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INTRODUCTION

Lack of efficacy, unpredicted toxicities, and unexpected ad-
verse events (AEs) may compromise otherwise potentially 
successful drug development projects. To compensate for 
the associated costs and to protect relevant investments, 
several efforts have been initiated toward the development 
of approaches that aim to detect or predict such toxicities 
as early as possible. Innovative safety characterization 

efforts are therefore fundamentally required throughout 
the whole drug development process (see Figure 1).

Although randomized controlled clinical trial results 
and their systematic reviews remain the gold standard for 
evidence-based medicine,1 recent years have seen the de-
velopment of novel analytics in pharmacovigilance stud-
ies through postmarketing data mining. One key source 
of such data is information about AEs, collected regularly 
in spontaneous reporting repositories and monitored by 
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descriptors. We argue that molecular expansion of adverse event data may provide 
a path to improving the insights gained through more traditional pharmacovigi-
lance approaches. Examples include the ability to assess statistical relevance with 
respect to underlying biomolecular mechanisms, the ability to generate plausible 
causative hypotheses and/or confirmation where possible, the ability to computa-
tionally study potential clinical trial designs and/or results, as well as the further 
provision of advanced features incorporated in innovative methods, such as ma-
chine learning. In summary, molecular data expansion provides an elegant way 
to extend mechanistic modeling, systems pharmacology, and patient-centered 
approaches for the assessment of drug safety. We anticipate that such advances 
in real-world data informatics and outcome analytics will help to better inform 
public health, via the improved ability to prospectively understand and predict 
various types of drug-induced molecular perturbations and adverse events.
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(inter-)national regulatory authorities worldwide. Major 
instances of such safety data collections include:

•	 The Sentinel Initiative of the US Food and Drug 
Administration (FDA),2,3

•	 The FDA Adverse Event Reporting System (FAERS; for-
merly AERS), maintained by the FDA,4

•	 The Vaccine Adverse Event Reporting System (VAERS), 
maintained by the FDA, co-managed by the Centers for 
Disease Control and Prevention,5

•	 The European database of suspected adverse drug re-
action reports (EudraVigilance), maintained by the 
European Medicines Agency (EMA),6 and

•	 VigiBase – the global database of individual case safety 
reports (ICSRs), maintained by the World Health 
Organization’s (WHO) Uppsala Monitoring Center 
(UMC).7

These resources contain real-world data independent 
from randomized controlled trial settings and each con-
tains information for millions of AE cases, emphasizing 
the distinctive informational contribution they deliver to 
drug safety and pharmacovigilance analytics.

Despite the value and plurality of this data, no univer-
sal proposal exists to jointly justify hypotheses of causal 
associations derived from the statistical inference and/
or assessment of signals based on such data alone.1 This 
is particularly important when considering the broader 
complexity of the regulatory drug safety environment. 
Critical assessment of current practices in drug approval 
and pharmacovigilance is a multifaceted challenge re-
quiring constant monitoring and coordinating of a mul-
titude of stakeholders and real-time content, including 
technical, scientific, regulatory, political, economic, and 
data management (sharing/access) aspects. To this end, 
frequent updates of relevant practices, standards, and 
guidelines, are published by regulatory experts, as well as 
other scientific contributions, often in collaboration with 
academic and/or industry partners.8,9

Yet, one key shift toward a more evidence-driven 
framework for drug evaluation has been combining AE 
information with additional data layers, such as chemical 
or molecular descriptors.10–13 This paradigm accommo-
dates a new theoretical standard for approaching phar-
macology and postmarketing safety signals.1 Ultimately, it 
provides an information-driven approach containing the 
evidence necessary to characterize postmarketing or clin-
ical trial observations with a plausible casual base, relying 
on a hierarchy of additional data layers (including patient 
behavior, genomic, molecular, and chemical dimensions).

In this work, we reflect on some of the innovative po-
tential presented by the molecular expansion of AE data. 
Whereas discussing the broader biomolecular context at 

large, we often refer to prime examples that are more spe-
cific. First, we briefly summarize the analytical landscape 
pertaining to the study of AEs. We then seek to identify 
key data augmentation opportunities (see Figure  1) and 
focus on the novel insights that an ensemble of molecu-
lar information may provide. We delve into these perspec-
tives from a systems pharmacology point of view and also 
highlight examples with respect to advanced technologies, 
such as machine learning (ML) and big data handling. 
Moreover, we investigate existing software or service op-
tions provided by industry or academia that may help 
understand implications underlying disease and thera-
peutics based on the computational analysis of real-time 
AE data with clinical and molecular knowledge. Finally, 
we discuss the impact of these developments on the prog-
ress of future approaches, especially with respect to the 
assessment of the safety of therapeutic interventions.

BACKGROUND

In this section, we briefly outline the key dimensions per-
taining the analysis of AEs.

Quantitative approaches and challenges

One of the most commonly used approaches to analyze AE 
data relies on disproportionality measures, which are met-
rics aiming to quantify the relative congruence of pairwise 
entity relations as based on their co-occurrence in subsets 
of AE cases.10,14,15 These methods rely somewhat on the 
premise that as the number of AE cases for an observation 
accumulates over time, there comes a point where the sig-
nal may strongly suggest causation—without, however, 
demonstrating it. Advantages of these quantitative esti-
mates of association include that they are computationally 
efficient, easy-to-understand, and frequently implement 
additional statistical testing techniques, such as χ2 and 
Fisher’s exact tests.14,16

