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Abstract
Acting in the natural world requires not only deciding among multiple options but also
converting decisions into motor commands. How the dynamics of decision formation
influence the fine kinematics of response movement remains, however, poorly understood.
Here we investigate how the accumulation of decision evidence shapes the response
orienting trajectories in a task where freely-moving rats combine prior expectations and
auditory information to select between two possible options. Response trajectories and their
motor vigor are initially determined by the prior. Rats movements then incorporate sensory
information as early as 60 ms after stimulus onset by accelerating or slowing depending on
how much the stimulus supports their initial choice. When the stimulus evidence is in strong
contradiction, rats change their mind and reverse their initial trajectory. Human subjects
performing an equivalent task display a remarkably similar behavior. We encapsulate these
results in a computational model that, by mapping the decision variable onto the movement
kinematics at discrete time points, captures subjects’ choices, trajectories and changes of
mind. Our results show that motor responses are not ballistic. Instead, they are
systematically and rapidly updated, as they smoothly unfold over time, by the parallel
dynamics of the underlying decision process.
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Introduction

Grabbing an apple at the grocery store requires not only selecting the best one, but also
planning the arm's trajectory to reach it. In recent years, the classical view of the brain
working sequentially, first deciding what to do and then deciding how to do it, has been
revised in favor of a perspective that describes these two processes as running in parallel
(Gallivan et al. 2018; Wispinski, Gallivan, and Chapman 2020). This new perspective allows
not only to predict motor features (the how to do it) from cognitive variables (that determine
what to do), but also to access the cognitive processes underlying the production of a given
behavior through the study of motor kinematics (Seideman, Stanford, and Salinas 2018;
Korbisch et al. 2022). Motor responses supporting a choice have been characterized by their
speed of execution (i.e. vigor), and by the existence of changes in motor plans along their
execution (i.e. trajectory updates). Vigor is linked to the subjective value of the chosen option
(Shadmehr et al. 2019), increasing with reward, both in reaching (Summerside, Shadmehr,
and Ahmed 2018) and saccadic responses (Milstein and Dorris 2007; Xu-Wilson, Zee, and
Shadmehr 2009). Vigor is also impacted by urgency in humans (Thura 2020) and
non-human primates (Thura et al. 2014). However, the effect on response vigor of cognitive
factors such as the evidence towards the decision is poorly understood.

Trajectory updates have been observed when sensory evidence is presented sequentially
and can be incorporated into an unfolding trajectory (Song and Nakayama 2009; Stone,
Mattingley, and Rangelov 2022). Monkeys (Kiani et al. 2014; Kaufman et al. 2015) and
humans (Resulaj et al. 2009; van den Berg et al. 2016) often reverse an initial choice if it is
contradicted by novel sensory evidence (a change of mind, or CoM). Yet, we do not know if
this online updating of trajectories represents an isolated phenomenon that only occurs
when new evidence promotes a categorical change in the initial choice. Alternatively, all
trajectories could be systematically updated based on novel relevant information, even when
the endpoint is not affected. Where the brain operates between these two opposite
scenarios has yet to be unveiled.

Our understanding of the internal processes that control decision-making has greatly
benefited from computational models such as the Drift-Diffusion Model (DDM) (Roger Ratcliff
and McKoon 2008). The DDM summarizes the evidence supporting the different options into
a decision variable that evolves in time until it reaches a bound that determines the choice.
This intuitive paradigm generates precise predictions about how choices and reaction times
depend on stimulus evidence (R. Ratcliff 1985; Palmer, Huk, and Shadlen 2005; Bogacz et
al. 2010; Pardo-Vazquez et al. 2019) and prior expectations (Bogacz et al. 2006; Roger
Ratcliff and McKoon 2008; Urai et al. 2019). Recent work has extended the DDM to account
for proactive responses, whereby rats and humans initiate their response at a time that is
independent of the stimulus (Hernández-Navarro et al. 2021; Hawkins and Heathcote 2021).
This extended model implies that, during these proactive responses, subjects incorporate
the stimulus information into their response trajectories as they are moving. However, the
DDM and its extensions do not characterize either the response trajectories nor the nature,
extent and timing of any interaction between decision variables and trajectory kinematics.
Bridging the gap between the internal decision dynamics and the precise movement
kinematics requires the development of new models that, capitalizing on the explanatory
power of accumulation models, can ultimately describe time-resolved response trajectories.
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Here we investigate in rats and humans how the dynamics of evidence accumulation
impacts the response trajectories in a prior-guided auditory discrimination task. We track the
subjects’ trajectories and find that response vigor is modulated by the amount of
accumulated decision evidence provided both by the prior and the stimulus. Subjects
incorporate the sensory evidence into their unfolding response trajectory, by adjusting its
vigor or by reverting the planned choice when sensory evidence strongly contradicts the
initial decision, i.e. performing a change of mind. We encapsulate these observations in a
new computational model that simulates both the dynamics of evidence accumulation and
the execution of the response. When fitted to subject behavior, the model provides a
parsimonious description of the relationship between these two processes, in particular the
impact of the accumulated evidence on the response vigor and the conditions yielding
changes-of-mind. Altogether, our results show that the evidence accumulated during
perceptual decisions controls the kinematics of the response trajectory, systematically
updating them en route as new evidence arrives.

Results

Movement time depends on decision variables
We investigated how response trajectories are formed as rats (Groups 1 and 2; n=15; see
Methods) integrate decision evidence in a perceptual task where decisions are guided both
by an acoustic stimulus and the recent trial history (Hermoso-Mendizabal et al. 2020) (Figure
1a). On each trial, following a 300-ms fixation period, a stimulus was played from two lateral
speakers until the animal poked out from the center port and headed towards one of two
side ports. Rats were rewarded if they selected the port associated with the louder speaker
(Pardo-Vazquez et al. 2019). The stimulus strength was manipulated by varying the intensity
difference between the two speakers. Moreover, trials were organized into repeating and
alternating contexts, in which the probability that the stimulus category (i.e. Left vs Right) is
the same as in the previous trial was 0.8 and 0.2, respectively (Figure 1a). Rats leveraged
these serial correlations in the trial sequence by building a prior expectation of the next
rewarded port based on the recent history of responses and outcomes
(Hermoso-Mendizabal et al. 2020). On each trial, we estimated the magnitude and category
of this subjective prior, a variable we called prior evidence, by fitting a logistic regression
model (see Methods). Rats’ final choices combined the prior evidence, accumulated across
several trials, and the stimulus evidence (Figure 1b).

Importantly, in our experimental paradigm, the initiation of rat responses was often driven by
a proactive process, leading to a large fraction of reaction times (RTs) that were too short to
be triggered by the stimulus. Express responses (RT< 50 ms) were observed in 34.3 ±
12.2% of all trials (mean±SD; Figure 1c) (Hernández-Navarro et al. 2021). Although the
response in these trials was initiated independently from the stimulus, the final choice made
by the rat integrated the stimulus evidence, as demonstrated by the increase in accuracy
with stimulus strength (Figure 1d). This implies that in a large fraction of trials, rats process
the stimulus and update their decision while moving from the central port to the selected
lateral port. We therefore set out to characterize how the prior and simulus are dynamically
integrated into the unfolding trajectory.
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We first asked whether the prior and stimulus evidence impacted the response vigor, that is
the velocity with which rats executed their orienting movements to the side port. For each
trial, we computed the Movement Time (MT), defined as the time between the poke out from
the center port and the poke in a lateral port (Figure 1a). To isolate the contribution of the
prior evidence on vigor, we introduced silent catch trials, where no acoustic stimulus was
played (Group 2, n = 6, mean±SD 6.7 ± 0.6% of all trials). Prior evidence made the
responses faster when it pointed towards the selected port: a strong prior congruent with the
response shortened MT (congruent prior; Figure 1e). Inversely, when the prior evidence was
incongruent with the response, the animal took longer (incongruent prior; Figure 1e). We
then analyzed the impact of stimulus evidence on MT, restricting the analysis to trials with
small prior magnitude to isolate stimulus influence (see Methods). Similarly to the impact of
prior evidence, rat movement responses were faster when the stimulus supported the
selected port (congruent stimulus), and slower when the stimulus contradicted it
(incongruent stimulus; Figure 1f). When assessed altogether, MT depended on a linear
combination of stimulus and prior evidence towards the response (Figure 1g-h). This
influence was present in addition to a within-session slowing due to satiation and tiredness
(Supplementary Fig. 1) (Hernández-Navarro et al. 2021). These results highlight the relative
impact of congruent versus incongruent stimuli. However, they do not clarify whether the net
effect of the stimulus on MT was positive or negative, i.e. whether the stimulus accelerates
or slows down the initial trajectory. For this, we assessed the impact of sound on MT with
respect to silent trials: MT decreased for congruent stimuli, but increased when the stimulus
was at odds with the final choice (Figure 1i). This shows that, on average, incongruent
stimulus evidence effectively slowed the response originally planned, while congruent
evidence sped it up. In summary, the time taken by the rats to perform a response trajectory
in a decision-making task displays clear signatures of the decision variables.
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Figure 1. Rats reaction times, choices and motor times in an auditory, prior-guided, two-alternative
categorization task. a) On each trial, rats fixated for 300 ms in the center port before an acoustic
stimulus was played from two lateral speakers. Rats were free to initiate a response toward a lateral
port at any time following stimulus onset. RT: reaction time defined from stimulus onset to initiation of
rat response (central port withdrawal); MT: movement time defined from response initiation to the
lateral port entering). Right:Trials are organized into blocks of 80 trials, with the probability of
repeating the trial category set to Prep=0.8 in repeating blocks and Prep=0.2 in alternating blocks. b)
Proportion of rightward responses as a function of stimulus evidence (i.e. signed stimulus strength)
and prior evidence, averaged across animals (Groups 1+2, n=15). c) Distribution of reaction times for
each stimulus strength, for one typical animal (LE46). Negative RTs correspond to fixation breaks.
Shaded area represents express responses (RT<50 ms). d) Tachometric curves representing the
mean accuracy as a function of RT for the different stimulus strengths, for the same animal. e) Median
movement time averaged across animals in silent catch trials as a function of prior evidence towards
the selected port (i.e. positive if the prior points towards the animal decision and negative otherwise;
binned in 5 quantiles). Error bars: standard error of the mean (s.e.m.). f) Median movement time in
express response trials (RT< 50 ms) with small prior (|z| < 10% percentile), as a function of stimulus
evidence towards the selected port. g) Regression weights of the movement time against the prior
and stimulus evidence towards the response. Each dot represents one animal. h) Mean movement
time as a function of prior and stimulus evidence towards the selected port, averaged across animals.
i) Average movement time as a function of stimulus evidence supporting the decision, in express
response trials (RT<50 ms) with prior evidence supporting the decision (prior evidence towards
response z > median). Stimuli can both accelerate or slow down the default trajectory revealed in
silent trials with the same prior (horizontal line).
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Prior and stimulus evidence impact rats’ trajectory at different times

The above results show that both prior and stimulus evidence impact rats’ response
trajectories. To finely characterize this influence, we next studied the impact of these factors
on time-resolved response trajectories. We extracted the response trajectories described by
the rats during the task from video recordings of a camera placed above the animal. Using
an automatic pose estimation method (Mathis et al. 2018), we inferred the coordinates of the
snout of the rat in the horizontal plane, for each video frame (Figure 2a; see Methods). We
focused our analyses on the dimension aligned with the three ports (Figure 2b), since it
contains the most relevant information about the response orienting trajectory. Trajectories
along this axis revealed relatively stereotyped movements consisting in smooth
sigmoidal-like curves starting at the central port and ending at one of the side ports (Figure
2c). Consistent with our analyses of MT, prior and stimulus evidence accelerated or
decelerated the trajectories depending on their congruence with the final choice while
preserving the same stereotyped shape (Figure 2d-e). This caused the peak velocity of the
animal’s movement to show a similar dependence on the prior and stimulus evidence as the
MT (Figure 2f-g).

