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ABSTRACT

Background: Conditioned medium is the medium obtained from certain cultured cells 
and contained secretome from the cells. The secretome, which can be in the form of 
growth factors, cytokines, exosomes, or other proteins secreted by the cells, can induce the 
differentiation of cells that still have pluripotent or multipotent properties.
Objectives: This study examined the effects of conditioned medium derived from E17 rat 
brain cells on cells with pluripotent properties.
Methods: The conditioned medium used in this study originated from E17 rat brain cells. 
The CM was used to induce the differentiation of primary colonies of mice blastocysts. 
Primary colonies were stained with alkaline phosphatase to analyze the pluripotency. The 
morphological changes in the colonies were examined, and the colonies were stained with 
GFAP and Neu-N markers on days two and seven after adding the conditioned medium.
Results: The conditioned medium could differentiate the primary colony, beginning with the 
formation of embryoid-body-like structure; round GFAP positive cells were identified. Finally, 
neuron-like cells testing positive for Neu-N were observed on the seventh day after adding the 
conditioned medium.
Conclusions: Conditioned medium from different species, in this case, E17 rat brain cells, 
induced and promoted the differentiation of the primary colony from mice blastocysts into 
neuron-like cells. The addition of CM mediated neurite growth in the differentiation process.
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INTRODUCTION

Conditioned medium is the medium, where cells, particularly stem cells, are cultured. 
The medium contained factors secreted from the cells in the secretome, microvesicles, or 
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exosome [1]. The use of conditioned medium has attracted increasing attention because 
many studies reported that the injection of cytokines, chemokines, or growth factors could 
have superior effects to implanting cells directly to the organs. Kay et al. [2] reported 
that conditioned medium from a mesenchymal stem cells treatment reduced cartilage 
damage and suppressed the immune responses, and may provide effective cell therapy 
for inflammatory arthritis. Conditioned medium combined with a neural regeneration 
laboratory medium had a superior effect in inflammation reduction, neurite regeneration 
in vitro, and improved functional restoration in spinal cord injury rats in vivo [3]. Another 
research conducted by Sun et al. [4] reported that factors secreted from conditioned medium 
promoted the regeneration of sebaceous glands, angiogenesis, and wound healing.

Growth factors or secreted proteins found in conditioned medium have been attributed to 
a mechanism that delivers good results in both in vitro and in vivo experiments. Secretome 
in a paracrine mechanism can significantly repair the tissues while the differentiation of 
cells has a minor benefit [5]. The secretome in conditioned medium may also stimulate the 
host's endogenous cell survival mechanism [6]. The majority of the studies reported that 
the beneficial effect is most likely mediated by modulation of neurotrophic factor expression 
[7]. Moreover, the content of the conditioned medium that originated from the cells would 
resemble the ‘more physiological’ conditions of differentiation compared to the addition of 
chemical agents [8].

Related to the mechanism in which the conditioned medium had beneficial effects, some 
considerations are needed to choose the cells to produce conditioned medium because 
different types of cells will secrete different proteins or growth factors. There are many 
sources of the cells to produce or harvest conditioned medium, such as mesenchymal stem 
cells, neural stem cells, or adipocyte-derived stem cells [9-12].

One of the promising sources of secretome that is being extensively investigated is neuronal 
cell-derived conditioned medium. Lin et al. [13] reported that neuron-derived conditioned 
medium could protect microglia, astrocytes, and neurons from glucose, oxygen, and serum 
deprivation (GOSD)-induced cell death. Neural stem cell-conditioned medium has also been 
reported to inhibit cell apoptosis and have neuroprotective effects, making it a potential 
alternative and effective therapeutic intervention for ischemic stroke [10]. A previous study 
found that conditioned medium from a heterogeneous cell population of differentiated cells 
from E17 rat neural progenitor cells secreted proteins under starvation conditions that were 
used to maintain cell growth and stimulate differentiation [11]. The results of those studies 
were certainly very encouraging to open up future therapies for neurodegenerative diseases. 
On the other hand, research from a basic to clinical trial needs to be done and deepened so 
that the future application will truly be appropriate and safe to minimize the negative effects.

