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Abstract: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are first-line
drugs for lung cancers with activating EGFR mutations. Although first- and second-generation
EGFR-TKIs were standard first-line treatments, acquired resistance (AR) to these drugs is almost
inevitable. Cell line models have been widely used to explore the molecular mechanisms of AR to
first- and second-generation EGFR-TKIs. Many research groups, including ours, have established AR
cell lines that harbor the EGFR T790M secondary mutation, MET gene amplification, or epithelial–
mesenchymal transition (EMT) features, which are all found in clinical specimens obtained from
TKI-refractory lesions. Currently, many oncologists prescribe osimertinib, a third-generation EGFR-
TKI that can overcome T790M-mediated resistance, as a first-line TKI. Although few clinical data
are available about AR mechanisms that arise when osimertinib is used as a first-line therapy, many
research groups have established cell lines with AR to osimertinib and have reported on their
AR mechanisms. In this review, we summarize the findings on AR mechanisms against first-line
osimertinib obtained from analyses of cell line models.

Keywords: osimertinib; acquired resistance; cell line models; EGFR mutation; non-small-cell lung
cancer; bypass pathway; epithelial to mesenchymal transition (EMT)

1. Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide. Intensive
molecular analyses of lung cancers, especially in lung adenocarcinomas, have identified
several mutually exclusive aberrations that occur in proto-oncogenes. Subsequently, clinical
trials have shown that orally available kinase inhibitors are highly active against tumors
that harbor these driver gene mutations. Therefore, based on the results of many clinical
trials, current guidelines recommend the first-line use of kinase inhibitors when treating
unresectable lung cancers with mutations in epidermal growth factor receptor (EGFR),
anaplastic lymphoma kinase (ALK), ROS1, BRAF, neurotrophic receptor tyrosine kinase
1/2/3 (NTRK1/2/3), or MET [1–6].

EGFR mutations are the most common molecular aberration found in lung cancers.
They are found in ~50% of lung cancers in East Asians and ~15% of those in Caucasians [7].
The standard of care for lung cancers with EGFR mutations is EGFR tyrosine kinase
inhibitor (TKI) monotherapies. The so-called first-generation EGFR-TKIs (gefitinib and
erlotinib) and a second-generation EGFR-TKI (afatinib) were used as first-line EGFR-TKIs
until the approval of a third-generation EGFR-TKI (osimertinib) for first-line use.

Despite the dramatic responses of lung cancers with EGFR mutations to EGFR-TKIs,
the emergence of acquired resistance (AR) is almost inevitable [8]. To understand and to
overcome AR to EGFR-TKIs, researchers have explored resistance mechanisms by analyz-
ing tumor specimens obtained from patients who developed AR to an EGFR-TKI [9–11] or
by analyzing cell lines that acquired resistance to an EGFR-TKI in vitro by chronic exposure
to the drug [10–12]. Both of these research paths have identified many AR mechanisms to
first- and second-generation EGFR-TKIs, including T790M EGFR secondary mutation, as
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the most common mechanism, followed by MET gene amplification, ERBB2 gene amplifi-
cation, small-cell lung cancer (SCLC) transformation, and the acquisition of epithelial to
mesenchymal transition (EMT) features [13].

Osimertinib is a third-generation EGFR-TKI that was designed to overcome T790M-
mediated resistance while sparing wild-type EGFR [14]. Osimertinib was originally ap-
proved as a second-line EGFR-TKI for patients with lung cancer with EGFR mutations that
acquired resistance to first or second-generation EGFR-TKIs through the T790M secondary
mutation. However, the FLAURA trial showed that first-line osimertinib is superior to
first-generation EGFR-TKIs in both progression-free and overall survivals [15]. Currently,
many oncologists use osimertinib as the first-line EGFR-TKI.

However, developing resistance to first-line osimertinib is also inevitable. In this
review, we summarize published findings regarding AR mechanisms to first-line osimer-
tinib, with a particular focus on resistance mechanisms that were identified using cell
line models.

2. Identifying Mechanisms of Resistance to EGFR-TKIs through Cell Line Models

Cell line models are widely used in lung cancer research to evaluate drug resistance
mechanisms [16–21]. Engelman et al. were the first who successfully identified a novel AR
mechanism against EGFR-TKI—MET gene amplification—by using a cell line model in
2007. They established a gefitinib-resistant cell line model with MET gene amplification by
exposing a gefitinib-sensitive lung cancer cell line (HCC827) with an activating EGFR mu-
tation (exon 19 E746_A750 del) to increasing concentrations of gefitinib. More importantly,
they also used clinical specimens to show that MET gene amplification was detected in 4 of
18 (22%) of the lung cancer specimens that had developed AR to gefitinib or erlotinib [10].
The authors also showed that EGFR-TKI resistance mediated by MET gene amplification
can be overcome by the combination of a MET-TKI plus gefitinib.