Next to disproportionality analysis, Bayesian correla-
tion models may also be used to assess the degree of con-
gruence, with various publicly or commercially available 
software programs generating both types of scores by 
default.10,14,15,17 Other approaches that have been used 
include time-series forecasting, item-set, and association 
rule mining, as well as more sophisticated ML.10,18–20 
Which algorithm is ultimately more favorable depends 
on the task at hand,18,21,22 as the resources and types of 
questions examined may be highly variable.10,14,15,23–25 
These may include AE signal detection, AE identifica-
tion, and AE prediction, as well as challenges like drug 
(off-)target identification, drug interaction analysis, drug 
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F I G U R E  1   Innovative postmarket data mining and novel methods to analyze and detect toxicities are key to (pre-)clinical modeling. 
(a) The standard drug development process is aligned to characterization steps spanning (animal) model screening, target identification and 
validation, product formulation and development, preclinical model optimization, preclinical and clinical testing, approval and postmarket 
monitoring. (b) Advanced pharmacovigilance studies may benefit from data augmentation opportunities that consider multiple layers of 
information. ADME, absorption, distribution, metabolism, and excretion; IND, investigational new drug; NDA, new drug application; PoC, 
proof of concept

(a)

(b)
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indication prediction, drug repositioning, drug (class) 
interaction discovery, or characterization of pathological 
mechanisms. Many of these approaches have become in-
creasingly quantitative and have to deal with a number of 
limitations (see Table  1). A primary challenge has been 
data standardization and efforts to address this issue have 
used knowledge engineering strategies that help provide 
AE resources in an easily usable form.12,26–28

Toward evidence expansion

Although such efforts have helped accelerate drug safety 
characterization by enabling the systematic analysis of 
AE case studies (e.g., refs. 29–41), research frequently 
highlights the advantages that additional scientific data 
or advanced feedback from experts may provide. To this 
end, some have used Natural Language Processing (NLP) 
to mine information directly from text (such as clinical 
narratives, electronic health or medical records, health 
insurance, or billing data),10,15,17 whereas others have in-
corporated evidence coming from additional layers of ref-
erence knowledge in their data mining efforts.10,12,15,17,23

These developments have led to an evidence amalga-
mation paradigm, where safety questions are addressed in 
novel ways. Indeed, many apply well-established pharma-
cometrics and mechanistic modeling methods, whereas 
others incorporate analysis of biological networks, side ef-
fect information coming from drug labels, exploitation of 

molecular information, and other data-driven strategies to 
analyze AEs and drug interactions.11,12,42–44 Example data 
augmentation layers may include:

•	 Drug-centric information (such as therapeutic class, 
chemical, side effect, and target or other drug interac-
tion descriptions),

•	 Molecular knowledge (such as target- and metabolizing-
partners, binding affinities, protein interactions, expres-
sion, pathways, pathogenic mechanisms, and genomic 
mutations) and/or

•	 Ontologies/hierarchies describing phenotypic manifes-
tation relationships.

Importantly, many of the above implications also apply 
to pharmacovigilance/safety analysis of other therapeutic 
modalities, such as vaccines, where challenges are largely 
similar.45,46

The data augmentation route

Incorporation of reference data in drug safety analytics aims 
largely to provide additional support to understanding the 
(biological) plausibility of identified (AE) signals.10,15,17,23 
Reference information sources may often contain organ-
ized data (e.g., regarding chemistry and [patho-]physiol-
ogy) coming from multiple resources, such as DrugBank,47 
PubChem,48 Off-sides or Two-sides,42 SIDER,49 STRING,50 

T A B L E  1   Sample challenges and limitations hindering the analysis and management of adverse event data

AE content Knowledge engineering Data mining

Lack of specific severity grading for described 
conditions (indications, reactions).

Scalability (and increasing data sizes) Multi-pharmacy (co-medications)

Disambiguation of symptoms (e.g., disease vs. 
reactions)

Lack of universal benchmark data Comorbidities

Polypharmacy and drug interference Visualization Statistical normalization / control 
background

Detail regarding patient/event history (+) Management of dictionaries and 
ontologies

Semantics and hierarchies

Missing, incorrect, or vague information Data standardization Pattern identification / synergistic effects

Handling of duplicates and/or multiple reports 
per case (e.g., follow-ups)

Data safety, ownership and transparency Signal does not provide proof of causation

Reporting bias (over-/under-reporting) Disambiguation and synchronization of 
reports between systems

Unbalanced data sets

Data entry and coding Different and changing reporting 
requirements between systems

Definition of (risk) populations / cohorts

Difficulty in verifying AE occurrence Inconsistent database structure Observation of signals over time

Not all AEs are reported Biomedical plausibility Biomedical plausibility

Note: (+)Detailed patient/event history may include treatment duration, cycles, timing, dosage or previous therapies and co-morbidities, de-/re-challenge 
information, demographics, disease stage, laboratory, and clinical parameters.
Abbreviation: AE, adverse event.
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UniProt,51 Reactome,52 KEGG,53 BindingDB,54 Open 
Targets,55 ATC,56 MedDRA,57 and so on.

Other used resources may be only partially structured 
or not at all. Examples of such data sets include biomed-
ical literature, patent contents, social media and health 
web-forums, clinical trials, as well as real-world outcome 
data from electronic health or medical records, federal/
national repositories, patient event narratives, or collec-
tions of hospital records.10,15,17,23,58 Evidence derived from 
such data-rich sources provides complementary strategies 
to approaching key safety tasks, like confirming or reject-
ing AE knowledge, discovering or evaluating AE-related 
hypotheses, and ranking or prioritizing AEs.

Notwithstanding, data extraction from semi-structured 
or unstructured content may be complicated, for exam-
ple, from the use of nonstandardized drug names,59 and 
may require the application of advanced text-mining 
techniques (such as NLP). Moreover, data augmentation 
practices may have to cope with multiple demanding 
knowledge engineering challenges (see Table 1).

