 
some time δ, more in line with the conduct of real-world 
studies:

Pr Pr Pr
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j k k j
j k j
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with the additional terms canceling out in the matched 
odds ratio formulation:
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= θ.
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