This study examined the effects of the conditioned medium derived from E17 rat brain cells 
on the cells with pluripotent properties. The primary colony of mice blastocyst was used as 
the first initial stage of embryonic stem cell propagation. This study evaluated whether the 
content of the conditioned medium that came from the different species could induce the 
differentiation of the primary colony.
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MATERIALS AND METHODS

Production of conditioned medium of E17 rat brain cells
The conditioned medium used in this study originated from E17 rat brain cells. The E17 (days 
gestation) pregnant Wistar rat was euthanized by intraperitoneal injection of a ketamine-
xylazine cocktail (91 mg/kg ketamine + 9.1 mg/kg xylazine) 0.2 mL/100 g body weight. The 
lower abdomen was sprayed with 70% alcohol then the uterus was then exposed by medial 
cutting under aseptic conditions to avoid contamination. All fetuses were removed and 
stored in a sterile, cold dissection solution (HBSS containing 0.3% glucose). The methods 
for isolating the neuronal cells and producing the conditioned medium were reported by 
Budiariati et al. [11]. The conditioned medium used in this study was collected 24 hours 
after serum deprivation. The experimental procedures of this research were approved by The 
Animal Care and Ethics Committee of the Faculty of Veterinary Medicine, IPB University (No: 
123/KEH/SKE/IV/2019).

Culture of primary colony of mice blastocyst
Female mice were induced to superovulation by an intraperitoneal injection of 5 IU PMSG 
(Folligon®, Intervet, The Netherlands) and 5 IU hCG (Chorulon®, Intervet, Netherland) at 
48 h intervals. The female mice were mated overnight with DDY males. On the following 
morning, the mice were examined for the presence of vaginal plugs. The blastocysts were 
harvested on day 3.5.

Harvested blastocysts were cultured for one hour before being exposed to 0.25% pronase for 
zona pellucida removal. Free-zona blastocysts were then cultured for one hour before being 
seeded on four-well gelatin-coated dishes for three–four days. The medium was knock-
out DMEM (GibcoTM) supplemented with 15% knock-out serum replacement (GibcoTM), 1 
mM GlutaMax® (GibcoTM), 0.1 mM β-mercaptoethanol, 0.1 mM nonessential amino acids 
(GibcoTM), 1% antibiotic-antimycotic (100x) (GibcoTM), and 1000IU/ml LIF (Sigma L-5158).

Alkaline phosphatase (ALP) Staining
ALP staining was performed after 3–4 days of culture, the medium was aspirated, and the 
primary colonies were fixed using 4% paraformaldehyde for 2 min. The fixative was discarded 
and washed 1X with TBST rinse buffer. The colonies were stained with 200 μg/mL Naphtol 
AS-MX phosphatase and 1 mg/mL fast red TR salt in 100 mM Tris buffer for 30 min at room 
temperature. The stained colonies were washed with TBST rinse buffer 1X and covered in 1X 
PBS to prevent drying. The colonies expressing ALP stained red.

Induction of differentiation using conditioned medium of E17 rat brain cells
The primary colony of mice blastocysts was induced for differentiation on day three–four 
after seeding by exchanging the medium with NRA medium consisting of neurobasal 
medium MACS®Neuro-Medium (Miltenyi Biotec) containing 2% MACS NeuroBrew-21 
w/ retinoic acid (Miltenyi-Biotec), 1% antibiotic-antimycotic (100x) (GibcoTM), and 
1% GlutaMax® (GibcoTM) for four days. The medium was changed into a combination 
of neurobasal medium: conditioned medium from E17 rat brain cells (1:1 (v/v)). The 
morphological changes of the colonies were examined, and the colonies were stained on days 
two and seven after adding the conditioned medium using GFAP or NeuN markers.
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Immunocytochemistry
The differentiation after induction of the primary colony was assessed by 
immunocytochemistry. GFAP (Santa Cruz sc) and NeuN (Abcam ab104225) antibody markers 
were used in this study. The secondary antibody was a secondary HRP-conjugated antibody 
(Trekkie Universal Link, Starr Trek Universal HRP Detection Kit Biocare®). Staining was 
performed using the procedures reported by Rinendyaputri et al. [14].

RESULTS

Culture of E17 rat brain cells and conditioned medium production
The whole brain from E17 Wistar rat fetuses was isolated and cultured for four days. The cells 
were characterized by flow cytometry to analyze the heterogeneity of the cells population 
using two markers PSA-NCAM and A2B5. The results showed that the cell population 
consisted of immature neuron PSA-NCAM+, glia progenitor A2B5+, and double-positive 
markers (PSA-NCAM+/A2B5+), as shown in Fig. 1. The dominant cells of the population 
were the immature neuron (62.98%), whereas the glial cells with positive expression of A2B5 
markers were 22.04%. The cells were then cultured under serum deprivation with minimum 
essential medium (MEM) without any supplement so that the collected conditioned medium 
will only contain proteins secreted from the cells. The conditioned medium was aspirated or 
collected 24 h after serum deprivation.