Finally, novel resources used in retrospective AE an-
alytics may also include genomics data, such as patient-
specific or genomewide association study (GWAS) data, 
thus emphasizing the potential for pharmacogenetics and 
pharmacogenomics capabilities in pharmacovigilance 
studies.10,15,43,60

MOLECULAR EXPANSION

As already mentioned, analysis of AEs alone suffers 
mainly from shortage of insight regarding potential mo-
lecular etiologies underlying observed signals. Yet, recent 
pharmacology, chemo-, and bio-informatics advances 
have allowed information about biological systems to 
provide mechanism-based context in drug safety assess-
ment and prediction studies.10,61 These systems are often 
represented in the form of biological networks describing 
the relationships between interacting components, such 
as genes, proteins or drugs—an approach commonly uti-
lized in biology and medicine to provide larger mecha-
nistic contexts as well as emergent associations.10,62 For 
example, this approach has been used for the systematic 
characterization of proteins affected by drugs63 (e.g., using 
drug similarity13 or protein interaction network analy-
sis64), an important step in exploring the drug mode of ac-
tion hypotheses. Indeed, the systems approach has proven 
useful in pharmacology too, often complementing avail-
able experimental data and knowledge about very specific 
interactions, or lack thereof. Combined with integrative 
data augmentation, systems pharmacology approaches 
have been applied to achieve key goals, such as predicting 
AEs or understanding underlying mechanisms.10,15,65

Integrative molecular interrogation of 
adverse events

Molecular Analysis of Side Effects (MASE)12 is a proto-
typic example of these integrative systems approaches that 
allows enrichment of existing AE information with drug 
target knowledge and additional levels of evidence.10,15 
Perhaps its most characteristic elements are that it pro-
vides a standardized approach to AE exploration and a 
strategy to characterize target-phenotype associations di-
rectly from their occurrence in real-world data, as opposed 
to using indirect drug-centric properties or observations 
(e.g., refs. 26, 49). This type of analysis has been termed 
“Target Adverse Event” (TAE) analysis to distinguish it 
from the current drug-focused standards of pharmacovigi-
lance. Importantly, it permits phenotypes to be analyzed 
and compared at the level of any molecular perturba-
tion or specific clinical and molecular feature (including 
drugs, drug-classes, targets, transporters, or enzymes) and 
enables the user to efficiently generate hypotheses about 
cause-effect relationships, or lack thereof.12

Its ability to systematically facilitate retrospective com-
putational AE analytics (e.g., refs. 29, 31, 32, 34–36) comes 
together with other project-specific data standardization 
and augmentation efforts (e.g., refs. 30, 33, 37–39, 66). 
However, the distinct ability to provide a biomolecular 
rationale to detected safety signals is critical to pharma-
covigilance and regulatory scientists use MASE in this 
process (e.g., at the FDA12,17,67,68).

Inspired by the plethora of utilities enabled by the sys-
tematic molecular interrogation of AEs, we highlight the 
next few important perspectives derived from this context 
(see Figure 2):

•	 Systems pharmacology: In a systems pharmacology 
view of drug action, drugs interact with multiple primary 
and secondary targets and pathways, existing within a 
complex network and mediate therapeutic response via 
intended “by design” interactions (“on-targets”) or via 
unintended ones (“off-targets”).10 Accordingly, the sys-
tems pharmacology approach will combine pharmaco-
kinetic, biochemical, and systems biology information 
into a unifying model that comprises of parameters in-
terlinked by connecting the underlying (patho-)physiol-
ogy and drug mode of action knowledge examined each 
time.69 The MASE strategy is therefore an essential par-
adigm toward enabling the study of AEs via the prism of 
systems pharmacology, consistent with the position that 
drugs interact with each other and with multiple targets, 
as opposed to the simpler “one-drug, one-target” ap-
proach. Moreover, it can facilitate a “bidirectional” ap-
proach to systems pharmacology in which the “reverse” 
course to identify mechanistic differences, to explain 
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AE manifestations, or to understand therapeutic effects 
is driven by insights derived from the signals and scores 
pertaining to annotated molecular components, such as 
TAEs (see Figure 2). Finally, in addition to identifying 
and explaining idiosyncratic AEs, innovative tools may 
in the future include advanced models and additional 
parameters that will help reliably address more complex 
challenges, such as genetic, lifestyle, and comorbidity-
induced AE susceptibility.

•	 Hypothesis generation/validation: One important 
feature underlying molecular integration approaches 
is the resolution provided in terms of different target, 
reaction, or drug classes. This aspect influences the de-
gree to which target-specific phenotype associations can 
be systematically screened and, in turn, the accuracy of 
hypothesis generation (or confirmation) strategies that 
can be associated with such phenotypic profiling (see 
Figure 2). Although statistical characterization derived 
directly from AEs may be more definitive,12 the MASE 
approach enables a new strategy based on the induction 
of target-specific perturbation using drug-treatments 
(i.e., TAEs). Two examples toward the prospective 
prediction of side effects in this way rely on compara-
tive drug-safety analysis12—one approach argues that 

comparison of targets and their agonism/antagonism 
modulation-states may reveal in many cases dissimilar 
phenotypic consequences, whereas the other argues that 
drug side effect dissimilarity could be attributed to dif-
ferences in their molecular landscape (i.e., perturbation 
of targets specific to each drug may affect different mo-
lecular systems). Importantly, such perturbation studies 
are key to understanding not only side effects but also 
human disease, because side effects can for all intents 
and purposes be seen as drug-induced disease states.