The impact of the prior onto trajectories occurred earlier than the impact of the stimulus
(Figure 2d-g): while the prior information is available at the trial start, sensory evidence must
be integrated as the stimulus is played. The precise timing of the stimulus impact hinges on
the duration of a sensorimotor processing pipeline that includes the afferent (sensory) delay,
evidence integration and efferent (motor) delays. To finely quantify the onset of this impact,
we identified the earliest time point from the stimulus onset at which the stimulus strength
started affecting the trajectory (Figure 2h; see Methods). This Splitting Time naturally
depends on the reaction time, which caps how much processing can be done along the
sensorimotor pathway before the animal pokes out from the central port. At long RTs,
animals have time to accumulate enough stimulus evidence, form a decision and command
the corresponding movement. Therefore, the trajectories generated after long RTs split
immediately after poking out, and thus the splitting time approximates the reaction time (after
a fixed minimal delay required to detect a significant difference in the trajectories) (Figure 2i).
In contrast, at short RTs, the splitting time reaches a plateau: no matter how early the animal
leaves the port, it needs a minimal amount of time before incorporating stimulus evidence
into the trajectory. This minimum splitting time occurred less than 100 ms after stimulus
onset (96.6 ± 25.1 ms across animals), and could be as low as 60 ms in some rats. At very
small RTs (RT<10 ms), the stimulus was so short that its impact on the trajectory vanished,
causing larger splitting times. The prior information, on the other hand, modulated the
position of the animal even before leaving the central port (Figure 2j, right panel).
Interestingly, rats prepared their response while inside the central port, by placing their
snouts opposite to the side they planned to choose. In summary, the orienting trajectories of
the rats were influenced by prior expectations before leaving the port and by stimulus
evidence as early as 60 ms after stimulus onset, reflecting the difference in timing of these
two sources of information.
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Figure 2. Prior and stimulus evidence modulate response trajectories, at different times. a) Example
video frame showing a rat entering the right lateral port. Color dots indicate the position of the rat
snout, obtained from automatic video analysis, for 6 frames prior to the frame shown (colors
correspond to the time elapsed since movement onset, see colorbar). b) Trajectories from individual
trials. Dashed lines as in panel a. c) Position of the rat along the y-dimension as a function of time
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from movement onset. Dashed lines as in panels a, b. d, f) Average position (d) and velocity (f) in
silent trials as a function of time from movement onset and prior evidence towards the selected port.
Inset in f: average peak velocity versus prior. Trajectories corresponding to rightward responses were
flipped along the y axis so that all trajectories end at a positive value. e, g) Average position (e) and
velocity (g) conditioned on stimulus evidence in express response trials with small prior. Inset in g:
average peak velocity versus stimulus evidence. h) Splitting time calculation in one example animal.
Average trajectories for each stimulus strength in different RT windows: very short (RT<15 ms,
bottom), medium (RT between 45 and 55 ms, middle) or long (RT>150 ms, top) reaction times. i)
Splitting time for stimulus evidence as a function of RT (bins of 10 ms; red trace: median over rats,
n=15; gray traces: individual rats; error bars: s.e.m.). Shaded area corresponds to times before the
rats poked out of the central port. j) Correlation coefficient between the position of the animal and
either the stimulus evidence (left panel) or the prior evidence (right panel), as a function of the
reaction time (x-axis) and time from stimulus onset (y-axis). Correlation coefficients were averaged
across animals. The prior evidence and animal position are negatively correlated before the animal
leaves the port, and become positively correlated right after leaving the port. The red curve in the left
panel represents the average splitting time (see panel i). The black line represents the RT. Panels d, f
show averages across rats for Group 2 (n=6) and panels e, g-j, for Groups 1 (n=9) and 2 (n=6). Error
bars in d-g (bands) represent s.e.m..

Incongruence between the prior and stimulus evidence leads to changes of mind
These results imply that trajectories, far from being predefined ballistic movements, are
updated during their execution based on new sensory evidence. Previous studies in humans
and non-human primates have shown that fluctuations in the stream of sensory evidence
can lead to changes of mind (CoMs), i.e. a change in the response trajectory towards the
option that is aligned with the most recent evidence (Resulaj et al. 2009; Kiani et al. 2014;
van den Berg et al. 2016; Peixoto et al. 2021; Boyd-Meredith et al. 2022). We thus wondered
whether, in our task, stimuli strongly contradicting the prior-guided initial trajectory could lead
rats to perform CoMs, instead of simply slowing down the response without affecting the
target port. To identify possible CoMs we selected trials where the trajectory crossed a fixed
threshold towards one of the lateral ports but then reversed and ultimately reached the
opposite port (Figure 3a-b). This procedure detected 31277 trajectory reversals across all
rats (Groups 1 and 2, n = 15), which represent a low but systematic percentage of all trials
(2.37 ± 0.95 %, mean±SD across animals; Figure 3c). Although this percentage was
sensitive to the value of the threshold used to identify the reversals, the following
characterization was not. Trajectory reversals were associated with a stereotyped movement
showing a standard initial trajectory towards one side followed by a clear deflection towards
the final choice (Figure 3e-f and Supplementary Video 1). The reversal point of the trajectory
took place on average 189 ± 15 ms after movement onset and was rarely further than 10
pixels away (~ 0.7 cm) from the central port (i.e. less than 15% of the distance between
central and lateral ports), meaning that rats reversed their trajectories when they had not
departed too far from the central port (Figure 3d). Movements associated with a trajectory
reversal were on average 129 ms slower than non-reversal responses (Figure 3g), reflecting
the time cost associated with longer pathways and the change of direction inherent to those
trials.

Several characteristics of the trajectory reversals suggest that they corresponded to changes
of mind, whereby a first decision driven by the early evidence (provided by the prior) is later
switched based on novel (sensory) evidence contradicting it. First, trajectory reversals were
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usually corrective, i.e. they amended a mistake incurred by the animals’ initial decision, and
they were more likely to be so for stronger stimuli (Figure 3h) (Resulaj et al. 2009). Second,
trajectory reversals emerged usually when the prior and stimulus were contradictory, with the
initial response aligned with the prior while the final response aligned with the stimulus
(Figure 3i), consistently across rats (Supplementary Fig. 2). Finally, reversals were more
frequent for short RTs (Figure 3j), when the initial trajectory started too soon to be influenced
by sensory information and thus was based only on prior information.

In summary, rats’ orienting responses are routinely updated based on incoming sensory
information, which either modulates the response vigor (Figure 2) or promotes a CoM that
causes a complete reversal of the initially selected choice (Figure 3).

Figure 3. Rats reverse incorrect, prior-driven, initial responses based on incoming sensory
information. a) Example video frame in a reversal trial: the rat initiates a response to the left port but
then reverses and heads towards the right port. Legend as in Figure 2a. b) Reversal trajectories
(orange traces) and standard trajectories (i.e. no reversal, blue traces) showing the position of the
animal snout along the y-axis across time, from an example session. Response ports are represented
with dashed lines. Only the left-response no-reversals and right-response reversals in 100 randomly
chosen trials from an example session are shown. c) Proportion of reversals for individual rats
(Groups 1-2, n=15). d) Histogram of the reversal point position, i.e. the maximum distance from the
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central port towards the non-selected port (expressed as a percentage of the distance from the central
to the lateral ports), obtained from all animals. Trials with reversal points larger than the detection
threshold (vertical red dashed line) are marked as trajectory reversals. e) Average trajectories for
reversal and standard trajectories aligned at movement onset for individual animals (thin lines) and
averaged across animals (thick lines). Bottom: Distribution of the reversal time defined as the time
from motion onset to the reversal point. f) Average trajectories for reversals aligned to the reversal
time. Red dashed line indicates the reversal threshold used to detect reversals (8 pixels, i.e. 0.56 cm).
g) Distribution of movement time for reversal (orange) and no-reversal trajectories (blue), for
individual animals (thin) and averaged across animals (thick). Mean ± SD movement time for
non-CoM trials was 283 ± 31 ms and for CoM trials was 421 ± 61 ms. h) Mean choice accuracy of
reversal trials as a function of stimulus strength, averaged across animals. i) Proportion of left-to-right
reversals and right-to-left reversals as a function of stimulus and prior evidence (binned in quantiles),
averaged across animals. j) Proportion of reversals as a function of reaction time (gray traces:
individual rats; orange trace: mean ± s.e.m.).

Human response movements display similar modulation of movement by decision
variables
We next wondered whether these results generalize across species. We instructed a group
of human subjects (n=14) to perform an intensity discrimination auditory task that closely
mimicked the rat paradigm (see Methods). Briefly, subjects reported their response by sliding
their finger on a tablet from a fixation point to one of two possible targets (Figure 4a-b). As in
the rat’s paradigm, the probability of repeating the previous trial category varied between
Repeating and Alternating blocks (changes of blocks were not cued). We explicitly inserted
an urgency component into the task, forcing subjects to initiate their response within 300 ms
after stimulus onset.

Human behavior in the task was remarkably similar to that of rats. First, subjects' decisions
combined the prior and sensory information (Figure 4c, Supplementary Fig. 3a), and their
accuracy increased with stimulus strength even for responses initiated less than 50 ms after
stimulus onset (Figure 4d). Second, the MT depended on both prior evidence and stimulus
evidence: response trajectories were faster or slower depending on the congruence of these
variables with the final response (Figure 4e-f). Third, the impact of stimulus evidence on the
trajectory was statistically visible as early as 180 ms after stimulus onset (Figure 4g-h). As in
rats, the splitting time was actually slightly smaller for moderate reaction times (around 200
ms) compared to very short reaction times. Fourth, we could detect a reliable proportion of
trajectory reversals (7.25 ± 3.55 %, mean±SD across subjects), which were revealed by a
deflection in the response trajectory occurring around 156 ± 71 ms after movement onset
(Figure 4 i-k). Similar to rats, reversals corrected the decision en route mostly when the prior
provided strong evidence towards one side but the stimulus indicated the opposite side
(Figure 4l); and were often associated with short RTs (Supplementary Fig. 3b). Overall, rats
and humans show a very similar relationship between the variables influencing a decision
and its actual execution.
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Figure 4. Human response trajectories exhibit similar properties to rats’ trajectories. a) Behavioral
paradigm. In each trial, human participants (n=14) maintained their index finger fixed on the fixation
center circle of a tablet during 500 ms. An acoustic sound was then played through headphones. The
participants had to initiate a trajectory along the tablet no later than 300 ms after stimulus onset and
reach for one of the two target circles based on the interaural level difference of the stimulus. b)
Example trajectories from a typical session. c) Proportion of rightward responses as a function of
stimulus evidence and prior evidence, averaged across subjects (as in Figure 1b). d) Mean accuracy
as a function of RT for the different stimulus strengths (as in Figure 1d). RT bin width was 43 ms. e)
Average trajectory as a function of prior evidence towards the selected port. Inset: Average movement
time as a function of prior evidence, as in Figure 1e. Legend as in Figure 2d. f) Average trajectory as
a function of stimulus evidence, in low prior trials. Inset: Average movement time across trials as a
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function of stimulus evidence towards the selected port, as in Figure 1f. Legend as in Figure 2e. g)
Average trajectories at each stimulus strength, in short RT trials (first tercile, left) and long RT trials
(third tercile, right), grouped over participants. h) Splitting time computed for each quartile of RT, for
each subject individually (gray), and averaged across subjects (red trace; error bar: s.e.m.). The blue
trace shows the splitting time, grouping trials over all subjects (7 RT quantiles). Dark gray: distribution
of RT across all trials. i) Example trajectories for one participant, showing standard (blue) and reversal
(orange) trajectories. Legend as in Figure 3b. j) Average trajectory for standard trials and trajectory
reversal trials. k) Distribution of reversal point position and reversal time across participants. l)
Proportion of trajectory reversals as a function of prior and stimulus evidence, averaged across
participants.