Culture of mice blastocysts into primary colonies and pluripotency assay
The fertilized blastocysts were seeded on four-well gelatin-coated dishes after being treated 
in 0.25% pronase for zona removal (Fig. 2A and B). On the third to fourth days after cultures, 
the primary colony formed as multilayer cells, as shown in Fig. 2D. Forty-one blastocysts were 
used in this study. The attachment rate or the capability of the blastocyst to attach to the dish 
was 86.63 ± 6.43, whereas the primary colony rate was 83.88 ± 8.64 (Fig. 3). Fig. 2C and D show 
the development of the blastocysts after attaching the dish to primary colony formation. ALP 
staining was performed to check the pluripotency of the colony. The results showed that the 
colony still had pluripotency indicated by the red color (Fig. 2E and F).

Induction of differentiation of the primary colony of mice blastocyst
The primary colonies of mice blastocysts were induced to differentiate using the conditioned 
medium from E17 rat brain cells. In the initial step of differentiation induction, the medium 
was exchanged with NRA medium, a neurobasal medium supplemented with retinoic acid 
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Fig. 1. Characterization of E17 rat brain cells after four days of culture. (A) Histogram of the percentage of PSA-NCAM+ A2B5-; PSA-NCAM- A2B5+; and double-positive 
cells of both antibodies PSA-NCAM+ A2B5+; (B) Population of the cells by flow cytometry analysis of E17 rat brain cells; (C) isotype; (D) cell immunophenotyping.



contents, for four days. The morphology of the colony changed, and embryoid bodies-like 
structures were observed. They were embryoid bodies-like because they were not floating 
like common embryoid bodies features (Fig. 4A). The primary colony was divided into 
two groups. The first continued to be cultured in the NRA medium, while the second was 
cultured in the neurobasal medium: conditioned medium 1: 1 (v/v).

The morphological changes were analyzed on the sixth day. Both groups showed morphological 
changes. The colony cultured in the conditioned medium formulation differentiated into 
round shape cells, as shown in Fig. 4C, whereas while the colony cultured in the NRA medium 
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Fig. 2. Development and pluripotency assay through alkaline phosphatase staining of the primary colony of 
mice blastocysts. (A) Fertilized blastocysts of the mice; (B) free-zona pelucida of the blastocysts; (C) attached 
blastocysts after one-day culture; (D) primary colony of mice blastocyst after three days of culture; (E, F) alkaline 
phosphatase staining of the primary colony of mice blastocyst, red color indicated pluripotency of the colony. 
Scale bar = 25 µm.
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Fig. 3. Attachment rate and primary colony rate of mouse blastocysts.



did not show the same differentiated cells (Fig. 4B). The round shape cells were identified 
by GFAP staining to test the prediction that these cells might be neuroepithelial cells, which 
is the precursor for neuronal cells (Fig. 5A). The results showed that the round shape cells 
that originated from the primary colony were positive for GFAP. The results strengthen the 
hypothesis that the induction of a primary colony of blastocysts to neuronal cells occurred 
through a transformation to neuroepithelial cells. The trophectoderm cells were used as a 
negative control of the staining because the cells were also found when whole blastocysts were 
cultured but did not differentiate into neuronal cells (Fig. 5B).

The morphology of the primary colony cultured in the NRA medium for six days was 
compared with the primary colony cultured with the conditioned medium. The primary 
colony cultured in the NRA medium showed a larger undifferentiated area compared to 
another group (Fig. 6A and B). The primary colonies cultured with the supplementation of 
conditioned medium might differentiate faster and express positive results when stained with 
GFAP (Fig. 6C and D).

Neuron-like cells were identified after seven days of culturing the primary colony that had been 
cultured in conditioned medium formulation (neurobasal: conditioned medium 1:1 (v/v)), as 
shown in Fig. 6E. In contrast, the same neuron-like cells were not found in the control group. 
The neuron-like cells of the treatment group of the conditioned medium were then stained with 
the Neu-N marker. The results revealed cells positive for the Neu-N staining (Fig. 6F).
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A B C

Fig. 4. Morphological changes of the primary colony of mice blastocyst after differentiation induction. (A) Embryonic bodies-like structure (black arrow) of the 
primary colony one day after the medium was changed into NRA medium; (B) Control group of the colony (NRA medium), six days of culture; (C) Round shape cells 
after four days culture with NRA medium followed by two days culture with neuro basal: conditioned medium 1:1 (v/v). Scale bars = 25 µm. Scale bars = 25 µm.