•	 Clinical trials: An overarching conduit to this direc-
tion is that the large-scale phenotypic profiling of mo-
lecular targets is derived directly from clinical data of 
human patients.12 One important aspect of this feature 
is that it provides a promising approach in developing 
quickly testable molecular hypotheses regarding the 
potential clinical utility of a drug (see Figure  2). One 
MASE analysis showed, for example, that inhibition 
of beta-adrenergic receptors might improve mortality 
of patients with skin cancer,1270—in this instance, the 
AE study was conducted by measuring the disposition 
of death as outcome in two treatment groups of a spe-
cific cohort. In all, this can be seen as an example that 
represents a virtual trial, enabled by the side-by-side 

F I G U R E  2   Safety reports contain clinical outcomes data for millions of real-world patient treatments with details about drug-induced 
phenotypes (i.e., side effects) that can be linked to chemical and molecular information about drugs and their targets. Similar to model-
based approaches, perturbation studies are key to identifying the molecular underpinnings of human disease, via the process of comparing 
individuals and/or cohort-populations for differences at the molecular-level. Therefore, linking the molecular functions targeted by 
therapeutics to resultant side-effect phenotypes—and this for millions of patients—should enable the computational dissection of the 
molecular mechanisms underlying these effects. This approach for the molecular analysis of side effects (MASE) enables production of 
datasets valuable to the molecular characterization of human disease, directly from real-world treatment outcomes/safety data. This strategy 
provides a standardized approach in a variety of contexts; prototype results can be accessed via Molecular Health’s Effect86 platform. Figure 
adapted from Soldatos et al12



546  |      SOLDATOS et al.

investigation of clinical features associated with any 
two (or more) entities, as derived from the molecular 
profiling of individual patient prescriptions. Providing 
additional support in clinical trial model design or study 
result prediction, molecular profiling of phenotypes 
permits the systematic analysis and comparison of TAE 
profiles within predefined cohorts of patients.

•	 Machine learning: In a recent study, TAE profiles 
were used to predict AEs at the time of drug ap-
proval.71 In this approach, TAE profiles generated by 
MH EFFECT (a technology encompassing the MASE 
methodology), were used to predict postmarket label 
changes by incorporating molecular features into ML. 
Integration of such domain-specific knowledge may 
provide further features into advanced ML models 
studying AEs by encoding chemo- and bio-descriptors 
about the physical, chemical, and biological charac-
teristics of the involved components of interest (e.g., 
drugs).72 Analyzing large and complex datasets and 
the ability to discover novel and hidden but precious 
knowledge in data are key advantages to using ML 
techniques and may thus be applied to a wide range 
of predictive safety settings.15,23,72,73 Notably, in the 
context of the coronavirus disease 2019 (COVID-19) 
pandemic, the FDA issued a landmark emergency use 
authorization to an enhanced artificial intelligence 
(AI)-powered tool to predict AEs.74–79

•	 Patient centered focus: Rather than using molecular 
interrogation of AEs to assess biological plausibility of 
detected signals, the biomolecular systems level represen-
tation can be useful also in the analysis of individual AE 
case studies, helping to predict or explain a patient’s (ob-
served) response.11 Such personalized AE prediction and 
therapeutic safety assessment tools may permit deeper un-
derstanding of AE circumstances, especially with respect 
to drug interaction and polypharmacy considerations.11

Selected case studies that demonstrate examples of ap-
proaches addressing the above perspectives are listed in 
Table 2. The listed summaries in Table 2 discuss how each 
study benefited from the integrative methodology and 
what data were used to augment AE reports in each case. 
Specifically, the list provides information that reflects on 
each study’s broader goals and results, and on the novel in-
sight potential facilitated by the respective type of approach 
used for the examination of AEs: analyses that were per-
formed per study, novel conclusions that were derived with 
respect to the AE focus category highlighted every time, as 
well as other implications deemed important to emphasize 
in the context of handling or organizing AEs.

It can be argued that most recent clinical advancements 
have emerged from analysis of patient-derived molecular 
data as opposed to model organism-based observations.12 

Integrating AE-data with molecular knowledge at the pa-
tient level expedites the identification of safety problems 
via a prospective approach,11,12 but may in addition pro-
vide a rational data stream to collecting a broad array of 
critical system-level insight required for the realization 
of more comprehensive, evidence-based decision support 
for personalized and precision medicine.62,80 Altogether, 
prospective initiatives toward feed-forward mechanisms 
integrating patient-specific data on gene, protein, and 
other interactions with clinical knowledge of disease and 
pharmacology could provide an extended context to net-
work medicine toward understanding AEs and treating 
illnesses, toward identifying novel disease pathways, and 
predicting patient drug responses.62

Integrative software platforms

Given its importance, we explored the degree to which 
software solutions exist that adopt the molecular data 
integrative approach for AEs. Although recent advances 
have highlighted a number of quantitative models or 
approaches to understand and predict various types of 
drug-induced AEs, a key challenge is the large amount of 
data involved—especially when it comes to incorporating 
translational, chemical, and molecular dimensions in an 
integrated software platform. In addition, the variety of 
applications that this approach is useful for makes it dif-
ficult to make a single defined point of access for one only 
service/analysis scenario. It is, therefore, not straight-
forward to directly compare AE analytic platforms and 
Table  3 provides an overview of some parameters that 
may be useful to assess the suitability of such complex 
software tools and solutions.

A comparison between AE technologies from the pub-
lic and private domains shows high variability and diverse 
use-case scenarios—to summarize main aspects and key 
software features, we selected representatives from each 
sector, which we split into three application classes:

•	 Group A: Regulatory portals, enabling visual explora-
tion of original AE data—these include AE browsers, 
such as the FAERS Public Dashboard,81 or the VAERS82 
and EudraVigilance6 gateways.