A joint model of decision-making and motor trajectories
We formalized our observations about the impact of the prior and stimulus evidence onto
response trajectories into a computational model that ties mechanistically the dynamics of a
latent decision variable with the animal’s orienting trajectory (Figure 5). The model sets apart
from traditional decision-making models by fully describing the dynamics of the orienting
response, and not just its end point. It consists of a decision-making module and a motor
module. The decision-making module extends the classical Drift-Diffusion Model whereby a
decision variable x(t), initialized at a value proportional to the prior evidence, integrates
sensory evidence over time until one of two decision bounds is reached and the associated
side is selected (Good 1979; Wald 2004; Gold and Shadlen 2007; Roger Ratcliff and
McKoon 2008; Urai et al. 2019; Gupta et al. 2023). Crucially, the decision-making module
includes an urgency process that can initiate the movement, independently of the decision
variable, thus accounting for the prevalence of express responses (Hernández-Navarro et al.
2021; Hawkins and Heathcote 2021) (Figure 1c). When the urgency process triggers the
response, the targeted port of the initial trajectory is set by the sign of the decision variable
at this moment x1. We refer to x1 as the first read-out (Figure 5a, empty circle). Importantly,
the vigor of the initial trajectory depends on the value of x1: the more evidence towards the
selected port, the faster is the trajectory (Figure 5b). Following the same principle, when the
decision variable hits one of the two decision bounds (x1 = ±𝛉), the initial response has
always the maximum vigor. Regardless of which process triggers the initial response, due to
sensorimotor delays, the latest sensory information is still in the processing pipeline at the
moment of movement onset and thus does not affect the first read-out x1. The model makes
a second read-out x2 (Figure 5a, filled circles) once the whole stimulus evidence is fully
integrated, allowing for the possibility to speed up or slow down the trajectory or even to
reverse the decision (Figure 5c). Specifically, the trajectory is sped up if the evidence
towards the initial choice increases with respect to the first read-out (i.e. |x2|> |x1|). When the
evidence decreases (|x2| < |x1|), the initial trajectory is slowed down. When the second
read-out is strongly at odds with the initial targeted port, a new ballistic trajectory is drawn
towards the opposite port, implementing a change of mind (Figure 5a, bottom, yellow trace).
Note that, while in the model we can identify all CoMs, only a subset of those will be
classified as trajectory reversals using the detection method based on trajectory deflections
as in rats. Trajectories were generated using the principle of minimum jerk which ensures
smoothness, making the targeted port and the MT their only free parameters (Methods).
Therefore, the updating of a trajectory, came down to drawing a new trajectory, that smoothly
continued the initial one, but in which either the remaining MT was shortened or extended
(vigor update), or the final target was switched (CoM).
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Fitting such a complex dynamical model is challenging because its likelihood cannot be
expressed analytically. To solve this problem, we used Mixed Neural Likelihood Estimate
(MNLE), a recently developed method to approximate the likelihood function of a statistical
model using an artificial network (Boelts et al. 2022). In short, an artificial neural network was
trained on 10 million simulations to approximate the joint likelihood of choice, reaction time
and movement time, given the model parameters and the value of the prior evidence and
stimulus strength.

Figure 5. A joint statistical model for decision-making processes and response trajectories. a) The
decision of the model is based on the decision variable x(t), which accumulates the sensory
information towards the left (green upper bound) or right (purple lower bound) port following a
drift-diffusion process. The value of x(t) at the trial onset is proportional to the prior evidence z. The
stimulus is integrated after a delay with respect to the stimulus onset (afferent delay, taff, gray solid
arrows). Two example trials are shown in which the movement onset is triggered by a
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stimulus-independent process (Hernández-Navarro et al. 2021) that sets the time of the first read-out
(vertical collapse of the decision boundaries). The first read-out, x1, triggers a leftward initial trajectory
(bottom panel, black trace) with an efferent delay (teff). In the standard trial (blue trace), sensory
integration continues until the stimulus is fully processed (second vertical boundary): the second
read-out x2 (solid circles) updates the vigor of the trajectory by accelerating the movement (blue
trajectory). Alternatively, the stimulus may contradict the evidence set by the prior (yellow trace),
driving the decision variable into the change-of-mind bound (𝛉CoM, filled purple circle) and triggering a
reversal of the trajectory (yellow trajectory). b) The movement time of the initial trajectory MTini

depends linearly on the absolute value of x1, where larger evidence converts into shorter MTs. c) The
movement time is updated by a linear transformation of the second read-out: the trajectory is sped up
if |x2| > |x1|, and slowed down otherwise. d) Model parameter estimation using Mixed Neural
Likelihood Estimate. The model is simulated on 10 million trials, each with a different set of
parameters and experimental conditions (stimulus and prior). Model simulations are then used to train
an artificial neural network to approximate the conditional density of the data (i.e. choice, reaction time
and movement time) given the model parameters and experimental conditions. Specifically, we train
two different networks, that respectively learn and𝑝(𝑐ℎ𝑜𝑖𝑐𝑒|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑝𝑟𝑖𝑜𝑟,  𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠)

. Finally, we estimate model parameters from𝑝(𝑅𝑇, 𝑀𝑇|𝑐ℎ𝑜𝑖𝑐𝑒, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑝𝑟𝑖𝑜𝑟,  𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠)
experimental data using classical maximum likelihood estimation, but where the true (intractable)
likelihood is replaced by the approximate likelihood provided by the trained network.

The model captured very well the impact of the prior and stimulus evidence on the animals’
response trajectories (Figure 6; Supplementary Fig. 6). We fitted the 16 parameters of the
model to match the choices, RTs and MTs of each rat individually. We then applied the same
analyses used for the experimental data to the data generated from the fitted model. The
model reproduces the experimental dependence on choice of prior, stimulus and RTs (Figure
6a-b) as well as the distributions of RT and MT (Supplementary Figs. 7 and 8). As the
response vigor is determined by the value of the decision variable at both read-outs, the MT
decreases as the prior and sensory evidence towards the response increases (Figure 6c-f).
As in rats, model trajectories are faster compared to silent trials if the sensory evidence is
congruent with the choice and slower if it is incongruent (Figure 6d). This follows directly
from how the model updates the trajectories at the second read-out: stimuli tend to increase
the initial evidence (with respect to silent trials) when they are congruent or decrease it when
they are incongruent, causing acceleration or slowing, respectively. The model also
reproduces the V-shaped dependence of the stimulus splitting time on RT (Figure 6g). The
dependence is caused by a transition from fast responses (RT < taff+ teff) where the stimulus
affects the second but not the first read-out, to longer responses (RT > taff+ teff) where it
affects both read-outs (Supplementary Fig. 11a-c). Thus, the minimum splitting time provides
an easily accessible upper bound for the sum of afferent and efferent times taff+ teff (Figures
2i and 6g and Supplementary Fig. 11d-f).

Importantly, although the model was not fit to any property of the trajectories beyond their
overall duration, it produces trajectory reversals in the same conditions as rats (Figure 6h).
Specifically, these reversals occur mostly when the stimulus strongly contradicts the prior
(Figure 6i, Supplementary Fig. 9). While changes of mind actually occur frequently, even
when stimulus and prior weakly disagree, detection of trajectory reversals based on motion
trajectories is more prominent for strongly disagreeing evidence (as strong prior leads to
higher initial vigor, see details in Supplementary Fig. 12a-b). The majority of CoMs produced
by the model occur early after movement onset, yielding kinks in the trajectories that are too
small to be detected. Our model predicts that only around a quarter of the CoMs lead to
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detectable trajectory reversals (CoMs represented 15.67% of the total, vs 4.44% for detected
reversals). Moreover, reversing trajectories incur a certain time cost, which explains why
trajectories with reversals last on average longer than standard trajectories (Figure 6j). The
model also explains why reversals are more frequent at short RTs (Figure 6k; see Figure 3j):
while the first read-out reflects only the prior information, the second read-out also
incorporates the sensory information, which can contradict and overcome the prior. By
contrast, at longer RTs, the stimulus contributes to both read-outs, making changes of mind
less frequent (Supplementary Fig. 12c). Changes of mind in the model are intimately related
to the existence of proactive responses: as we gradually change the model parameters to
extinguish the fraction of proactive responses, the proportion of CoM also vanishes
(Supplementary Fig. 11g). Overall, there is a compelling fit between our model and the
experimental data, in terms of movement time, the timing of the impact of prior and sensory
evidence onto trajectories, and the trajectory reversals.

Figure 6. Simulations from the model fitted to individual rats replicate the key features of rat behavior.
a) Proportion of right responses as a function of the stimulus and prior evidence (as in Figure 1b). b)
Accuracy of the model as a function of RT, for different stimulus strengths (as in Figure 1d). c)
Average movement time as a function of prior and stimulus evidence towards the selected port,
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averaged across animals (as in Figure 1h). d) Average movement time as a function of stimulus
evidence supporting the decision, in express response trials (RT<50 ms) with prior evidence
supporting the decision (prior evidence towards response z > median). Congruent stimuli accelerate
responses w.r.t. silent trials (dashed line), while incongruent stimuli slow down responses, as in Figure
1i. e) Left: Median movement time in silent trials as a function of prior evidence towards the selected
port (binned in 5 quantiles), averaged across animals. Error bars: s.e.m. Model trajectories (center)
and velocities (right) in silent trials depending on prior congruence (as in Figure 2d, f). f) Median
movement time (left), model trajectories (center) and velocities (right) in express response trials (RT<
50 ms) with small prior (|z| < 10% percentile), as a function of stimulus evidence towards the selected
port. g) Splitting time for stimulus evidence as a function of RT, as in Figure 2i. h) Average simulated
trajectories for CoM trajectories (dashed brown; including detected and non-detected trajectory
reversals), detected reversals only (orange line), standard trajectories (blue line). i) Probability of
reversals as a function of prior and stimulus evidence (see Figure 3i). j) Distribution of movement
times for trajectories with changes of minds and standard trajectories. Legend as in Figure 3g. k)
Proportion of trajectory reversals (black traces) as a function of reaction time for rats (dashed) and
simulations (solid). Red line shows the proportion of changes-of-mind in the model.

The alignment between the data and our model supports the hypothesis that the
evidence-accumulation process determines motor response kinematics at two distinct time
points. What is the distinctive impact of these two time points? To answer this question, we
evaluated three alternative models where we removed or altered either of the two read-outs:
a model where the first read-out was replaced by a random initial choice (random initial
choice model, Figure 7b); a model where the second read-out was removed (no trajectory
update model, Figure 7c); and a model where the second read-out only occurs when
reaching the CoM boundary (i.e. trajectories were not updated if the response was
confirmed, no vigor update model, Figure 7d). Importantly, each of these alternative models
failed to capture important characteristics of movement time and/or trajectory reversals
found in animal behavior. The random initial choice model produces by construction 50% of
CoMs, disrupting the dependence of CoMs on the decision variables (prior and stimulus
evidence; Figure 7b, iii). In this model, unlike in experimental data, reversals are more
frequent when both the prior and the stimulus evidence are weak (Figure 7b, iv), so that the
weak vigor leads to a change in direction that is slow enough to cross the reversal detection
threshold. By construction also, the no trajectory update model never produces trajectory
reversals (Figure 7c, iv). Moreover, movement time in express responses of this model are
largely decoupled from the stimulus evidence (Figure 7c, ii), as the trajectory is triggered at
the first read-out before the stimulus impacts the decision variable (Figure 7c, i). For the
same reason, the decoupling between stimulus and MT in express responses is also
observed in the no vigor update model (Figure 7d, ii), although this model produced CoMs
and reversals exactly as the full model (Figure 7d, iii-iv). These results evidence the
existence of at least two read-outs impacting the motor response kinematics that, based on
the evidence accumulated, accelerate, slow down or reverse the trajectory of the rat.
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Figure 7. Comparison between alternative models: full model (a), model with random initial choice
(b), model with no trajectory update (c) and model with no vigor update (d). i) Cartoon illustrating
each model. ii) Median movement time in express response trials (RT< 50 ms) with small prior (|z| <
10% percentile), as a function of stimulus evidence towards the selected port. iii-iv) Probability of
CoM (iii) and reversals (iv) as a function of prior and stimulus evidence.

Discussion

The advent of automatic techniques to extract the position of body parts from video footage
has opened the path to rich quantitative analyses of motor behavior in freely moving
animals. However these techniques had never been deployed in the context of
decision-making tasks in mammals, (except for (Kane, Senne, and Scott 2023)). Through
thorough analysis, we demonstrate that the response trajectories observed in rats
performing a two-alternative forced choice task can be encapsulated by a dynamical model
in which response movement is tightly steered by the evidence-accumulation process. Our

17

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.11.09.566389doi: bioRxiv preprint 

https://paperpile.com/c/dr1lFr/ZTlIV
https://doi.org/10.1101/2023.11.09.566389
http://creativecommons.org/licenses/by-nc-nd/4.0/


model captures the dependence of trajectory reversals on stimulus, prior and reaction time,
even though it was not fitted to any characteristics of the trajectory other than its overall
duration. The same model successfully replicated the response trajectories described by
human subjects performing an analogous task on a tactile screen. While most previous
theoretical work has focussed either on decision-making processes before a response is
initiated or on the unfolding of reaching movements (Wispinski, Gallivan, and Chapman
2020), our joint modeling of decisions and response trajectories provides a key step to dig
further into the interactions between decision-making and motor control (Friedman, Brown,
and Finkbeiner 2013; Lepora and Pezzulo 2015). Since motor-related activity has a large
and global impact on neural activity in awake mice (Stringer et al. 2019; Musall et al. 2019),
providing a foundation for models of joint decision-making and decision-related movements
can significantly help the analysis and understanding of neural data.