A B

Fig. 5. Assessment of differentiation after induction by immunocytochemistry using GFAP marker. (A) The round 
shape cells with positive expression of GFAP (brown colored); (B) Morphology of trophectoderm cells with 
negative expression of GFAP. Scale bars = 25 µm.



DISCUSSION

Over the last few decades, cell-based therapies have become a choice for degenerative 
diseases because of the limitations of current pharmacological drugs to solve those health 
issues. At least two major mechanisms have been proposed to explain how this therapy 
provides positive results. The first one is based on the engraftment of cells to damaged tissue. 
The second is the stimulation of the self-healing processes of endogenous tissue through 
the trophic effects mediated by cytokine and growth factor secretion [15]. Although a low 
count of the transplanted cells can have a beneficial effect, the homing of the cells and the 
mechanism in which the immune system does not reject them are still a mystery. In recent 
years, there has been a paradigm shift in that the cells act by secreting humoral factors that 
will improve the function of the tissues [16]. This leads to the development of secretome-
based therapy instead of direct cell-based therapy.

As reviewed by Vizoso et al. [17], secretome as a cell-free therapy might resolve safety 
considerations and can be evaluated for the dosage and other pharmaceutical agents. Storage 
can be achieved without applying potential cryopreservative chemicals, making the process 
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Fig. 6. Assessment of differentiation after induction of the primary colony with different treatments and different 
periods. (A, B) GFAP staining of the primary colony after six days culture with the NRA medium; (C, D) GFAP 
staining of the primary colony after four days culture with NRA medium followed by two days culture with the 
neurobasal: conditioned medium 1:1 (v/v); red circle indicating remaining colony and differentiated cells that 
positive for GFAP; (E) Morphology of the differentiated cells after four days culture with NRA medium followed 
by seven days culture with neurobasal: conditioned medium 1:1 (v/v), red arrows showing neuron-like cells; (F) 
Neu-N staining of differentiated cells after four days culture with NRA medium followed by seven days culture 
with neurobasal: conditioned medium 1:1 (v/v), brown-colored indicating positive expressions of Neu-N, red 
arrows showing neuron-like cells. Scale bars = 25 µm.



more economical and allowing modification to desired cell-specific effects and possible for 
mass production. On the other hand, some considerations are needed to choose the cells that 
will produce the conditioned medium because different types of cells will secrete different 
proteins or growth factors.

This study used heterogeneous neuronal cells from the E17 rat whole brain instead of the 
purified type of cells, such as progenitor to immature neurons or astrocytes. Although 
previous studies used homogenous cells [7,8,10], based on their origin under in vivo 
conditions, the neurotrophic factor and growth factors that play a role in neurogenesis or 
brain repair originate from different regions of the adult and embryonic brain [18].

The cells were isolated from the whole brain of E17 rat embryos, and the cells were 
heterogeneous. They consisted of three types of cells, PSA-NCAM+, A2B5+, and those that 
express both markers. Based on the results, after four days of culture, the cells positive for 
the PSA-NCAM marker representing immature neurons were dominant (62.98%), while the 
glial cells with positive expressions of the A2B5 markers were 22.04%. Most PSA-NCAM+ 
cells that represent immature neurons are related to neurogenesis in the mammalian central 
nervous system. Neurons were found in the embryonic period, while most glial cells were 
produced after birth [19]. Neurogenesis of mouse or rat cerebral cortex commences around 
embryonic day 12 (E12), peaks at E15, and finishes around birth. The findings showed that the 
dominant cells from E17 rat brains after four days of culture were immature neurons; glial cell 
progenitors were obtained. Hence, gliogenesis had started at this time. In mice, gliogenesis 
starts at E16 and continues to postnatal life [20].