•	 Group B: Public data projects, tools, and software pack-
ages for mining or analyzing AEs—these include the 
OpenVigil suit,83,84 the ezFAERS,27 AERSMine,28,85 and 
AEOLUS26 repositories.

•	 Group C: (Semi-)commercial solutions offered 
by companies, such as Molecular Health’s (MH) 
Effect,86 Evidex from Advera Health,87 OFF-X from 
Clarivate’s BioInfoGate,88 FDAble,89 or Elsevier’s 
PharmaPendium.90
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T A B L E  2   Selected studies that demonstrate examples or discuss ways to gain potentially new insights from the interrogation of AEs at 
additional data layers

Description of case study (+) (Summary of example with respect to key AE extension perspectives)

Title citation; year Src activation by β-adrenoreceptors is a key switch for tumor metastasis70; 2013

Focus category Virtual perturbation studies

Study’s domain Oncology

Purpose/emphasis To examine the potential clinical impact of model (e.g., experimental, laboratory) findings.

Method/approach Retrospective computational mining; Statistical analysis Bayesian inference

Molecular data Indirect; use of ATC classification hierarchy to automatically identify beta-blockers/AEs.

Hypothesis/goal Molecular hypothesis validation using outcome data from human AE observations.

Implications Main points: Construction of virtual AE cohorts with specific patient characteristics; Clinical setting 
based on drug MoA parameters; AE based evidence for hypothesis confirmation.

Result/conclusion: Beta-blocker usage associates with reduced cancer-related mortality.

Title citation; year Association Between Serotonin Syndrome and Second-Generation Antipsychotics via 
Pharmacological Target-Adverse Event Analysis 32; 2018

Focus category Systems pharmacology

Study’s domain Serotonin syndrome (SS)

Purpose/emphasis Insight into the molecular mechanisms of SS

Method/approach Systems pharmacology; Data mining Disproportionality (PRR)

Molecular data Drug interactors (T), Pathways (P)

Hypothesis/goal Molecular characterization of AEs can help determine relationship between SS and SGAs.

Implications Main points: Comparison of targets annotated in AE groups; Hypotheses generated based on signals 
of targets perturbed in the AEs of each defined cohort (TAE); Use of information about drug-
target pharmacological action (induction/inhibition) to define cohorts; AE grouping based on 
drug categorization (SGAs, SSRIs); Inquiry for confounding or synergistic effects.

Result/conclusion: Identification of 5-HT1A agonism and 5-HT2A antagonism as potential 
mechanism of SGA-associated SS.

Title citation; year Adverse Event Circumstances and the Case of Drug Interactions11; 2019

Focus category Patient centered focus

Study’s domain Circumstances of AEs

Purpose/emphasis Preventable AEs, DDIs, personalized therapeutic optimization

Method/approach Systems level analysis; Graph representation Network co−occurrence

Molecular data Drug interactors (T), Pathways (P), DDIs (D)

Hypothesis/goal Molecular level interrogation of therapeutic setting can help optimize use of co-medications.

Implications Main points: Individual patient-specific clinical case models; Detection of avoidable DDIs; 
Determination of molecular level (TAE) interactions (i.e., via targets, enzymes, or pathway load).

Result/conclusion: Many AEs may be explicable by avoidable scenarios and/or attributed to 
previously known factors.

Title citation; year Target Adverse Event Profiles for Predictive Safety in the Postmarket Setting71; 2021

Focus category Machine learning

Study’s domain Prediction of unlabeled adverse effects at the time of drug approval

Purpose/emphasis Prediction of post-market label changes using molecular features

Method/approach Ensemble of classification methods; Data mining Disproportionality (PRR)

Molecular data Drug interactors (T)

Hypothesis/goal Parameters from the molecular layer may provide important information to predictive safety.

(Continues)
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From the above groups, we exclude platforms, such as 
Oracle’s Argus91 or Emperica92 that are tailored to create a 
wide set of automatically generated analytical outputs and 
reusable tables and graphs. In general, most of groups A 
and C solutions utilize a dashboard approach to visualiz-
ing data into informative tables and/or matrices, whereas 
group B projects tend to develop their own graphical user 
interfaces (GUIs). Table 4 summarizes key aspects that may 
affect typical GUI or web-service provision characteristics 
when it comes to displaying or organizing AE information.

Although group A usually relies on raw content without 
extensive statistical support, openFDA93 provides indexing 
and formatting services to FDA data and some public front 
end examples provide enhanced access to FAERS data,94 in-
cluding disproportionality scores and graphic options. On 
the contrary, groups B and C tend to apply data transfor-
mation processes to strengthen the integrity of the available 
information, as well as the capability to provide ontological 
aggregations and high-dimensional cohort-based analyses.

However, challenges in available compute capacities 
may often limit AE mining resources. For example, group 
B options may come with less intuitive and slower GUIs, 
and may apply techniques to reduce the analytical load 
(see also Table 4). Finally, group C incorporates additional 
data sets that enable extended AE analytics and visual-
ization. These solutions may involve big data and cloud-
native technologies, may come as “software as a service,” 
may provide integration options to external infrastruc-
tures, or may be customizable to customer projects.

Importantly, group C enables the molecular analytics 
paradigm, each from a different standpoint:

•	 MH Effect86 is a computational technology for the mo-
lecular analysis of real-world data,

•	 Evidex87 is a platform for accessing, analyzing, and 
tracking drug safety issues,

•	 OFF-X88 is a portal for translational drug safety intelli-
gence, and

•	 PharmaPendium90 provides comprehensive data for 
drug safety and risk assessment.