The EGFR T790M secondary mutation is the most common mechanism of AR to
first- or second-generation EGFR-TKIs found in clinical specimens [22]. PC9 cells (exon
19 E746_A750 del) are a lung cancer cell line that often acquires resistance to EGFR-TKIs
through T790M secondary mutation [22]. Hata et al. reported that PC9 cells contain a
pre-existing minor subclone with the T790M mutation. The T790M secondary mutation
was also induced in single-cell PC9 clones that were established to eliminate the pre-
existing minor clone with a T790M mutation [23]. Furthermore, T790M-mediated AR to
first-generation EGFR-TKIs has been reported in other cell lines, such as HCC4006 (exon 19
del L747_A750 ins P) [24] and HCC827 cells [11], which reflects the very high frequency of
this resistance mechanism.

As another AR mechanism against first-generation EGFR-TKIs, in 2011, we established
and reported an AR cell line model derived from HCC4006 cells with EMT features [12].
EMT has also been reported as an AR mechanism against EGFR-TKIs in clinical speci-
mens [25,26]. Although ERBB2 gene amplification and SCLC transformation have been
reported as AR mechanisms against EGFR-TKIs in clinical settings, as far as we know,
no cell line model has been developed with either ERBB2 gene amplification or SCLC
transformation by using chronic exposure to EGFR-TKIs. Many groups have reported
potential AR mechanisms against first- or second-generation EGFR-TKIs using cell line
models, such as activating β-catenin [27] or the insulin-like growth factor receptor (IGF-
1R) [28–31]. However, the roles of these molecules in AR against EGFR-TKIs in clinical
settings are unclear.

3. Cell Line Models Used to Analyze Resistance Mechanisms to First-Line Osimertinib
3.1. Search Criteria for Published Studies

To identify published articles that analyzed AR mechanisms against first-line osimer-
tinib using cell line models, we systematically searched PubMed for relevant studies as of
December 1, 2020. Our search criteria included the following terms: “osimertinib,” “resis-
tance,” “lung cancer,” and “cell line” or “cell lines.” We also manually scanned the reference
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lists of selected articles for additional eligible publications. We finally identified 29 relevant
papers [32–60]. We excluded 2 of these papers [47,49], as they used osimertinib-resistant
cell lines that had been established in other studies included in our survey.

In the 27 remaining studies, 17 AR cell lines were established from PC9 cells, 16
from H1975 cells (L858R plus T790M, a cell line model with primary resistance to first- or
second-generation EGFR-TKIs), 10 from HCC827 cells, and 2 from HCC4006 cells (Figure
1). Twenty-five studies used chronic exposure to osimertinib at increasing concentrations,
one study [57] used chronic exposure to osimertinib at a consistent concentration, and
one study [52] used two different exposures (increasing concentration and a consistent
concentration). We classified the AR mechanisms into five categories: (a) aberration of
EGFR itself, (b) activation of bypass signaling, (c) suppression of apoptosis, (d) EMT, and
(e) other mechanisms.
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Figure 1. Mechanisms of acquired resistance to first-line osimertinib that were identified in cell line models [32–46,48,50–60].
This graph is color-coded by cell line models and mechanisms of resistance to first-line osimertinib. EGFR, epidermal
growth factor receptor; AXL, AXL receptor tyrosine kinase; ERBB3, human epidermal growth factor receptor-3; IGF1R,
insulin-like growth factor-1 receptor; TGF, transforming growth factor; ACK1, activated Cdc42-associated kinase-1; CDK4/6,
cyclin-dependent kinase; BCL-2, B-cell lymphoma-2; YAP, yes-associated protein; ANKRD1, ankyrin repeat domain-1;
IRE1α, inositol-requiring enzyme-1α.
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3.2. Mechanisms of Resistance to First-Line Osimertinib That Were Identified in Cell Line Models
3.2.1. Aberration of EGFR Itself—On-Target Resistance Mechanism

As described above, the EGFR T790M secondary mutation is the most common
AR mechanism against first- and second-generation EGFR-TKIs, and many TKI-resistant
cell line models acquired this secondary mutation. Some EGFR secondary mutations
(C797X: 7%, L718Q + C797S: 1%, L718Q + ex20ins: 1%, S768I: 1%) have been reported
as AR mechanisms against first-line osimertinib in clinical settings [61]. However, we
could not find a cell line model with AR against first-line osimertinib based on an EGFR
secondary mutation.