A previous study analyzed the conditioned medium obtained from a short and long period of 
serum deprivation culture of E17 rat brain cells. The proteins secreted from the cells treated 
with a short duration of starvation were dominated by immature neurons consisting of 
proteins used to maintain cell growth, stimulate differentiation, and produce energy. On the 
other hand, there were also proteins for the activation of autophagy and proteins secreted in 
response to microenvironmental stress. The cells cultured after long periods of starvation 
with the dominance of glial cells secreted proteins that act as neuroprotectors [11]. Hence, 
the conditioned medium from the cells cultured in serum-free conditions for 24 hours was 
used to test whether the conditioned medium would induce the differentiation of the primary 
colony of mice blastocyst.

This study used the conditioned medium from different species as an initial study to assess 
the potency of an inter-species differentiation mechanism mediated by proteins secreted 
from the cells. Lotfinia et al. [21] reported that secreted molecules from human embryonic 
stem cell-derived mesenchymal stem cells have therapeutic potentials on mouse models of 
acute hepatic failure. Another research conducted by Jonas et al. [22] reported that small 
extracellular vesicles from hypoxic mesenchymal stem cells from bone marrow samples 
of selected healthy donors could promote cerebral angiogenesis, brain remodeling, and 
neurological recovery after focal cerebral ischemia in mice. In veterinary practice and 
research, Lee et al. [23] reported that equine-induced pluripotent stem cells generated from 
adipose-derived stem cells could induce the regeneration of injured muscle of Rag/mdx mice, 
highlighting the therapeutic effects.

This study assessed the ability of conditioned medium from rat brain cells to induce 
differentiation from mice blastocysts. The brain cells were selected to examine the specificity 
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of the cells that produced secreted proteins on the directed neuronal differentiation of the 
primary colonies of mice blastocyst. Timmusk et al. [24] reported that one of the main 
neurotrophic factors, brain-derived neurotrophic factor, is tissue-specific, where each brain 
region and peripheral tissue has a different level of expression of neurotrophic factors. Bach 
et al. [25] reported a cross-species effect of bioactive components and factors secreted by 
notochordal cells on improving the degeneration of intervertebral discs. Therefore, this 
initial study was conducted in the concept of the possibility of an inter-species manner.

The primary colonies from the mice blastocyst used were the initial cells of embryonic stem 
cells propagation [26]. Based on these results, the attachment rate was 86.63 ± 6.43, whereas 
the primary colony rate was 83.88 ± 8.64. The rate of the attachment and primary colony 
of the mice blastocyst can be varied, but the number showed an effectivity of the culture of 
the blastocysts. The limitation of this study was the characterization of pluripotency. ALP 
staining was conducted as a common traditional marker of pluripotent embryonic stem (ES) 
cells, but the expression of pluripotency genes, such as Oct4, Nanog, and Sox2, are needed 
for the passage of the ES cell line [27]. The primary colonies tended to have pluripotency, 
as indicated by the positive expression visualized by the red color. The ALP can be detected 
in preimplantation embryos from two cells to blastocysts, in the inner cell mass and 
trophectoderm but later on the inner cell mass only.

The initial induction of the primary colony was achieved by adding a supplement containing 
retinoic acid. These findings revealed morphological changes in the primary colony to 
form embryoid bodies-like structures one day after the medium had been changed to an 
NRA medium. Retinoic acid is typically used at concentrations ranging from 5 μmol/L to 5 
mmol/L to facilitate the differentiation of ESCs into neural progenitor cells. The retinoic acid 
will act through some reported mechanisms, such as cyclic AMP-binding protein (CREB), 
c-JunN-terminal kinase K, or among signaling pathways, such as the Wnt/β catenin, FGF, 
and Erk pathways [28]. High concentrations of retinoic acid will increase the expression of 
neuronal genes and suppress the mesodermal genes resulting in the formation of embryoid 
bodies [29].

After the initial induction, the primary colonies were divided into two groups: the NRA 
groups and the neurobasal-conditioned medium groups. The results suggested that the 
conditioned medium promoted differentiation faster than the NRA groups. The primary 
colony cultured in the NRA medium showed a larger undifferentiated area than the other 
group. The colony cultured in the conditioned medium formulation differentiated into round 
shape cells that tested positive for GFAP. The cells were predicted to be neuroepithelial cells 
to radial glial cells with a radial morphology and glial characteristics [30]. Indeed, radial 
glial cells have cellular cells and molecular characteristics of astroglia, and also express the 
astrocyte-specific glutamate transporter GLAST, S100β, glutamine synthase (GS), vimentin, 
and tenascin-C (TN-C), and in certain species, GFAP. Nevertheless, further analysis using 
more specific markers will be needed.