Nevertheless, little emphasis has been paid to inte-
grating molecular data in a single platform and most of 
these options come as a constellation of confederated data 
and management solutions. In this sense, only MH Effect 
ultimately implements a pure MASE implementation, 
whereas, among the discussed group C options, only MH 
Effect, OFF-X, and Oracle solutions are routinely used by 
(or engage in research/material transfer agreement with) 
regulatory authorities.17

DISCUSSION

Augmented AE analytics provides an innovative new ap-
proach to drug safety risk assessment. This work focused 
on perspectives enabled by the integrative paradigm 
whereby molecular data expansion can be used to en-
hance the insight gained through AE analysis. Although 
recent, these integrative advances accommodate the de-
velopment of improved systems’ strategies to support con-
temporary pharmacology and personalized medicine.95 In 
our view, the molecular data integration paradigm mark-
edly enhances AE data analytics by providing insights that 
help understand drug-target (protein) interactions, both 
desirable and undesirable, within the context of a biologi-
cal system. Finally, we argue that these developments bear 
significant implications for drug development, regulatory 
review, and clinical practice.

Aspects that may challenge the performance of “tra-
ditional” AE analytic approaches include both quali-
tative and quantitative issues. Examples of qualitative 

Description of case study (+) (Summary of example with respect to key AE extension perspectives)

Implications Main points: Comparator drugs determined via shared target information; Normalization of 
reaction/effect terms into designated medical events; Direct target-to-reaction/effect profiling 
based on AE co-occurrence (TAE); Generated profiles used as input features to prediction models.

Result/conclusion: Machine-learning features derived from target level profiles are an important 
information component to predictive performance. Extensions to this modeling approach 
include features from chemical structures of lead proteins or compounds, binding assay results, 
gene expression profiles, comparator selection based on (sub-) structure similarity and/or 
shared pathway signaling, etc.

Note: (+)Case studies sorted by year of publication (ascending order); all studies utilized the US Food and Drug Adverse Event Reporting System (FAERS) data, 
organized based on the Molecular Analysis of Side Effects (MASE) extension principle. (T) Information about drug interactors refers to targets, metabolizing 
enzymes, carriers, and transporters (and may include potential pharmacokinetic and pharmacodynamics aspects). (P) Should a drug interact with components 
that belong to a certain (functional and molecular) pathway network, then that pathway may be transitively annotated via its (drug, or drug interacting) 
members. (TAE) Indicates type of target adverse event (TAE) analysis implementation. (D) Between medication products reported for the same patient case.
Abbreviations: AE, adverse event; ATC, anatomic therapeutic chemical; DDI, drug-drug interaction; MoA, mode of action; PRR, Proportional Reporting Ratio; 
SGA, second generation antipsychotic; SS, serotonin syndrome; SSRI, selective serotonin reuptake inhibitor.

T A B L E  2   (Continued)
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T A B L E  3   Selected features for assessing and comparing AE data analysis software and platforms

Category Feature Description (value, parameters, examples)

Audience Availability Is the technology a commercial product or an academic/open-source solution? What 
is the licensing status?

Target groups May refer to (a combination) of regulatory, interdisciplinary health/life-experts, 
medical, clinical, “pharma” or other industry stakeholders, including clinical 
pharmacologists, medicinal chemists, pharmacovigilance professionals, 
preclinical toxicologists, translational researchers, epidemiologists, health policy 
makers, or even the public.

Core capabilities Analytical power May refer to signal detection capabilities, such as:
•	 The mathematical methods to define the degree of statistical association between 

entities (e.g., drug and side effect), including disproportionality/frequentist or 
Bayesian methods, identification of confounders, and so on.

•	 Or, the use of sophisticated analytical technologies such as knowledge graphs, 
ML(+), and BD(+).

Content diversity Key integration parameters include:
•	 Data breadth: does it integrate drug/chemistry (e.g. structure, synonyms, 

descriptions) or molecular (e.g., targets, metabolizing enzymes, transporters, 
signaling/metabolic pathway models, DDIs(+)) knowledge, preclinical toxicity, 
label information, evidence from literature, etc.

•	 Datasets (e.g., public or proprietary data, RWD(+), AEs(+), CTs(+), and so on)
•	 Data depth (e.g., dictionaries, ontologies, hierarchies, resolution in GUI(+))

Key functionalities Types of analyses may address multiple use cases, such as:
•	 Drug safety signal detection and prediction
•	 Comparative/competitive safety analysis
•	 (In-)validation / assessment of emergent signals
•	 Design of rational drug combinations
•	 Molecular analysis of emergent safety signals
•	 Genotype to phenotype analysis
•	 Biological plausibility analysis
•	 Drug repositioning
•	 Prediction of (target) AE(+) profiles and DDIs(+)

•	 Rational design of combination therapies

Systems 
pharmacology

Systems level molecular 
analysis of real-world 
drug safety data

Main abilities include:
•	 Integrates AEs(+)/RWD(+) with molecular knowledge
•	 Analyzes clinical effects of drug targets (e.g., safety profile)
•	 Analyzes potential clinical effects of novel drug targets (e.g., using neighborhood 

analysis)
•	 Analyzes the clinical effects of biological pathways
•	 Examines patient level drug-mode of action models
•	 Analyzes DDIs(+) at the level of biological systems
•	 Compares clinical safety profiles for independent drug targets or pathways
•	 Constructs and compares independent cohorts of patients based on user-defined 

clinical and molecular parameters

Technology Easy to understand and 
user-friendliness

May include aspects such as intuitiveness of GUI(+), search/browse utilities, speed 
and responsiveness, graphical data visualization functionalities.