3.2.2. Activation of Bypass Signaling

The activation of other receptor tyrosine kinases is a common AR mechanism against
EGFR-TKIs. Reportedly, in vitro analyses have implicated several receptor tyrosine kinases
in AR mechanisms against first-line osimertinib. These receptor tyrosine kinases are able
to activate downstream pathways related to cell proliferation and survival, instead of the
inhibited EGFR. Molecules and pathways that may have roles in AR to first-line osimertinib
are summarized in Figure 2.
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MET Gene Amplification

Similar to the AR mechanisms against first- or second-generation EGFR-TKIs [10,11],
MET gene amplification is reported to be a resistance mechanism against first-line osimer-
tinib in studies that used HCC827 cells [33]. This is reasonable because HCC827 cells have a
pre-existing minor clone with MET gene amplification [62], and this cell line has repeatedly
acquired resistance to several EGFR-TKIs through MET gene amplification [10,11,22].

In analyses of clinical specimens, MET gene amplification is a common AR mechanism
against first-line osimertinib. For example, AR mechanisms were explored using circulating
tumor DNA analysis in patients who were enrolled in the phase-III FLAURA study, which
compared the efficacy of first-line osimertinib to first-generation EGFR-TKIs (gefitinib or
erlotinib). In this study, MET gene amplification was reportedly the most common AR
mechanism (n = 14/91; 15%) in the osimertinib arm [61]. Another study reported MET
gene amplification as the AR mechanism against first-line osimertinib in 66% (n = 6/9)
of their patients [63]. Currently, several clinical trials that co-target MET are ongoing for
EGFR mutated non-small cell lung cancer (NSCLC) patients who acquired resistance to
osimertinib; these include savolitinib plus osimertinib (SAVANNAH) or tepotinib plus
osimertinib (INSIGHT 2).

AXL Activation

Increased AXL expression was reported by independent research groups as a resis-
tance mechanism against first-line osimertinib using cell line models. AXL is a receptor
tyrosine kinase that binds to a ligand (Gas6) and potentiates survival signaling by activating
the PI3K–Akt and RAS–RAF–MEK–ERK pathways [64]. Originally, AR mediated by AXL
was reported in HCC827 cells that acquired resistance to the first-generation EGFR-TKI,
erlotinib [65]. As a resistance mechanism against first-line osimertinib, cells that acquired
resistance through the activation of AXL and MET were established from HCC827 cells;
a combination of an AXL/MET dual inhibitor (CB469) plus osimertinib could overcome
the resistance [52]. Additionally, another group reported establishing acquired resistant
PC9, H1975, and HCC4006 cell lines with AXL activation. The authors also explored the
mechanism of AXL activation in osimertinib-resistant cells; mechanically, STC2 enhanced
the AXL promoter activity by increasing the phosphorylation of c-Jun, which is an indis-
pensable transcription factor that transactivates AXL [41]. Osimertinib-resistant cells with
AXL activation were also established from PC9, HCC827, HCC4006, and H1975 cells; these
resistant cells were sensitive to the combination of osimertinib plus cabozantinib [39].

Although AXL-mediated resistant cell lines have been repeatedly established in vitro,
to our knowledge, there are no reported clinical cases in which AXL activation devel-
oped after first-line osimertinib treatment failure. However, several studies have reported
high AXL expression in tumor specimens obtained after first or second EGFR-TKI treat-
ment failure [65–67]. Another study reported that the response rate for osimertinib is
relatively low (66.7%) in patients whose lung cancer has an EGFR mutation and a high
AXL expression (IHC score 3+) [68]. These results, together with repeated development
of osimertinib-resistant, AXL-activated cell lines, imply that AXL activation could be an
AR mechanism against first-line osimertinib. However, this should be confirmed clinically.
In addition to the AXL inhibitors described above, many AXL inhibitors (e.g., BGB324,
TP-0903, ONO-7475, or DS-1205b) have been investigated in preclinical studies; therefore,
we anticipate the clinical application of these agents in the near future.