On the seventh day after adding the conditioned medium, the cells developed into neuron-
like cells. Neu-N staining was performed to confirm the morphological appearance; the cells 
were positive for the Neu-N marker. Based on the results, the conditioned medium might 
contain proteins secreted from E17 rat brain cells that promoted the differentiation of the 
primary colony of mice blastocysts into neuronal cells.
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Tjalsma et al. [31] introduced the secretome terminology, which is defined as biomolecules 
secreted by the cells, tissue, or organisms through various secretory mechanisms. The 
biomolecules consisted of growth factors, cytokines, adhesion molecules, hormones, 
neurotransmitters, and proteases that reflected the function of the cells [32]. In the 
cell culture, the secretomes were secreted to the medium, which is called conditioned 
medium. The most common source of conditioned medium is stem cells. Secretome from 
mesenchymal stem cells can increase the proliferation and differentiation from progenitor 
neurons in the brain regions [33]. Ribeiro et al. [34] reported that conditioned medium 
from adipose-derived stem cells induced neuritogenesis mediated by nerve growth factor 
(NGF) stimulation. Proliferation and differentiation involve growth factors secreted by cells, 
such as brain-derived neurotrophic factor (BDNF), NGF, vascular endothelial growth factor 
(VEGF), fibroblast growth factor 2 (FGF-2), and secretory vesicles that triggered neuronal 
differentiation in vitro and in vivo [35].

In addition to stem cells, it was also reported that other cells could be used to produce 
conditioned medium. The addition of conditioned medium from microglial cells could 
increase neuroblast production in the subventricular zone [36,37]. Srivastava et al. [38] 
reported that conditioned medium from PC-12 cells induced the neuronal differentiation 
of mesenchymal stem cells using a 50% conditioned medium concentration. Their results 
became the reason for the concentration determination of conditioned medium (neurobasal 
medium: conditioned medium (1:1) (v/v)).

Conditioned medium from different species, in this case, E17 rat brain cells, induced and 
promoted the differentiation of the primary colony from mice blastocyst into neuron-
like cells. The differentiation process began with the initial induction to form embryoid 
bodies-like structures using a retinoic acid supplement, followed by the development 
of neuroepithelial to radial glial cells, then by neurite growth mediated by the addition 
of the conditioned medium. Staining using Neu-N marker showed positive results, but 
confirmation as to whether the cells are functional requires further characterization. Yang 
et al. [39] reported that definitive neuronal differentiation is determined by the neuronal 
morphology, expression of neuronal markers, polarization and action-potential of the cells, 
membrane stability, and functional receptor to neurotransmitter as well as the pre and post 
synapsis examination. This initial study, showed that conditioned medium from E17 rat brain 
cells has potency in neuronal differentiation of primary colonies from mice blastocysts in an 
inter-species manner.

Galvão et al. [40] reported that a single exogenous neurotrophic factor, which is the brain-
derived neurotrophic factor that is given intravenously, could not increase neurogenesis in 
the subventricular zone and instead might decrease. On the other hand, the proliferation 
and neurogenesis of the cells in that zone responded well to the stimulation of combined 
extracellular factors, such as EGF, FGF2, PDGF, BMPs, noggin, prolactin, and erythropoietin 
[40-43]. The conditioned medium used in this study contained various proteins secreted 
from the cells that mediated the differentiation process because of its multiple growth factors 
and other secreted proteins [11].

The results showed that the conditioned medium from rat brain cells could differentiate the 
primary colonies of mice blastocysts. It showed that an interspecies approach might be used 
in further research or veterinary practices. On the other hand, rats and mice are both rodents 
with a close genetic distance. The genetic distance is closely related to the high similarity of 
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the neurotrophic factors secreted by the cells. For example, the rodents have BDNF genes 
that consist of nine exons with eight non-coding exons and single coding (exon IX). Nair and 
Wong-Riley [44] reported a high similarity between the BDNF genes of the rats and mice, 
especially on binding site nuclear respiratory factor 2 (NRF-2), which control the expression 
of the energy mediator metabolism (cytochrome oxidase) and neuronal activity. The study, 
which used the inter-species concept from longer genetic distances, might be conducted 
in a more specific and in-depth study. Nevertheless, these results are expected to open 
opportunities to substitute defined growth factors and strengthen the paracrine hypothesis 
in inter-species differentiation that may be a new direction for treatment in cell-based 
therapies in veterinary practice.
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