Accumulated decision evidence impacts directly and gradually motor vigor
The modern view of decision-motor interaction encompasses parallel processing circuits that
can decide while moving and move while deciding (Gordon et al. 2021). In line with this
perspective, our work shows a direct and graded relationship between the accumulated
decision evidence in a perceptual task and the vigor with which rats execute their response
movements. To the best of our knowledge this is the first time that the vigor of a complex
body movement has been tightly linked to the decision making process. Previous studies
have either not found any relationship of MT with e.g. stimulus evidence (Zariwala et al.
2013; Lak et al. 2014) or have used paradigms that conflated both RT and MT (by reporting
the time from stimulus onset to movement offset), which hindered the possibility of isolating
the impact of accumulated evidence on movement vigor (Kane, Senne, and Scott 2023).
Saccadic eye movements (either response related or not) are faster when perceptual
evidence supporting the choice is larger (Seideman, Stanford, and Salinas 2018; Korbisch et
al. 2022). Here we show that the link also exists for complex movements involving the full
body, and describe in detail the relationship between the dynamics of the decision variable
and the kinematics of the movement. More broadly, because response vigor is also
modulated by the intrinsic action value (Milstein and Dorris 2007; Xu-Wilson, Zee, and
Shadmehr 2009; Reppert et al. 2015; Summerside, Shadmehr, and Ahmed 2018), we can
construe that vigor is based on the expected reward from the corresponding action, which
depends on the probability of obtaining the reward and which can ultimately be
approximated by the decision variable.

Previous studies have identified trajectory updates in scenarios where the later part of the
stimulus contradicts the earlier part (Resulaj et al. 2009; van den Berg et al. 2016) or when
salient sensory evidence is contradicted by information that requires top-down processing
(Nakahashi and Cisek 2023), making the subjects reverse their initial trajectory and reach
the opposite option, i.e. perform a change of mind. We found that changes of mind can also
occur when the stimulus violates a prior expectation, a situation that happens frequently both
in naturalistic conditions (e.g. a goalkeeper during a penalty) and in the lab (e.g. the Posner
task (Posner 1980)). The existence of such prior-based changes of mind is directly
dependent on the prominence of proactive responses (Supplementary Fig. 11g). When
proactive responses were removed from the model, changes of mind solely driven by the
stimulus (Resulaj et al. 2009; van den Berg et al. 2016) were absent as fluctuations in
sensory evidence were not large enough to drive the decision evidence from one boundary
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to the CoM boundary. More fundamentally, beyond the difference in the origin of CoMs, our
results suggest that trajectory updates occur routinely: even when the final target is not
changed, newly acquired sensory information always leads to a slowing or speeding of the
response plan (Figures 2e,g and 4f). Importantly, this adjustment is graded as rats
accelerate when the newly acquired sensory information confirms their initial choice and
slow down when it contradicts it. The analysis of trajectories unveiled the latency of this
update: the time elapsed between stimulus onset and the visible deflection of the trajectory,
which encompasses a whole range of delays, from sensory processing to motor activations,
can be as small as 60 ms. We verified in further model simulations that this minimal delay
was composed by the sum of the afferent delay, the efferent delay, and a residual time
required to detect a statistically significant effect (Supplementary Fig. 11 a-c). In humans, we
found a minimal delay on the order of 200 ms (Smeets, Oostwoud Wijdenes, and Brenner
2016; Nakahashi and Cisek 2023), which matches the delay necessary for interrupting a
response movement (Schultze-Kraft et al. 2016); and is much larger than the 30 ms period
required for minimal sensory integration (Stanford et al. 2010) which makes up for only one
link of the sensorimotor chain.

Statistical modeling of response trajectories
Accumulation-to-bound models such as the Drift-Diffusion Model (DDM) (Roger Ratcliff and
McKoon 2008) describe the pattern of choices and reaction times (R. Ratcliff 1985; Palmer,
Huk, and Shadlen 2005; Bogacz et al. 2010; Pardo-Vazquez et al. 2019), but they do not
capture the impact of the decision-making process on the motor trajectories (although see
(Kiani, Corthell, and Shadlen 2014)). Our study showcases how extending the quantitative
toolkit of decision processes to model response trajectories can illuminate the link between
decision-making and motor processes. Although the actual response involves the
coordination of many effectors to reach the selected port, we found that the trajectories of
the rat snout were usually smooth and stereotypical, making them amenable to standard
statistical modeling.

The model makes several predictions for further experiments. First, it predicts that our
subjects change their mind much more often than what is apparent from the identified
trajectory reversals. These latent changes of mind are akin to the “neural reversals”, i.e.
changes in the sign of the decision variable driven by changes in the stimulus evidence, as
observed in rats (Boyd-Meredith et al. 2022) and monkeys (Kiani et al. 2014; Kaufman et al.
2015; Peixoto et al. 2021). Second, consistent with previous work in humans (Friedman,
Brown, and Finkbeiner 2013), our model includes a second read-out of the decision variable
after the movement is initiated to correct or adjust the initial response. The actions occurring
between read-outs are thus ballistic submovements conveniently concatenated to minimize
sharp changes in velocity. One open question is whether more updates could occur along
the trajectory (Friedman, Brown, and Finkbeiner 2013; Lepora and Pezzulo 2015) the brain
could continuously transform decision variables into changes in the response trajectory
(Friedman, Brown, and Finkbeiner 2013; Lepora and Pezzulo 2015). The implementation of
such a continuous model would require accommodating the dynamics of evidence
accumulation, which typically exhibit fast sudden changes in the decision variable, to the
constraints of optimal motor control which imposes smooth, gradual changes in velocities
and acceleration. Our discrete-updating model may be an intermediate solution by which
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trajectories are constrained by the movement kinematics but are tightly influenced by the
evolution of decision variables across time.

Previous work in humans has found that trial history effects in perceptual decisions can be
mediated by a bias in the drift of the accumulated evidence (Urai et al. 2019). We however
modeled the influence of prior evidence purely as an offset in the initial value of the decision
variable (Figure 5a), since the impact of prior on rat choices and vigor was strong for
express responses (Figures 1d-e and 2d,f) and decreased with RT (Supplementary Fig. 1d).
Moreover, the position of the rats’ snout depended on the prior evidence already during
fixation, before sensory integration started. The difference between our data and the
mentioned study may be due to a different origin of the trial history effects. Moreover, the
model did not incorporate idiosyncratic asymmetries in the integration of prior and stimulus,
observed in some rats and humans (see Supplementary Fig. 2 and Figure 4l, respectively).
Introducing fixed biases within the prior evidence as well as in the evidence accumulation
drift could possibly account for these individual preferences. Another aspect that our model
ignores is the reciprocal effect that motor kinematics can have on the decision making
process. In other words, on top of the impact of the accumulated evidence on the motor
trajectories, the motor components may very well impact the decision (Cos, Bélanger, and
Cisek 2011; Lepora and Pezzulo 2015; Shadmehr, Huang, and Ahmed 2016; Kane, Senne,
and Scott 2023), a phenomenon known as embodied decision-making. For example,
approaching one port may lead to a downweighting of contradictory sensory evidence (or an
increase in the change-of-mind boundary), in order to avoid a late and costly reversal. Such
a phenomenon is closely related to the confirmation bias by which subjects discard evidence
contradicting an initial choice (Nickerson 1998). Note however that the boundary for changes
of mind was close to null in most animals (Supplementary Fig. 10), unlike in humans
(Resulaj et al. 2009), indicating a lack of bias to confirm their response even as they already
departed towards the associated port.

Making decisions in a continuous world

The similarity between the behavior of rats and humans in our task suggests that the
strategy used by both species to adjust movements endpoints and vigor while processing
asynchronous information evolved before the two species diverged around 75 million years
ago (Striedter and Glenn Northcutt 2019). Our results also suggest that these same
mechanisms control very different types of motor response, such as the full-body orientation
or the movement of a finger. Consistent with this hypothesis, the basal ganglia, which
regulates motor vigor (Turner and Desmurget 2010), is a highly preserved area since its
emergence in the first vertebrates 500 million years ago (Grillner and Robertson 2016). This
conservation may reflect the fact that embodied decisions, in which the subject acts while
deciding and decides while acting (Gordon et al. 2021), have been crucial for survival
throughout the evolutionary history of vertebrates. Beyond their similarities, humans differed
from rats as they performed many more reversals. Part of this difference may be due to the
lower energetic cost of a change of trajectory in the finger compared to full-body responses.
Indeed, many human reversals occurred when the finger was already close to the target port
initially selected. Future research should explore the conditions that lead to reversals when
the time-varying stream of sensory information continues throughout movement execution
(Kane, Senne, and Scott 2023).
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Methods

Rat behavioral protocol
15 male Long-Evans rats performed a free reaction time (RT) two-alternative forced choice
(2AFC) intensity level discrimination (ILD) task (Pardo-Vazquez et al. 2019). We summarize
the structure of the task below, for further details see (Hermoso-Mendizabal et al. 2020;
Hernández-Navarro et al. 2021). Rats initiated a trial by maintaining fixation at the center
port during 300 ms. A broadband noise stimulus was then presented at two speakers, and
lasted until the rat retracted from the port and initiated a response. The two lateral ports were
only about 5 cm from the central port, which allowed rats to rapidly execute their response
trajectories by only moving their upper body (see Supplementary Video 1). The relative
stimulus strength (i.e. the average difference in sound intensity between the two speakers)
changed every trial between different values: 0 (mean equal intensity), 0.25, 0.5 and 1
(stimulus played on the correct side only). This resulted in 7 values of stimulus evidence (i.e.
stimulus strength signed by the stimulus category), ranging from -1 (clear evidence to the
left) to +1 (clear evidence to the right). The interaural level difference fluctuated dynamically
within each stimulus along the predetermined mean. Correct responses were rewarded with
25 μl of water and incorrect ones punished with a 2 s timeout. The stimulus category (left vs
right dominant) was drawn based on the current block: in repeating blocks, the stimulus
category was repeated with probability Prep=0.8 ; in alternating blocks, the stimulus category
was repeated with probability Prep= 0.2. In 6 out of 15 rats we also introduced a small fraction
of silent trials in which, despite not presenting any stimulus, rats elicited a valid response
(mean±SD 6.7 ± 0.6% of all trials; Group 2 in Table 1). Trials with reaction times above 400
ms or motor time above 1000 ms were excluded. The behavioral setup was controlled by
BPod, an open control system for precision animal behavior measurement (by Sanworks)
and the task was run using the Python-based open software package PyBPod
(http://pybpod.com/).

Animal groups # rats # sessions
(mean±std)

# trials per rat
(mean ± std)

# silent trials
per rat

(mean ± std)

Group #1 (ILD task):
LE36, LE37, LE38, LE39, LE40,
LE41, LE84, LE85, LE86

9 131 ± 45 59,870
± 25,933

0

Group #2 (ILD task + silent
trials): LE42, LE43, LE44, LE45,
LE46, LE47

6 283 ± 45 123,983
± 26581

8,411
± 2,352

TOTAL 15 2,889 1,282,733 50,468

Table 1. Rat groups.

Model of prior evidence

We defined the prior evidence z as the magnitude in each trial of the choice bias caused by
the recent history of trials. As we described in detail in a previous work
(Hermoso-Mendizabal et al. 2020), rats leverage the trial sequence statistics to develop a
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prior expectation on the next rewarded side. Because history-dependent biases disappeared
following an error (i.e. the prior did not guide the decision) (Hermoso-Mendizabal et al.
2020), in the remainder of the analyses we only analyzed trials following correct responses
(77.13 ± 2.65 %). This prior expectation can be recapitulated by using a Generalized Linear
Model of choices which quantifies the weight of different elements of recent history on
choices (Busse et al. 2011; Frund, Wichmann, and Macke 2014; Abrahamyan et al. 2016;
Braun, Urai, and Donner 2018; Hermoso-Mendizabal et al. 2020). In rats, we used the same
logistic regression model as in (Molano-Mazón et al. 2023) - see the reference for full model
description. The model regressors include the previous repetitions/alternations (with different
weights depending on whether each of the responses in the transition were rewarded) and
previous rewarded and non-rewarded responses occurring in the last 10 trials. The model
also includes a regressor for current stimulus St (defined as the average intensity difference
between the two tone sounds) and a fixed side bias. After fitting the GLM model to the
choices of each individual animal, the prior evidence z was defined in each trial as the sum
of the trial-history regressors weighted by their corresponding regression weights. For
humans, due to the lower number of trials, we used an exponential kernel as a basis function
for the impact of the different history regressors (Supplementary Fig. 3), as (Frund,
Wichmann, and Macke 2014).