ERBB3 Activation

ERBB3 is one of four members of the human ERBB family. ERBB3 lacks intrinsic
tyrosine kinase activity but contains six YXXM-consensus binding sites for the SH2 domains
of the p85 regulatory subunit of PI3K [69]. It therefore potentiates survival by activating
PI3K/Akt signaling [70]. Yonesaka et al. reported the upregulation of ERBB3 in PC9 cells as
a mechanism of AR to osimertinib. The authors also reported that an anti-HER3 antibody
drug (U3-1402) might serve as a novel therapy that can overcome AR mediated by ERBB3
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activation [45]. A clinical trial of U3-1402 plus osimertinib for EGFR mutated NSCLC
patients who acquired resistance to osimertinib has just been posted (NCT04676477). So
far, we have found no clinical cases with ERBB3 activation after first-line osimertinib
treatment failure.

IGF-1R Activation

IGF-1R also potentiates survival by activating PI3K–Akt signaling and RAS–RAF–
MEK–ERK signaling [71]. The role of IGF-1R as an AR mechanism against first- or second-
generation EGFR-TKIs has been reported previously [29–31]. Two independent research
groups, using H1975 cells, both reported that IGF-1R activation is an AR mechanism
against osimertinib, and that combining osimertinib with an IGF-1R inhibitor (linsitinib)
can overcome AR to osimertinib through IGF-1R activation [51,57]. Among clinical cases,
Manabe et al. reported that 4 of 6 (66.7%) patients eventually showed elevated IGF2 after
first-line osimertinib treatment failure [51].

ERK or AKT Pathway Reactivation

The activation of signaling downstream of EGFR, including the PI3K–AKT, RAS–
RAF–MEK–ERK, and JAK–STAT pathways, is a common AR mechanism against EGFR-
TKIs. For example, we and other groups have reported that PTEN downregulation can
activate the PI3K–AKT pathway as a resistance mechanism against first-generation EGFR-
TKIs [72–74]. As AR mechanisms against first-line osimertinib, Src-mediated activation of
AKT is reported as a mechanism of resistance in H1975 cells [35]. Another group reported
that increased ACK1, which phosphorylates AKT and activates the AKT pathway [75],
is an AR mechanism against osimertinib in PC9 and HCC827 cells, and that osimertinib
plus an ACK1 inhibitor ([R]-9b) might overcome osimertinib resistance [48]. In addition,
many groups have suggested that the RAS–RAF–MEK–ERK pathway is involved in the
acquisition of resistance to first-line osimertinib in vitro.

Monica et al. established a PC9 cell line with AR to osimertinib and found that the
resistant cells had acquired a BRAF G469A mutation. The authors also found that BRAF
G469A, which is a class II mutation, maintained the constitutive activation of the ERK
pathway and that combining selumetinib or trametinib with osimertinib can overcome
resistance from the BRAF G469A mutation [43].

The BRAF mutation is a rare driver mutation in lung adenocarcinoma (1~2%) that
is mutually exclusive with EGFR mutations [1,76–78]. V600E is the most common BRAF
mutation. It is present in about half of NSCLCs with BRAF-activating mutations. The acqui-
sition of a BRAF V600E mutation has been reported after the failure of first-line osimertinib
treatment [79–82]. Additionally, BRAF activation through BRAF gene fusion has also been
reported as a resistance mechanism against osimertinib in clinical specimens [83].

The activation of RAS family members has also been reported in cell line models as
an AR mechanism against first-line osimertinib. Nukaga et al. reported that PC9 cells that
acquired resistance to osimertinib developed a KRAS G13D mutation [35]. Another group
reported that the upregulation of KRAS expression was a mechanism of AR to osimertinib
in PC9 cells [32]. In a study in which osimertinib-resistant cells with ERK reactivation
were established from PC9 cells, no specific mechanism of ERK reactivation was detected,
but the HRAS G13R mutation partially contributed to ERK reactivation in these cells [37].
Aberration in another RAS gene, NRAS, may also contribute to AR to first-line osimertinib.
Eberlein et al. reported that upregulation of NRAS RNA expression, and NRAS mutations
(NRAS E63K, NRAS G12V, NRAS G12R) are mechanisms of AR to osimertinib in PC9 cells,
and that the combination of osimertinib plus an MEK inhibitor (selumetinib) can overcome
the osimertinib resistance [32].