Information access May refer to aspects regarding:
•	 Web accessibility, report generation and/or data download capabilities
•	 Format (e.g., DB(+), cloud-native, BD(+), SaaS(+))
•	 Can it be integrated or customized and in what scope (scalable or consultancy/

project-based approach)?

Analytical features May refer to safety signal management, provision of advanced search capabilities, 
access to patient level case reports, cohort building functionalities, depth of 
(GUI(+)) exploration/data resolution (e.g., seriousness, demographics, outcomes, 
hierarchies, synonyms, etc.), number of statistic/metric scores, embedded 
analytical scenarios, advanced/customizable graphical visualization options 
(charts, dashboards, etc.), molecular mechanism/drug-MoA(+) insights.

(Continues)
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limitations include possible misstatement of indications, 
cases attributed to additionally co-administered medica-
tions, difficulty for risk assessment of over-the-counter 
drugs and supplements, food-drug interactions, uncer-
tainty that a given AE is causally related to the reported 

drug product, or due to other risk factors, such as patient 
characteristics (e.g., age, smoking status, or history of cor-
onary artery disease).31,32,34,35,96

Whereas Table  1 lists many parameters that can be 
largely limiting, it also provides only a generalization and 

Category Feature Description (value, parameters, examples)

Quality May refer to quality management and control procedures, such as proprietary data 
integration and transformation processes, benchmarking, or compliance with 
industry certified quality assurance standards.

Validation Main points of endorsement include:
•	 Use by regulators
•	 Industry acceptance (customer projects and market usage and advocacy)
•	 Patent protection
•	 Peer reviewed studies and recognition

Abbreviations: AE, adverse event; BD, big data; CT, clinical trial; DB, database; DDI, drug-drug interaction; GUI, graphical user interface; ML, machine 
learning; MoA, mode of action; RWD, real-world data; SaaS, software-as-a-service.

T A B L E  3   (Continued)

T A B L E  4   Aspects that may reflect on the structure of the discussed web-based services or GUIs(+) with respect to the organized 
exploration of complicated AE information

GUI(+) or service 
parameter Aspect description (examples / discussion)

Search forms Identifying sets of AEs with specific characteristics is one main GUI or service functionality. Some of 
these options may be simpler or more complicated. Commonly, searches rely on text queries matching 
drug or symptom names. Often, advanced search forms are used to include more structured queries 
utilizing logical operators and complex hierarchies. Finally, some allow for customizable result views 
and/or cohort definition options, using different content characteristics as filters.

Data dissemination Main dimensions when exploring AE content (in turn, display pages, or views) include information 
regarding reported outcomes, seriousness, timelines, demographics (e.g., age, sex, or geographical/
regional origin), and/or symptoms (indications or reactions) the resolution and detail with which such 
condition layers are described and/or presented is variable among the different tools.

Content resolution In some cases, aggregation of results may rely on pre-calculated views rather than on on-demand 
computations. Access to individual AE case-level descriptions may be available too.

Data irregularities May refer to unprocessed data or irregular representation structures, including free-text descriptions (e.g., 
generic vs. product drug names, medicinal products vs. active substances).

Data delivery Generated data may be shared via views organized in web-reports, and sometimes may be exportable into 
a commonly downloadable form (such as ASCII, Excel, JSON, CSV, or otherwise formatted files).

Analytic resources (mining 
and storage)

Addressing availability of resources (or rather, the lack thereof) is key—whether it is about handling 
(limited) computational capacity or (large) computational requirements. Lead ways to handle the 
topic may include: (a) narrowed breadth: some web services (or GUIs) apply techniques to reduce the 
analytical load (e.g., force the user to specify the exact multi-parameterized combination of records 
to be analyzed each time, or restrict the computation to a limited number of top only records); (b) 
resort to benefits that rely on third party solutions (e.g., OpenVigil FDA83 that runs over openFDA’s 
services93) comes with a limited number of embedded comparison scenarios, whereas the OpenVigil 
2110,111 GUI comes with none, as yet. In comparison, FAERS data (enabled also by openFDA93) shared 
by the Open Targets55 resource—a platform maintained by a larger consortium—come with both 
select filters and statistics, over records mapped via own computational pipelines.112

Visualization provision Above factors (including data and resource management) may directly affect visualization decisions, and 
on the degree that data delivery is organized in a dynamic fashion (e.g., in terms of charts, tables, or 
graphs and whether these are configurable by the user). In comparison, ezFAERS27 and AEOLUS26 are 
available mainly as static downloadable options.

Abbreviations: AE, adverse event; FAERS, US Food and Drug Adverse Event Reporting System; FDA, US Food and Drug Administration; GUI, graphical user 
interface.
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some aspects may not apply to all methods, tools, and/or 
data sets. For example, the various repositories may handle 
reports differently, with FAERS allowing multiple reports 
per AE, whereas VigiBase allows only one (e.g., latest ac-
tive data per case, with most up-to-date valid information). 
VigiBase also flags possible duplicates, and highlights 
cases coming from FAERS. Other aspects include impli-
cations, the handling of which cannot possibly address all 
potential scenarios uniformly (e.g., detailed information 
about treatment setting [such as the number of cycles or 
whether first- or second-line therapy]) and, therefore, a 
certain modeling compromise may be required.

Assessment of the scientific validity of the study that 
generated the AE data is also important (e.g., risks of bias, 
imprecise measurements, and so on). For example, there 
are different considerations to account for when AE infor-
mation comes from spontaneous reporting repositories, or 
from the results of a carefully controlled and monitored 
phase III randomized control trial. Technically, patient 
behavior can play an important role here as well, such as 
doubling up on missing doses or misuse of modified re-
lease formulations, which can contribute to AEs and may 
be hard to control or capture.