Automatic tracking of rat position

A USB camera OV2710 CMOS (3.6 mm lens, 30 to 120 frames per second, 640 x 480 pixels
per frame) was placed at approximately 30 cm from the floor level, recording the animal
movements from above. The camera had no infra-red filter, so the rats could be recorded
without being disturbed by visible light. Snout coordinates in the horizontal plane were
extracted from videos using DeepLabCut (v1.11 using a resnet50 architecture) (Mathis et al.
2018). To train the network to extract the rats pose, a total of 480 images from several
subjects were manually labeled. We used nine points in the rats body: the base of tail, a
point on the bottom of the back, the midpoint between the two omoplates, the tip of the two
ears, the two eyes, a point at the snout base and a point at the tip of the snout
(Supplementary Video 1). We then used the point at the snout base to extract response
trajectories as the tip of the snout was often occluded when rates poked into the ports. 95%
of the images were used to train the model, while the remaining 5% was used to evaluate its
performance. The deviation (RMSE) of the snout tracking done by the model from the
ground truth (human-labeled images) was 3.71 pixels for the test set (1.04 pixels for the
training set). Each pixel corresponded to 0.07 centimeters.

Preprocessing of the trajectories

The output of this processing pipeline was a time-series for the coordinates of the animal
snout in two dimensions (x,y). To compensate for small camera movements across sessions,
pixel space was re-referenced on every session such that the central port was located at y=0
and lateral ports at coordinates y=-±75 pixels (y=±5.25 cm). The time-series were
interpolated linearly to infer trajectories at a time resolution of 1 ms. We excluded all
trajectories for which the detected y position was above +100 pixels or below -100 pixels (+7
cm or -7 cm, respectively) at any time during the orienting trajectory (1.12 % of trajectories),
or when the end point of the trajectory was inconsistent with the registered response port
(0.41%). All trajectories were re-referenced temporally to motion onset (t=0), i.e. the time at
which the animal left the central port.
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Average trajectories
We obtained trial-averaged trajectory traces and velocity traces for different values of the
stimulus and prior evidence. We first flipped the sign of trajectories ending at the right port so
that all trajectories end at positive values. We padded the coordinates of the snout at
constant value after reaching the response port. Further, on each trial, we shifted all
coordinates along the y-coordinate so that y=0 corresponds to the average position of the
animal in the last 100 ms before motor onset. The stimulus evidence towards the response
corresponds to the stimulus strength (between 0 and 1) signed by the congruence with the
final response. For example, if the stimulus category is rightward but the selected port is
leftward, the stimulus is incongruent with the response, and so the stimulus evidence
towards the response is negative. The prior evidence towards the response is defined
similarly. The signed prior evidence was binned into 5 quantiles. Instantaneous y velocities
were computed by finite differences, i.e. they corresponded to the difference of y coordinates
in successive frames divided by the time resolution.

Movement time analysis
Movement time was defined as the duration between central port withdrawal to lateral port
entrance, both registered by photogates at the corresponding ports. We measured the raw
impact of prior evidence on MT by focussing on silent trials, to avoid the confounding effect
of sensory evidence. We measured the raw impact of stimulus evidence on MT by focussing
on trials with small prior (|z|<10% percentile), to reduce the confounding effect of prior
evidence and on express responses (RT<50 ms) in which RTs are independent of stimulus
evidence, in order to reduce a possible confounding indirect impact of stimulus on MT
reaction time and then on MT). Finally, to test whether sensory evidence can speed up
and/or slow down trajectories, we focussed our analysis on trials whereby the prior strongly
supported the final decision (prior evidence towards response z > median) in order to
minimize the proportion of reversals; and in express response trials, to reduce the impact of
stimulus evidence on RT. We also performed a linear regression analysis for MT in each
animal separately, using three different regressors: the stimulus strength and the prior
evidence towards the responses; and the index of the trial within the session, an indicator of
the animal satiety and fatigue (Hernández-Navarro et al. 2021). All regressors were
z-scored.

Splitting time
To estimate the earliest time at which stimulus information impacted the trajectories, we
computed the splitting time of trajectories associated with different stimulus strengths. Here,
we first flipped the sign of the y coordinates when the stimulus category was rightwards
(independently from the actual response), so that positive y values correspond to trajectories
towards the correct port. For each reaction time bin (bin size=10 ms), we computed the
Pearson correlation across trials between the position of the animal along the y axis and the
stimulus strength. We extracted the time-series of p-value for these correlations and
identified the splitting time as the last non-significant time point using a criterion of p=0.05.
This analysis was performed separately for each animal.

Trajectory reversals
For each trial, we measured the maximal position of the animal along the mean-shifted y
axis (see Average Trajectories) in the direction contrary to the response port and labeled this
as the reversal point. Trials were identified as reversal trials if this value exceeded a certain
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detection threshold (8 pixels, i.e. 0.56 cm). We applied more stringent criteria (i.e. higher
detection threshold) which yielded a smaller fraction of CoMs. However, qualitatively, results
were unchanged when using a more stringent detection threshold.

Statistical model of decision-making and response trajectories

The generative model is composed of two modules: a decision-making module, which
integrates both the prior based on the history of previous trials and the stimulus evidence
from the current trial, and a motor module that translates the accumulated evidence into a
smooth orienting trajectory towards the corresponding port. The overall principle of the
model is to jointly maximize the probability for correct choices and minimize movement costs
(Rigoux and Guigon 2012; Lepora and Pezzulo 2015). The decision-making module is based
on the architecture of the Parallel Sensory Integration and Action Model (PSIAM)
(Hernández-Navarro et al. 2021). In the PSIAM, a response is initiated wherever either of
two parallel processes first reaches a boundary: an Evidence Accumulation process that
integrates decision evidence over time and initiates the response when it reaches a bound,
akin to the Drift Diffusion Model (Roger Ratcliff and McKoon 2008); and an Action Initiation
process that can trigger the initiation of the response proactively, i.e. independently of the
decision evidence integration, at a timing determined by a stochastic process. The Evidence
Accumulation process is formalized as a decision variable x(t) that represents the relative
evidence in favor of each choice, with positive and negative values supporting the leftward
and rightward choices, respectively. Its initial value (at fixation onset) is equal to the prior
evidence z multiplied by the model parameter zp. The dynamics of the decision variable x(t)
are subject to leak , and integrate the stimulus evidence s(t) with drift and an afferentλ 𝑎

𝑃

delay taff, following:

𝑑𝑥/𝑑𝑡 =  − λ𝑥 + 𝑎
𝑝
𝑠(𝑡 − 𝑡

𝑎
) +  η(𝑡) .  

where is a white noise process of variance . If the decision variable reaches one of η(𝑡) σ
𝐷𝑉
2

two symmetric decision bounds ± 𝛉DV, the model selects the corresponding response (first
read-out) and the trajectory towards the selected port is initiated. A response can be also
initiated if the Action Initiation process reaches its associated boundary first. This process is

an independent drift-diffusion process with diffusion coefficient , a single boundary (σ2
𝐴𝐼

θ
𝐴𝐼

)

and drift that depends linearly on trial index as , where and𝑎
𝐴𝐼

 =  𝑣
𝐴𝐼 

+  𝑤
𝐴𝐼 

 𝑇𝑟𝑖𝑎𝑙𝐼𝑛𝑑𝑒𝑥 𝑣
𝐴𝐼 

are the intercept and slope, respectively. The Action Initiation variable starts integrating𝑤
𝐴𝐼 

after some delay ( ) from the fixation onset. In the case that the response is triggered by𝑡
𝐴𝐼

the Action Initiation, the side of the response is determined by the sign of the decision
variable at that time (1st read-out). In either case, the initial response is started after the𝑥

1

first read-out with an efferent delay teff, which triggers the offset of the stimulus. Evidence
integration continues after this first read-out and until the stimulus is fully integrated (i.e. for a
further delay equal to the sum of afferent and efferent delays teff + taff). If during this interval
the decision variable hits the boundary for changes of mind (set at a value θCOM with the sign
opposite to the initial response), the initial response is reversed (Figure 5a, yellow traces).
Otherwise, the trajectory is maintained, and the second read-out (i.e. value of the decision𝑥

2
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variable after a delay of teff + taff with respect to the first read-out) only modulates the vigor of
the rest of the trajectory towards the response port (see below).

The motor module translates the decisions onto motor trajectories. The initial trajectory is
computed by first selecting the initial Movement Time, which depends linearly on the
absolute value of the evidence accumulated at the first read-out |x1| and on the trial index:

(1)𝑀𝑇
𝑖𝑛𝑖

= β
0

− β
𝐷𝑉

|𝑥
1
| + β

𝑇𝐼
𝑇𝑟𝑖𝑎𝑙𝐼𝑛𝑑𝑒𝑥 +  η

where is drawn from a Gumbel distribution of variance and mode at zero (thisη σ2
𝑀𝑇

 

distribution was used to produce right-skewed MT distribution as observed in animals, see
Figure 3h). This initial MT is then converted into a full trajectory by applying the principle of
minimal jerk (Flash and Hogan 1985), which is known to produce good approximations to
ballistic movements. The principle specifies the full trajectory y(t) between a starting point y0
and an endpoint yE given the movement duration (or MT), and the velocity and acceleration
at the start point and endpoint. This trajectory minimizes the overall jerk, that is the integral
of the square of the third-order derivative of position over the entire interval. The solution is

given by a 5th order polynomial: (Shadmehr𝑦(𝑡) =  𝑎
0

+ 𝑎
1
𝑡 + 𝑎

2
𝑡2 + 𝑎

3
𝑡3 + 𝑎

4
𝑡4 + 𝑎

5
𝑡5 

and Wise 2004). The vector of coefficients is found by solving a linear system specifying𝙖
the boundary conditions on , and at the initial and final points and :𝑦(𝑡) 𝑦'(𝑡) 𝑦''(𝑡) 𝑡

0
𝑡

𝐸

𝜧(𝑡
0
,  𝑡

𝐸
). 𝙖 =  𝙗 

where

and the vector b is determined by the boundary conditions

Note that we𝙗 =  [𝑦(𝑡
0
),  𝑦'(𝑡

0
), 𝑦''(𝑡

0
), 𝑦(𝑡

𝐸
),  𝑦'(𝑡

𝐸
), 𝑦''(𝑡

𝐸
)]𝑇 = [0,  0, 0,  ± 75,  0 0]𝑇 .

assume null velocity and acceleration along the y-axis at the initial and ending point (the sign
of the position at depends on the selected response port).𝑡

𝐸

Inverting this system gives . Imposing for the initial trajectory,𝙖 =  𝜧(𝑡
0
,  𝑡

𝐸
)−1𝙗 𝑡

𝑜 
=  0
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with . The initial trajectory is later updated following the second read-out at time𝑡
𝐸

= 𝑀𝑇
𝑖𝑛𝑖

, with being the time of the second read-out. If that second read-out leads to𝑡
𝑈

= 𝑡
2

+ 𝑡
𝑒𝑓𝑓

𝑡
2

a change of mind, the endpoint is changed to the alternative response port (Friedman,
Brown, and Finkbeiner 2013). If no change of mind is produced, the response port stays
unchanged but the end time is updated. In all cases, the endtime changes according to

. (2)𝑡'
𝐸

=  𝑡
𝐸

− β
𝑈

(𝑥
2

− 𝑥
1
) 𝑠𝑔𝑛(𝑥

1
) 

In other words, the trajectory is sped up w.r.t the original trajectory if the decision variable at
the second read-out is larger in amplitude than at the first read-out, and is slowed down
otherwise. The updated trajectory between and is drawn again using the minimum-jerk𝑡

𝑈
𝑡'

𝐸

principle, solving a new linear equation as seen above but where the initial conditions
correspond to the position, velocity and acceleration of the initial trajectory at time (due to𝑡

𝑈

the continuity of these variables). Model simulations produced trajectories that we sampled
at a 1000-Hz rate.

The model contains 18 parameters overall: 5 parameters related for the Action Initiation

process , 8 parameters for the Evidence Accumulation process(𝑡
𝐴𝐼

,  𝑣
𝐴𝐼

,  𝑤
𝐴𝐼

,  σ
𝐴𝐼

,  θ
𝐴𝐼

)

and 5 parameters for the response trajectories(𝑡
𝑎𝑓𝑓

,  𝑡
𝑒𝑓𝑓

, 𝑧
𝑃
,  𝑎

𝑝
,  λ,  σ

𝐷𝑉
,   θ

𝐷𝑉
,  θ

𝐶𝑂𝑀
) 

. Parameters and were set to one to avoid identifiability issues(β
𝑜
, σ

𝑀𝑇
, β

𝐷𝑉
,  β

𝑇𝐼
, β

𝑈
) σ

𝐴𝐼
σ

𝐷𝑉

for the AI and DV process.