Many groups have reported finding KRAS mutations (G12C, G12D, G12S), BRAF mu-
tations (D594N, V600E), BRAF fusions, PIK3CA mutations (E545K, E542K, R88Q, N345K,
E418K), and PTEN loss in specimens from patients who developed AR against second-
line osimertinib [61,84–91]. Furthermore, a recent study reported that PIK3CA mutations
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(E453K, E545K, H1047R; 7%), BRAF V600E mutations (3%), and KRAS mutations (G12D/C,
A146T; 3%) were detected in specimens from patients who developed AR to first-line osimer-
tinib [61]. Therefore, ERK reactivation through several mechanisms may be an important
and common AR mechanism against both first- and second-line osimertinib therapy.

3.2.3. Suppression of Apoptotic Response

Apoptotic response is the final step when EGFR-mutated lung cancer cells are killed
by an EGFR-TKI. Therefore, dysregulation of apoptosis might be reasonably supposed as a
cause of inherent or acquired resistance to EGFR-TKIs. For example, the polymorphism of
BCL-2-like 11 (BIM), a pro-apoptotic member of the BCL2 family, is reportedly sufficient to
confer intrinsic resistance to first-generation EGFR-TKIs in lung cancers [92]. Although
we could not find a paper that described the role of BIM polymorphism in first-line
osimertinib efficacy, a recent study suggested that BIM polymorphism is correlated with
worse outcomes in patients who received osimertinib after first- or second-generation
EGFR-TKI failure due to a T790M secondary mutation [93].

As an AR mechanism against first-line osimertinib in vitro, the upregulation of MCL-1
(another anti-apoptotic protein) and downregulation of BIM was reported as the mechanism
of AR to osimertinib in experiments that used PC9 and HCC827 cells. The authors showed
that MEK inhibitors (GSK1120212 or PD-0325901) combined with osimertinib reduced
MCL-1 expression and could overcome the resistance [34]. The same group reported in a
later study that honokiol (a natural product isolated from the bark, seed cones, and leaves
of trees belonging to the genus Magnolia) plus osimertinib enhanced MCL-1 reduction by
suppressing ERK-dependent MCL-1 phosphorylation [47], and that the histone deacetylase
inhibitor (LBH589) enhanced the effects of osimertinib in the resistant cells by decreasing
levels of p-ERK and increasing BIM levels [49]. Another group reported that in experiments
using PC9 and H1975 cells, BIM downregulation was the mechanism of AR to osimertinib.
The authors showed that combining aspirin with osimertinib could overcome this resistance
by promoting BIM-dependent apoptosis [50]. In addition, significant upregulation of
the BCL-2 protein was reported in osimertinib-resistant H1975 cells, compared to their
H1975 parental cells. The authors of this study showed that adding a BCL-2 inhibitor
(ABT263 or ABT199) to osimertinib could overcome the resistance mediated by BCL-2
overexpression [56].

3.2.4. EMT

EMT is a process by which epithelial cells lose their cell polarity and cell–cell adhesion
and acquire mesenchymal phenotypes that are associated with increased migratory and
invasive properties, as well as drug resistance. We were one of the first groups to report the
involvement of EMT in the acquisition of resistance to EGFR-TKIs in 2011 [12]. Several later
studies indicated that the HCC4006 and H1975 cell lines often acquire resistance to EGFR-
TKIs through EMT [94]. The overexpression of the ankyrin repeat domain-1 (ANKRD1),
which is associated with the EMT process and anti-apoptosis, was identified in afatinib-
and osimertinib-resistant cells established from PC9 and HCC827 cells. The authors also
observed that imatinib could inhibit ANKRD1 expression, resulting in the restoration of
sensitivity to afatinib and osimertinib in EGFR-TKI-resistant cells [36]. Another group
established osimertinib-resistant cell lines from PC9 and HCC827 cells and reported that
increased TGFβ1 induces high integrin β3 expression, which in turn induces the cells to
revert to a mesenchymal phenotype. The authors also reported that combining osimertinib
with a TGFβR1 inhibitor (SB-431542) could overcome the osimertinib resistance mediated
through this pathway [40]. Other studies that reported the involvement of EMT in acquir-
ing resistance to first-line osimertinib used H1975 cells [13,46,53,54,58–60], which were
destined to develop EMT as an acquired resistance mechanism as described in our previous
study [94]. Among mechanisms of EMT induction, increased ZEB1 expression [58], or
decreased microRNA-200c in combination with increased ZEB1 expression [46] have been
reported. The latter study also reported that GSK-3 inhibitor (LY2090314) may circumvent
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EMT-associated resistance to osimertinib [46]. Other important inducers of EMT include
TGFβ2 and NF-kB signaling. An NF-kB pathway inhibitor (BAY 11-7082) reportedly caused
cell death in resistant cells with EMT features [59]. Other groups have reported the respec-
tive roles of the YAP–FOXM1 axis [54] and the Src pathway [13] as central regulators of
EMT-associated osimertinib resistance.