To this end, trustworthy real-world data summaries 
are warranted not only to generate reliable real-world ev-
idence but also to provide quality estimates for confident 
decision making. In support of evidence-based medicine, 
the GRADE approach provides one such framework to the 
systematic assessment of the certainty in a body of evi-
dence leading to clinical practice recommendations.97

Coordinated strategies are, therefore, vital for over-
coming regular obstacles that impede the widespread 
implementation of systematic approaches to the analy-
sis of AEs (e.g., ref. 98–101). Such strategies may include 
collaborations between multiple healthcare stakeholders, 
including policy, regulatory, scientific, technological and 
commercial entities, and the general public. They may 
also involve the multilayered integration of sources of ev-
idence in drug safety studies, including a range of param-
eters spanning from demographic, socioeconomic, and 
behavioral dimensions to lifestyle, molecular, genomic, 
and expression details (see also Figure 1).

Interdisciplinary sources of data are important to the 
inference of casual mechanisms, because the actual rea-
sons underlying the occurrence of an AE (“real causes”) 
cannot always be proven and, usually, accompanying evi-
dence may be limited by the scope of observations.31,32,34–36 
Data integration thus helps to extend the application and 
interpretation of causal inference approaches that may 
be used to evaluate hypothesized cause-effect relation-
ships derived from observational evidence (e.g., Bradford-
Hill criteria102,103). Biological plausibility analysis plays 
a pivotal role in this direction, which may be further 

complicated from the fact that a given AE etiology may be 
attributed to multiple factors (e.g., treatment, interaction 
with comedications, inherent disease, diet, smoking, etc.), 
rather than a single “prominent cause.”

In this work, we discussed in more detail the aspects 
pertaining to the expansion of AE data sets with molecular 
data. In several instances, we used the term “molecular” in 
a somewhat vague fashion to denote the broader context 
that can be incorporated (e.g., chemical or protein sub-
structures, binding assays, protein interaction networks, 
gene expression profiles, and so on), whereas in others we 
focused on more specific dimensions (such as information 
about drugs and their interactions with targets, metabo-
lizing enzymes or with other drugs, about biomolecular 
pathways, and hierarchical therapeutic classes). Table  2 
summarizes examples of four such studies that incorpo-
rated different levels of molecular detail, each highlight-
ing a different perspective category enabled.

Indeed, the impact of integrating molecular level evi-
dence on AE analytics has been successful in advancing 
the pharmacology systems approach, and enabling better 
identification of risk factors.12,95 Routine signal assess-
ment in this manner may further help improve regulatory 
efficiency, providing not only speedy capture, manage-
ment, or prioritization of potential safety issues but also 
opportunities for real-time interventions, including 
the timely identification of populations at risk, of prod-
uct contamination patterns, or of areas requiring public 
health education and assistance.11,17

Overall, the systematic interrogation of AEs at the mo-
lecular level can have multiple applications, including both 
the identification of causal mechanisms, or separating 
causal explanations of AEs from noncausal or alternative 
explanations. As indicated by the MASE paradigm, TAE 
profiles may, for example, help predict AEs, perform virtual 
“in-patient” perturbation experiments, encode advanced 
ML models, analyze individual patient cases, and in gener-
ating or validating hypothesis regarding pathological disease 
mechanisms11,12,32,71 (see also Table 2). Importantly, such in-
ferences based on molecular targets can quickly be explored 
with laboratory-based analysis or further human studies.

In the future, we expect that AE-based studies will use 
more biomolecular and real-world data sets, emphasiz-
ing the importance of refined knowledge engineering in 
drug safety and model-informed drug development.104,105 
In addition, we look forward to more MASE comprehen-
sive platforms that will enable intuitive integrative ana-
lytics. Tables 3 and 4 list some important features to help 
assess such AE data analysis software. This is of primary 
importance also from a regulatory point of view, as it be-
comes challenging to “handle” an increasing abundance 
of tailored digital tools (or methods).106 Furthermore, 
we believe that some promising approaches to advance 



552  |      SOLDATOS et al.

molecular AE mining will be achieved from the greater 
use of annotation benchmarks regarding biomedical con-
cepts and mechanisms.

In addition, we expect that molecular analysis of real-
world data and outcome analytics will generate important 
opportunities, forwarding more predictive (as opposed 
to reactive) responses and informed guidance to clinical 
trials and personalized medicine. The potential of AI in 
biomedicine, health care, and quality of life is vast in this 
perspective107,108 and modern advances in big data and 
ML are especially important to the feasibility of incor-
porating molecular information in these applications. In 
comparison to other approaches, these efforts will be able 
to benefit from the combined advantages of:

•	 Outcome data that provide an augmented source of 
real-world scenarios regarding drug use and combina-
tions, and

•	 ML techniques, capable of coping with larger volumes 
of data, as well as of capturing multilayered features 
from complex data.

Specifically, AE data contain phenotypes and con-
ditions not studied in randomized controlled trials, 
and also include information for many more patients.12 
Importantly, safety reports and disease models are linked 
directly via human information (see also Figure 2). As the 
need for more human-specific disease models increases 
and reliance on model organisms decreases, molecular 
analysis of real-world data may therefore provide a seam-
less new path to approaching drug safety and informing 
drug development.12,109

In summary, molecular data expansion provides an 
elegant way to extend mechanistic modeling, systems 
pharmacology, and patient-centered approaches for the 
assessment of the safety of therapeutic interventions. We 
anticipate that such advances in real-world data informat-
ics and outcome analytics will help to better inform public 
health, via the improved ability to understand and predict 
various types of drug-induced molecular perturbations 
and AEs.
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