Alternative models
The following alternative models were simulated, with parameters fitted from the full model.
In the random initial choice model, there is no reading of the decision variable in the first
read-out. Therefore, the initial choice is randomly selected between left and right with 50%
probability, and the initial trajectory is independent of the accumulated evidence (i.e. β

𝐷𝑉
= 0

, so from Equation 1). A single read-out is performed after𝑀𝑇
𝑖𝑛𝑖

= β
0

+ β
𝑇𝐼

𝑇𝑟𝑖𝑎𝑙𝐼𝑛𝑑𝑒𝑥 +  η

all evidence has been integrated, based on vertical boundaries. The updated movement time
is computed using the absolute value of the decision variable at that instant. CoMs emerge
when the first (random) and final choice are at odds, which by construction occurs in 50% of
trials. In the no trajectory update model, the first read-out occurs as in the full model, but
there is no update at all (i.e. , so = from Equation 2). This model does notβ

𝑈
= 0 𝑡'

𝐸
𝑡

𝐸

produce CoMs, since there is no second reading of the decision variable. Finally, the no
vigor update model is identical to the full model except that the trajectory is only updated in
the case the DV hits the CoMs boundary (i.e. when a CoM occurs, otherwise).β

𝑈
≠ 0 β

𝑈
= 0

This model is conceptually similar to the change-of-mind model in (Resulaj et al. 2009).

Model fitting
The model parameters were fitted to the joint pattern of choices, reaction times and
movement times, separately for each rat. Because the likelihood of such a model cannot be
expressed analytically, we used Mixed Neural Likelihood Estimator (MNLE), a
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simulation-based method to approximate the likelihood of a model designed for mixed data,
as typically found in decision-making tasks (Boelts et al. 2022). Here, the mixed data
corresponds to one binary variable (choice) and two continuous variables (RT and MT).
MNLE consists of training an artificial neural network that takes model parameters as input
and outputs a joint probability distribution for the dependent variables. We extended the
method to also include per-trial conditions (stimulus evidence st, prior evidence zt, trial index
tit) as extra input to the network. Thus the method approximated .𝑝(𝑐, 𝑅𝑇, 𝑀𝑇|θ, 𝑠

𝑡
, 𝑧

𝑡
, 𝑡𝑖

𝑡
)

More precisely, the method relies on training two separate networks (Figure 5d), one that
learns the conditional probability , while the other learns the conditional𝑝(𝑐|θ, 𝑠

𝑡
, 𝑧

𝑡
, 𝑡𝑖

𝑡
)

density . The network was trained on 10 million simulations of the𝑝(𝑅𝑇, 𝑀𝑇|𝑐, θ, 𝑠
𝑡
, 𝑧

𝑡
, 𝑡𝑖

𝑡
)

original model: in each simulation, the model parameters were sampled from uniform
distributions over plausible values, while the per-trial conditions corresponded to one trial
randomly selected from the rat experimental dataset.

We confirmed that the trained network provided a good approximation to the true likelihood
in three different ways. First, we compared its output for a fixed parameter set to the density
obtained from 500.000 model simulations at the same parameter values (Supplementary
Fig. 4). This was repeated for a set of 6 trial examples covering all prototypic configurations
of prior-stimulus association and different levels of trial index. Second, we checked the
robustness of the method by comparing the approximated likelihood of two networks trained
with two different sets of 10 million simulations (Supplementary Fig. 5a-f). Finally, we
confirmed that the likelihood approximation improves as the size of the training set increases
(Supplementary Fig. 5g). We then fitted the model for each individual rat through maximum
likelihood estimation, using the approximate likelihood provided by the trained network. To
limit the impact of possible outliers on parameter estimation, we used a mixture of two
distributions, the approximated distribution and a contaminant distribution
(Hernández-Navarro et al. 2021):

𝑝(𝑐, 𝑅𝑇, 𝑀𝑇|θ, 𝑠
𝑡
, 𝑧

𝑡
, 𝑡𝑖

𝑡
) = (1 − ε)𝑝

𝑀𝑁𝐿𝐸
(𝑐, 𝑅𝑇, 𝑀𝑇|θ, 𝑠

𝑡
, 𝑧

𝑡
, 𝑡𝑖

𝑡
) + ε𝑝

𝐶
(𝑐, 𝑅𝑇, 𝑀𝑇)

The contaminant was simply set as a uniform distribution (with RT bounded between 0 and
RTmax=1, and MT bounded between 0 and MTmax=0.4), i.e. 𝑝

𝐶
(𝑐, 𝑅𝑇, 𝑀𝑇) = 1/(2𝑅𝑇

𝑚𝑎𝑥
𝑀𝑇

𝑚𝑎𝑥
)

. The mixture parameter ε was set to 10-3. Because fixation breaks (i.e RT<0) have no
associated choice nor movement time (the trial was aborted), we replaced the joint likelihood
term for these trials by the likelihood of the reaction time, i.e. we defined the overall

likelihood as . The𝐿(θ) =  
𝑅𝑇

𝑡
>0

∑ 𝑙𝑜𝑔 𝑝(𝑐
𝑡
, 𝑅𝑇

𝑡
, 𝑀𝑇

𝑡
|θ, 𝑠

𝑡
, 𝑧

𝑡
, 𝑡𝑖

𝑡
) +

𝑅𝑇
𝑡
<0

∑ 𝑙𝑜𝑔 𝑝(𝑅𝑇
𝑡
|θ, 𝑠

𝑡
, 𝑧

𝑡
, 𝑡𝑖

𝑡
)

likelihood of the reaction time for these fixation breaks can be expressed analytically as the
RT distribution in negative RTs (which corresponds only to AI-triggered responses) follows
an inverse Gaussian distribution (Hernández-Navarro et al. 2021). The optimization
procedure relied on Bayesian adaptive direct search (BADS) (Acerbi and Ma, 2017),
implemented in the PyBads package.
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Human behavioral paradigm
We tested n=20 volunteer participants (10 females and 10 males, 19 right-handed and 1
left-handed, age 19-26) performing a task that mimicked the rodent task. The task was
performed on an iPad tablet with resolution 2048 x 1536 pixels (19.7 x 14.8 cm), with 60 Hz
frame rate at an approximate viewing distance of 50 cm, using the StimuliApp software
(Marin-Campos et al. 2021). In each trial, a black screen displayed three gray circles: the
starting point at the bottom of the screen, and two target points positioned symmetrically.
The target points were located at coordinates (-600, 600) and (600, 600) pixels,
corresponding to (-5.76, 5.76) and (5.76, 5.76) cm, respectively, in relation to the starting
point. Subjects initiated each trial by maintaining the index finger of their preferred hand
pressed against the starting point for 500 ms (fixation period). The white-noise stimulus was
then presented binaurally using Sennheiser headphones. The relative interaural level
difference of the stimulus changed every trial between different values: 0 (mean equal
intensity), 0.1, 0.2 and 0.4; the mean intensity was constant throughout the stimulus.
Subjects had to slide the finger towards the target point at the side corresponding to the
loudest stimulus. The stimulus was interrupted as soon as the finger slid away from the
starting point. Feedback was provided after reaching the target point. Correct and incorrect
choices were indicated by the whole screen turning green and red, respectively, for 300 ms.
Importantly, subjects had to start moving the finger within 300 ms after stimulus onset,
otherwise the trial was considered a missed trial and the screen turned yellow. This time
constraint introduced an urgency component which nudged participants into relying more on
prior expectations. The screen also turned to yellow if subjects initiated a response before
the end of the fixation period. The trial sequence statistics replicated the task used for the
rats. The probability of repeating the previous stimulus category (left/right), Prep, varied
between Repeating blocks (Prep=0.8) and Alternating blocks (Prep=0.2). Blocks changed
every 80 trials. Subjects were not informed about this correlation structure. They performed
a training of 200 trials before completing the task. The session lasted on average 1 hour and
40 minutes (interleaved by pauses every 100 trials), yielding an average of 2000 ± 317 trials
(mean ± std) for each participant. Subjects received monetary compensation that depended
on their performance (20€ + 0.01€ x Ncorr, where Ncorr is the number of correct responses).
The study was approved by the Ethics Committee for Clinical Research of the Barcelona
Clinic Hospital.

Analysis of human experimental data

We discarded 4 subjects with low performance (under 70%), and another 2 subjects whose
median movement time was larger than 400ms (median across all trials from all subjects
equal to 181 ms) (Chapman et al. 2010; Haith, Huberdeau, and Krakauer 2015). Fixation
breaks and late responses were excluded from the analyses. We grouped all the trials from
the remaining subjects together (except for the analysis of splitting time which was also
performed separately for each subject). As for the rats, we analyzed only after-correct trials,
for a total of 23,881 included trials. We analyzed the trajectories of the finger press from the
starting point to the response point. Trajectories were obtained at a sample rate of 60 Hz,
which were linearly interpolated to a 1000 Hz rate.

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.11.09.566389doi: bioRxiv preprint 

https://paperpile.com/c/dr1lFr/IbdY
https://paperpile.com/c/dr1lFr/4G00F+ZaF7Q
https://doi.org/10.1101/2023.11.09.566389
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements
The work was supported by the Spanish State Research Agency (RYC-2017-23231 to AH
and AGD, PID2019-111629GB-I00 to AH, MMM and AGD; Severo Ochoa and María de
Maeztu Program for Centers and Units of Excellence in R&D CEX2020-001084-M), Spanish
Ministry of Economy and Competitiveness together with the European Regional
Development Fund grant SAF2015-70324-R (to JR), European Research Council grant
ERC-2015-CoG-683209 under the European Union’s Horizon 2020 (to JR); CERCA
Programme/Generalitat de Catalunya. Part of the work was developed in the Centre Esther
Koplowitz (Barcelona). J.R. appreciates the hospitality of the Grossman Center for
Quantitative Biology and Human Behavior at the University of Chicago. MMM was supported
by the National Institutes of Health under award number 1R01MH132172-01.

Declaration of interests
The authors declare no competing interests.

References

Abrahamyan, Arman, Laura Luz Silva, Steven C. Dakin, Matteo Carandini, and Justin L.
Gardner. 2016. “Adaptable History Biases in Human Perceptual Decisions.”
Proceedings of the National Academy of Sciences.
https://doi.org/10.1073/pnas.1518786113.

Acerbi, Luigi, and Wei Ji Ma. "Practical Bayesian optimization for model fitting with Bayesian
adaptive direct search." Advances in neural information processing systems 30 (2017).

Berg, Ronald van den, Kavitha Anandalingam, Ariel Zylberberg, Roozbeh Kiani, Michael N.
Shadlen, and Daniel M. Wolpert. 2016. “A Common Mechanism Underlies Changes of
Mind about Decisions and Confidence.” eLife 5 (February): e12192.

Boelts, Jan, Jan-Matthis Lueckmann, Richard Gao, and Jakob H. Macke. 2022. “Flexible and
Efficient Simulation-Based Inference for Models of Decision-Making.” eLife 11 (July).
https://doi.org/10.7554/eLife.77220.

Bogacz, Rafal, Eric Brown, Jeff Moehlis, Philip Holmes, and Jonathan D. Cohen. 2006. “The
Physics of Optimal Decision Making: A Formal Analysis of Models of Performance in
Two-Alternative Forced-Choice Tasks.” Psychological Review 113 (4): 700–765.

Bogacz, Rafal, Eric-Jan Wagenmakers, Birte U. Forstmann, and Sander Nieuwenhuis. 2010.
“The Neural Basis of the Speed–accuracy Tradeoff.” Trends in Neurosciences 33 (1):
10–16.

Boyd-Meredith, J. Tyler, Alex T. Piet, Emily Jane Dennis, Ahmed El Hady, and Carlos D.
Brody. 2022. “Stable Choice Coding in Rat Frontal Orienting Fields across
Model-Predicted Changes of Mind.” Nature Communications 13 (1): 3235.

Braun, Anke, Anne E. Urai, and Tobias H. Donner. 2018. “Adaptive History Biases Result
from Confidence-Weighted Accumulation of Past Choices.” The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience 38 (10): 2418–29.

Busse, Laura, Asli Ayaz, Neel T. Dhruv, Steffen Katzner, Aman B. Saleem, Marieke L.
Schölvinck, Andrew D. Zaharia, and Matteo Carandini. 2011. “The Detection of Visual
Contrast in the Behaving Mouse.” The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience 31 (31): 11351–61.

Chapman, Craig S., Jason P. Gallivan, Daniel K. Wood, Jennifer L. Milne, Jody C. Culham,
and Melvyn A. Goodale. 2010. “Reaching for the Unknown: Multiple Target Encoding
and Real-Time Decision-Making in a Rapid Reach Task.” Cognition 116 (2): 168–76.