Several studies have reported evidence of EMT in tumor specimens obtained from
patients who developed AR to first-generation EGFR-TKIs [25,58]. We therefore expect
further reports of EMT-mediated AR to first-line osimertinib in the near future.

3.2.5. Other Mechanisms

Many studies have reported AR mechanisms against first-line osimertinib that cannot
be classified into the above four categories. We summarize these mechanisms below.

Increased inositol-requiring enzyme-1α (IRE1α) expression was reported as an AR
mechanism against osimertinib in HCC827 cell line model [38]. IRE1α affects endoplasmic
reticulum (ER)-based stress signals [95,96]. As the ER regulates protein folding, under
stress conditions, the accumulation of immature proteins provokes the ER stress response
and boosts autophagy, resulting in autophagic cell death [95]. This process is mainly
regulated via the IRE1α–JNK and PERK–eIF2α–ATF4 pathways [96]. The authors reported
that osimertinib sensitivity was restored through the knockdown of IRE1α or treatment
with an IRE1α inhibitor (STF-083010) [38]. The potential role of enhanced autophagy in
AR against first-line osimertinib has been reported by other groups that used H1975 or
PC9 models [42,53]. One study suggested that combining osimertinib with an autophagy
inhibitor (CQ) could improve osimertinib cytotoxicity [42]. Li et al. reported that autophagy
is a common mechanism in second-line osimertinib resistance in clinical specimens [42].

Codony-Servat et al. reported that the activation of multiple oncogenes (AKT, STAT3,
YAP, AXL, IGF-1R, MET) and the upregulation of BCL-2 constitute a mechanism of AR to
osimertinib in PC9 cells, and that the combination of osimertinib plus an Hsp90 inhibitor
(luminespib) can overcome osimertinib resistance mediated by multiple pathways [44].

Increased CDK4 expression and phosphorylation of Rb (the down-stream molecule of
CDK4/6) were reported in cells with AR to osimertinib established from H1975 cells. In
this resistant model, the combination of CDK4/6 inhibitor (palbociclib) plus osimertinib
overcame the resistance [55]. The CDK4- and CDK6-mono-phosphorylated Rb proteins and
the phosphorylated Rb protein partially relieved Rb-mediated suppression of the family of
E2F transcription factors [97]. These processes promote cell progression from the G1 to the
S phase [97]. Notably, CDK4/6 gene amplification was detected in 5% of clinical specimens
obtained from patients who progressed after first-line osimertinib treatment [61].

3.3. Correlation of Resistance Mechanisms Identified in Cell-Line Models and Clinical Specimens

As described above, the EGFR T790M secondary mutation [13,26,98] is the most
common AR mechanism against first- and second-generation EGFR-TKIs at ~57%. Many
studies have reported cell lines that develop resistance through T790M mutations after
chronic exposure to first- or second-generation EGFR-TKIs [23]. However, as far as we
know, no cell line has been reported to have developed AR to first-line osimertinib through
EGFR secondary mutations. This is consistent with the lower frequency (~10%) of EGFR
secondary mutations in clinical specimens obtained after first-line osimertinib failure.

That being said, many studies have reported the activation of a bypass pathway in
cell lines that acquired resistance to first-line osimertinib. Some of them, such as MET gene
amplification and KRAS/BRAF mutations, have been identified in clinical specimens.

Analyses of clinical specimens have reported higher frequency of SCLC transformation
as a resistance mechanism to osimertinib. Interestingly, however, no cell line model with
AR has shown evidence of SCLC transformation, which suggests a limitation of cell
line models.
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4. Summary

In this review, we summarized numerous mechanisms of AR to first-line osimertinib
exposure in cell line models. We described that some of the resistance mechanisms that
were found in cell line models were also identified in clinical specimens obtained from
patients who developed AR to EGFR-TKIs, including those who acquired resistance to
first-line osimertinib. Lessons from the experiments of acquired resistance mechanisms
to first- or second-generation EGFR-TKIs have suggested that cell line models are useful
tools to find novel mechanisms of resistance. Therefore, we hope that the catalog of
resistance mechanisms to first-line osimertinib identified in cell line models summarized
in this review helps researchers to identify acquired resistance mechanisms to first-line
osimertinib in clinical specimens in the near future.
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