Cos, Ignasi, Nicolas Bélanger, and Paul Cisek. 2011. “The Influence of Predicted Arm

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.11.09.566389doi: bioRxiv preprint 

http://paperpile.com/b/dr1lFr/G9kpY
http://paperpile.com/b/dr1lFr/G9kpY
http://paperpile.com/b/dr1lFr/G9kpY
http://paperpile.com/b/dr1lFr/G9kpY
http://dx.doi.org/10.1073/pnas.1518786113
http://paperpile.com/b/dr1lFr/G9kpY
http://paperpile.com/b/dr1lFr/Pjo88
http://paperpile.com/b/dr1lFr/Pjo88
http://paperpile.com/b/dr1lFr/Pjo88
http://paperpile.com/b/dr1lFr/8MoqV
http://paperpile.com/b/dr1lFr/8MoqV
http://paperpile.com/b/dr1lFr/8MoqV
http://dx.doi.org/10.7554/eLife.77220
http://paperpile.com/b/dr1lFr/8MoqV
http://paperpile.com/b/dr1lFr/OM74a
http://paperpile.com/b/dr1lFr/OM74a
http://paperpile.com/b/dr1lFr/OM74a
http://paperpile.com/b/dr1lFr/hh3DV
http://paperpile.com/b/dr1lFr/hh3DV
http://paperpile.com/b/dr1lFr/hh3DV
http://paperpile.com/b/dr1lFr/oitsM
http://paperpile.com/b/dr1lFr/oitsM
http://paperpile.com/b/dr1lFr/oitsM
http://paperpile.com/b/dr1lFr/BKgTj
http://paperpile.com/b/dr1lFr/BKgTj
http://paperpile.com/b/dr1lFr/BKgTj
http://paperpile.com/b/dr1lFr/WhfdX
http://paperpile.com/b/dr1lFr/WhfdX
http://paperpile.com/b/dr1lFr/WhfdX
http://paperpile.com/b/dr1lFr/WhfdX
http://paperpile.com/b/dr1lFr/4G00F
http://paperpile.com/b/dr1lFr/4G00F
http://paperpile.com/b/dr1lFr/4G00F
http://paperpile.com/b/dr1lFr/G6h1y
https://doi.org/10.1101/2023.11.09.566389
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biomechanics on Decision Making.” Journal of Neurophysiology 105 (6): 3022–33.
Flash, T., and N. Hogan. 1985. “The Coordination of Arm Movements: An Experimentally

Confirmed Mathematical Model.” The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience 5 (7): 1688–1703.

Friedman, Jason, Scott Brown, and Matthew Finkbeiner. 2013. “Linking Cognitive and
Reaching Trajectories via Intermittent Movement Control.” Journal of Mathematical
Psychology 57 (3): 140–51.

Frund, I., F. A. Wichmann, and J. H. Macke. 2014. “Quantifying the Effect of Intertrial
Dependence on Perceptual Decisions.” Journal of Vision. https://doi.org/10.1167/14.7.9.

Gallivan, Jason P., Craig S. Chapman, Daniel M. Wolpert, and J. Randall Flanagan. 2018.
“Decision-Making in Sensorimotor Control.” Nature Reviews. Neuroscience 19 (9):
519–34.

Gold, Joshua I., and Michael N. Shadlen. 2007. “The Neural Basis of Decision Making.”
Annual Review of Neuroscience 30: 535–74.

Good, I. J. 1979. “Studies in the History of Probability and Statistics. XXXVII A. M. Turing’s
Statistical Work in World War II.” Biometrika 66 (2): 393–96.

Gordon, Jeremy, Antonella Maselli, Gian Luca Lancia, Thomas Thiery, Paul Cisek, and
Giovanni Pezzulo. 2021. “The Road towards Understanding Embodied Decisions.”
Neuroscience and Biobehavioral Reviews 131 (December): 722–36.

Grillner, Sten, and Brita Robertson. 2016. “The Basal Ganglia Over 500 Million Years.”
Current Biology: CB 26 (20): R1088–1100.

Gupta, Diksha, Brian DePasquale, Charles D. Kopec, and Carlos D. Brody. 2023.
“Trial-History Biases in Evidence Accumulation Can Give Rise to Apparent Lapses.”
bioRxiv : The Preprint Server for Biology, February.
https://doi.org/10.1101/2023.01.18.524599.

Haith, Adrian M., David M. Huberdeau, and John W. Krakauer. 2015. “Hedging Your Bets:
Intermediate Movements as Optimal Behavior in the Context of an Incomplete
Decision.” PLoS Computational Biology 11 (3): e1004171.

Hawkins, Guy E., and Andrew Heathcote. 2021. “Racing against the Clock: Evidence-Based
versus Time-Based Decisions.” Psychological Review 128 (2): 222–63.

Hermoso-Mendizabal, Ainhoa, Alexandre Hyafil, Pavel E. Rueda-Orozco, Santiago
Jaramillo, David Robbe, and Jaime de la Rocha. 2020. “Response Outcomes Gate the
Impact of Expectations on Perceptual Decisions.” Nature Communications 11 (1): 1057.

Hernández-Navarro, Lluís, Ainhoa Hermoso-Mendizabal, Daniel Duque, Jaime de la Rocha,
and Alexandre Hyafil. 2021. “Proactive and Reactive Accumulation-to-Bound Processes
Compete during Perceptual Decisions.” Nature Communications 12 (1): 7148.

Kane, Gary A., Ryan A. Senne, and Benjamin B. Scott. 2023. “Rat Movements Reflect
Internal Decision Dynamics in an Evidence Accumulation Task.” bioRxiv : The Preprint
Server for Biology, September. https://doi.org/10.1101/2023.09.11.556575.

Kaufman, Matthew T., Mark M. Churchland, Stephen I. Ryu, and Krishna V. Shenoy. 2015.
“Vacillation, Indecision and Hesitation in Moment-by-Moment Decoding of Monkey Motor
Cortex.” eLife 4 (May): e04677.

Kiani, Roozbeh, Leah Corthell, and Michael N. Shadlen. 2014. “Choice Certainty Is Informed
by Both Evidence and Decision Time.” Neuron 84 (6): 1329–42.

Kiani, Roozbeh, Christopher J. Cueva, John B. Reppas, and William T. Newsome. 2014.
“Dynamics of Neural Population Responses in Prefrontal Cortex Indicate Changes of
Mind on Single Trials.” Current Biology: CB 24 (13): 1542–47.

Korbisch, Colin C., Daniel R. Apuan, Reza Shadmehr, and Alaa A. Ahmed. 2022. “Saccade
Vigor Reflects the Rise of Decision Variables during Deliberation.” Current Biology: CB
32 (24): 5374–81.e4.

Lak, Armin, Gil M. Costa, Erin Romberg, Alexei A. Koulakov, Zachary F. Mainen, and Adam
Kepecs. 2014. “Orbitofrontal Cortex Is Required for Optimal Waiting Based on Decision
Confidence.” Neuron 84 (1): 190–201.

Lepora, Nathan F., and Giovanni Pezzulo. 2015. “Embodied Choice: How Action Influences
Perceptual Decision Making.” PLoS Computational Biology 11 (4): e1004110.

30

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.11.09.566389doi: bioRxiv preprint 

http://paperpile.com/b/dr1lFr/G6h1y
http://paperpile.com/b/dr1lFr/yHkIZ
http://paperpile.com/b/dr1lFr/yHkIZ
http://paperpile.com/b/dr1lFr/yHkIZ
http://paperpile.com/b/dr1lFr/K1FMi
http://paperpile.com/b/dr1lFr/K1FMi
http://paperpile.com/b/dr1lFr/K1FMi
http://paperpile.com/b/dr1lFr/YwJb9
http://paperpile.com/b/dr1lFr/YwJb9
http://dx.doi.org/10.1167/14.7.9
http://paperpile.com/b/dr1lFr/YwJb9
http://paperpile.com/b/dr1lFr/j6p82
http://paperpile.com/b/dr1lFr/j6p82
http://paperpile.com/b/dr1lFr/j6p82
http://paperpile.com/b/dr1lFr/sWAGo
http://paperpile.com/b/dr1lFr/sWAGo
http://paperpile.com/b/dr1lFr/cBMRz
http://paperpile.com/b/dr1lFr/cBMRz
http://paperpile.com/b/dr1lFr/unLL6
http://paperpile.com/b/dr1lFr/unLL6
http://paperpile.com/b/dr1lFr/unLL6
http://paperpile.com/b/dr1lFr/xK5xF
http://paperpile.com/b/dr1lFr/xK5xF
http://paperpile.com/b/dr1lFr/idRJw
http://paperpile.com/b/dr1lFr/idRJw
http://paperpile.com/b/dr1lFr/idRJw
http://paperpile.com/b/dr1lFr/idRJw
http://dx.doi.org/10.1101/2023.01.18.524599
http://paperpile.com/b/dr1lFr/idRJw
http://paperpile.com/b/dr1lFr/ZaF7Q
http://paperpile.com/b/dr1lFr/ZaF7Q
http://paperpile.com/b/dr1lFr/ZaF7Q
http://paperpile.com/b/dr1lFr/gNqyM
http://paperpile.com/b/dr1lFr/gNqyM
http://paperpile.com/b/dr1lFr/tnM8C
http://paperpile.com/b/dr1lFr/tnM8C
http://paperpile.com/b/dr1lFr/tnM8C
http://paperpile.com/b/dr1lFr/GB0Kc
http://paperpile.com/b/dr1lFr/GB0Kc
http://paperpile.com/b/dr1lFr/GB0Kc
http://paperpile.com/b/dr1lFr/ZTlIV
http://paperpile.com/b/dr1lFr/ZTlIV
http://paperpile.com/b/dr1lFr/ZTlIV
http://dx.doi.org/10.1101/2023.09.11.556575
http://paperpile.com/b/dr1lFr/ZTlIV
http://paperpile.com/b/dr1lFr/m0JsA
http://paperpile.com/b/dr1lFr/m0JsA
http://paperpile.com/b/dr1lFr/m0JsA
http://paperpile.com/b/dr1lFr/IYtBY
http://paperpile.com/b/dr1lFr/IYtBY
http://paperpile.com/b/dr1lFr/x6Upj
http://paperpile.com/b/dr1lFr/x6Upj
http://paperpile.com/b/dr1lFr/x6Upj
http://paperpile.com/b/dr1lFr/yQOHn
http://paperpile.com/b/dr1lFr/yQOHn
http://paperpile.com/b/dr1lFr/yQOHn
http://paperpile.com/b/dr1lFr/Ae4Cw
http://paperpile.com/b/dr1lFr/Ae4Cw
http://paperpile.com/b/dr1lFr/Ae4Cw
http://paperpile.com/b/dr1lFr/nhD60
http://paperpile.com/b/dr1lFr/nhD60
https://doi.org/10.1101/2023.11.09.566389
http://creativecommons.org/licenses/by-nc-nd/4.0/


Marin-Campos, Rafael, Josep Dalmau, Albert Compte, and Daniel Linares. 2021.
“StimuliApp: Psychophysical Tests on Mobile Devices.” Behavior Research Methods 53
(3): 1301–7.

Mathis, Alexander, Pranav Mamidanna, Kevin M. Cury, Taiga Abe, Venkatesh N. Murthy,
Mackenzie Weygandt Mathis, and Matthias Bethge. 2018. “DeepLabCut: Markerless
Pose Estimation of User-Defined Body Parts with Deep Learning.” Nature Neuroscience
21 (9): 1281–89.

Milstein, David M., and Michael C. Dorris. 2007. “The Influence of Expected Value on
Saccadic Preparation.” The Journal of Neuroscience: The Official Journal of the Society
for Neuroscience 27 (18): 4810–18.

Molano-Mazón, Manuel, Yuxiu Shao, Daniel Duque, Guangyu Robert Yang, Srdjan Ostojic,
and Jaime de la Rocha. 2023. “Recurrent Networks Endowed with Structural Priors
Explain Suboptimal Animal Behavior.” Current Biology: CB, January.
https://doi.org/10.1016/j.cub.2022.12.044.

Musall, Simon, Matthew T. Kaufman, Ashley L. Juavinett, Steven Gluf, and Anne K.
Churchland. 2019. “Single-Trial Neural Dynamics Are Dominated by Richly Varied
Movements.” Nature Neuroscience 22 (10): 1677–86.

Nakahashi, Ayuno, and Paul Cisek. 2023. “Parallel Processing of Value-Related Information
during Multi-Attribute Decisions.” Journal of Neurophysiology 130 (4): 967–79.

Nickerson, Raymond S. 1998. “Confirmation Bias: A Ubiquitous Phenomenon in Many
Guises.” Review of General Psychology: Journal of Division 1, of the American
Psychological Association 2 (2): 175–220.

Palmer, John, Alexander C. Huk, and Michael N. Shadlen. 2005. “The Effect of Stimulus
Strength on the Speed and Accuracy of a Perceptual Decision.” Journal of Vision 5 (5):
376–404.

Pardo-Vazquez, Jose L., Juan R. Castiñeiras-de Saa, Mafalda Valente, Iris Damião, Tiago
Costa, M. Inês Vicente, André G. Mendonça, Zachary F. Mainen, and Alfonso Renart.
2019. “The Mechanistic Foundation of Weber’s Law.” Nature Neuroscience 22 (9):
1493–1502.

Peixoto, Diogo, Jessica R. Verhein, Roozbeh Kiani, Jonathan C. Kao, Paul Nuyujukian,
Chandramouli Chandrasekaran, Julian Brown, et al. 2021. “Decoding and Perturbing
Decision States in Real Time.” Nature 591 (7851): 604–9.

Posner, M. I. 1980. “Orienting of Attention.” The Quarterly Journal of Experimental
Psychology 32 (1): 3–25.

Ratcliff, R. 1985. “Theoretical Interpretations of the Speed and Accuracy of Positive and
Negative Responses.” Psychological Review 92 (2): 212–25.

Ratcliff, Roger, and Gail McKoon. 2008. “The Diffusion Decision Model: Theory and Data for
Two-Choice Decision Tasks.” Neural Computation 20 (4): 873–922.

Reppert, Thomas R., Karolina M. Lempert, Paul W. Glimcher, and Reza Shadmehr. 2015.
“Modulation of Saccade Vigor during Value-Based Decision Making.” The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience 35 (46): 15369–78.

Resulaj, Arbora, Roozbeh Kiani, Daniel M. Wolpert, and Michael N. Shadlen. 2009.
“Changes of Mind in Decision-Making.” Nature 461 (7261): 263–66.

Rigoux, Lionel, and Emmanuel Guigon. 2012. “A Model of Reward- and Effort-Based
Optimal Decision Making and Motor Control.” PLoS Computational Biology 8 (10):
e1002716.

Schultze-Kraft, Matthias, Daniel Birman, Marco Rusconi, Carsten Allefeld, Kai Görgen, Sven
Dähne, Benjamin Blankertz, and John-Dylan Haynes. 2016. “The Point of No Return in
Vetoing Self-Initiated Movements.” Proceedings of the National Academy of Sciences of
the United States of America 113 (4): 1080–85.

Seideman, Joshua A., Terrence R. Stanford, and Emilio Salinas. 2018. “Saccade Metrics
Reflect Decision-Making Dynamics during Urgent Choices.” Nature Communications 9
(1): 2907.

Shadmehr, Reza, Helen J. Huang, and Alaa A. Ahmed. 2016. “A Representation of Effort in
Decision-Making and Motor Control.” Current Biology: CB 26 (14): 1929–34.

31

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.11.09.566389doi: bioRxiv preprint 

http://paperpile.com/b/dr1lFr/IbdY
http://paperpile.com/b/dr1lFr/IbdY
http://paperpile.com/b/dr1lFr/IbdY
http://paperpile.com/b/dr1lFr/MnBdE
http://paperpile.com/b/dr1lFr/MnBdE
http://paperpile.com/b/dr1lFr/MnBdE
http://paperpile.com/b/dr1lFr/MnBdE
http://paperpile.com/b/dr1lFr/vi4L
http://paperpile.com/b/dr1lFr/vi4L
http://paperpile.com/b/dr1lFr/vi4L
http://paperpile.com/b/dr1lFr/0R7iF
http://paperpile.com/b/dr1lFr/0R7iF
http://paperpile.com/b/dr1lFr/0R7iF
http://paperpile.com/b/dr1lFr/0R7iF
http://dx.doi.org/10.1016/j.cub.2022.12.044
http://paperpile.com/b/dr1lFr/0R7iF
http://paperpile.com/b/dr1lFr/IdrkA
http://paperpile.com/b/dr1lFr/IdrkA
http://paperpile.com/b/dr1lFr/IdrkA
http://paperpile.com/b/dr1lFr/hrnmZ
http://paperpile.com/b/dr1lFr/hrnmZ
http://paperpile.com/b/dr1lFr/tg3CH
http://paperpile.com/b/dr1lFr/tg3CH
http://paperpile.com/b/dr1lFr/tg3CH
http://paperpile.com/b/dr1lFr/N4S9C
http://paperpile.com/b/dr1lFr/N4S9C
http://paperpile.com/b/dr1lFr/N4S9C
http://paperpile.com/b/dr1lFr/sZwMQ
http://paperpile.com/b/dr1lFr/sZwMQ
http://paperpile.com/b/dr1lFr/sZwMQ
http://paperpile.com/b/dr1lFr/sZwMQ
http://paperpile.com/b/dr1lFr/LxNj1
http://paperpile.com/b/dr1lFr/LxNj1
http://paperpile.com/b/dr1lFr/LxNj1
http://paperpile.com/b/dr1lFr/neUEa
http://paperpile.com/b/dr1lFr/neUEa
http://paperpile.com/b/dr1lFr/nMwUy
http://paperpile.com/b/dr1lFr/nMwUy
http://paperpile.com/b/dr1lFr/552hp
http://paperpile.com/b/dr1lFr/552hp
http://paperpile.com/b/dr1lFr/kghP
http://paperpile.com/b/dr1lFr/kghP
http://paperpile.com/b/dr1lFr/kghP
http://paperpile.com/b/dr1lFr/unJR8
http://paperpile.com/b/dr1lFr/unJR8
http://paperpile.com/b/dr1lFr/os8Zb
http://paperpile.com/b/dr1lFr/os8Zb
http://paperpile.com/b/dr1lFr/os8Zb
http://paperpile.com/b/dr1lFr/jTO3O
http://paperpile.com/b/dr1lFr/jTO3O
http://paperpile.com/b/dr1lFr/jTO3O
http://paperpile.com/b/dr1lFr/jTO3O
http://paperpile.com/b/dr1lFr/wfrBZ
http://paperpile.com/b/dr1lFr/wfrBZ
http://paperpile.com/b/dr1lFr/wfrBZ
http://paperpile.com/b/dr1lFr/c22dn
http://paperpile.com/b/dr1lFr/c22dn
https://doi.org/10.1101/2023.11.09.566389
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shadmehr, Reza, Thomas R. Reppert, Erik M. Summerside, Tehrim Yoon, and Alaa A.
Ahmed. 2019. “Movement Vigor as a Reflection of Subjective Economic Utility.” Trends
in Neurosciences 42 (5): 323–36.

Shadmehr, Reza, and Steven P. Wise. 2004. The Computational Neurobiology of Reaching
and Pointing: A Foundation for Motor Learning. MIT Press.

Smeets, Jeroen B., Leonie Oostwoud Wijdenes, and Eli Brenner. 2016. “Movement
Adjustments Have Short Latencies Because There Is No Need to Detect Anything.”
Motor Control 20 (2): 137–48.

Song, Joo-Hyun, and Ken Nakayama. 2009. “Hidden Cognitive States Revealed in Choice
Reaching Tasks.” Trends in Cognitive Sciences 13 (8): 360–66.

Stanford, Terrence R., Swetha Shankar, Dino P. Massoglia, M. Gabriela Costello, and Emilio
Salinas. 2010. “Perceptual Decision Making in Less than 30 Milliseconds.” Nature
Neuroscience 13 (3): 379–85.

Stone, Caleb, Jason B. Mattingley, and Dragan Rangelov. 2022. “On Second Thoughts:
Changes of Mind in Decision-Making.” Trends in Cognitive Sciences 26 (5): 419–31.

Striedter, Georg F., and R. Glenn Northcutt. 2019. Brains Through Time: A Natural History of
Vertebrates. Oxford University Press.

Stringer, Carsen, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo
Carandini, and Kenneth D. Harris. 2019. “Spontaneous Behaviors Drive
Multidimensional, Brainwide Activity.” Science 364 (6437): 255.

Summerside, Erik M., Reza Shadmehr, and Alaa A. Ahmed. 2018. “Vigor of Reaching
Movements: Reward Discounts the Cost of Effort.” Journal of Neurophysiology 119 (6):
2347–57.

Thura, David. 2020. “Decision Urgency Invigorates Movement in Humans.” Behavioural
Brain Research 382 (March): 112477.

Thura, David, Ignasi Cos, Jessica Trung, and Paul Cisek. 2014. “Context-Dependent
Urgency Influences Speed–Accuracy Trade-Offs in Decision-Making and Movement
Execution.” The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience 34 (49): 16442–54.

Turner, Robert S., and Michel Desmurget. 2010. “Basal Ganglia Contributions to Motor
Control: A Vigorous Tutor.” Current Opinion in Neurobiology 20 (6): 704–16.

Urai, Anne E., Jan Willem de Gee, Konstantinos Tsetsos, and Tobias H. Donner. 2019.
“Choice History Biases Subsequent Evidence Accumulation.” eLife 8 (July).
https://doi.org/10.7554/eLife.46331.

Wald, Abraham. 2004. Sequential Analysis. Courier Corporation.
Wispinski, Nathan J., Jason P. Gallivan, and Craig S. Chapman. 2020. “Models, Movements,

and Minds: Bridging the Gap between Decision Making and Action.” Annals of the New
York Academy of Sciences 1464 (1): 30–51.

Xu-Wilson, Minnan, David S. Zee, and Reza Shadmehr. 2009. “The Intrinsic Value of Visual
Information Affects Saccade Velocities.” Experimental Brain Research. Experimentelle
Hirnforschung. Experimentation Cerebrale 196 (4): 475–81.

Zariwala, Hatim A., Adam Kepecs, Naoshige Uchida, Junya Hirokawa, and Zachary F.
Mainen. 2013. “The Limits of Deliberation in a Perceptual Decision Task.” Neuron 78 (2):
339–51.

32

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2023.11.09.566389doi: bioRxiv preprint 

http://paperpile.com/b/dr1lFr/3yhCX
http://paperpile.com/b/dr1lFr/3yhCX
http://paperpile.com/b/dr1lFr/3yhCX
http://paperpile.com/b/dr1lFr/tnshV
http://paperpile.com/b/dr1lFr/tnshV
http://paperpile.com/b/dr1lFr/Uxn4
http://paperpile.com/b/dr1lFr/Uxn4
http://paperpile.com/b/dr1lFr/Uxn4
http://paperpile.com/b/dr1lFr/GRl9R
http://paperpile.com/b/dr1lFr/GRl9R
http://paperpile.com/b/dr1lFr/1fb7I
http://paperpile.com/b/dr1lFr/1fb7I
http://paperpile.com/b/dr1lFr/1fb7I
http://paperpile.com/b/dr1lFr/3E8Ik
http://paperpile.com/b/dr1lFr/3E8Ik
http://paperpile.com/b/dr1lFr/jVepn
http://paperpile.com/b/dr1lFr/jVepn
http://paperpile.com/b/dr1lFr/uLTYW
http://paperpile.com/b/dr1lFr/uLTYW
http://paperpile.com/b/dr1lFr/uLTYW
http://paperpile.com/b/dr1lFr/0jbzv
http://paperpile.com/b/dr1lFr/0jbzv
http://paperpile.com/b/dr1lFr/0jbzv
http://paperpile.com/b/dr1lFr/OAINi
http://paperpile.com/b/dr1lFr/OAINi
http://paperpile.com/b/dr1lFr/Q6u7l
http://paperpile.com/b/dr1lFr/Q6u7l
http://paperpile.com/b/dr1lFr/Q6u7l
http://paperpile.com/b/dr1lFr/Q6u7l
http://paperpile.com/b/dr1lFr/6At7L
http://paperpile.com/b/dr1lFr/6At7L
http://paperpile.com/b/dr1lFr/vK4pF
http://paperpile.com/b/dr1lFr/vK4pF
http://paperpile.com/b/dr1lFr/vK4pF
http://dx.doi.org/10.7554/eLife.46331
http://paperpile.com/b/dr1lFr/vK4pF
http://paperpile.com/b/dr1lFr/vo91I
http://paperpile.com/b/dr1lFr/qG216
http://paperpile.com/b/dr1lFr/qG216
http://paperpile.com/b/dr1lFr/qG216
http://paperpile.com/b/dr1lFr/iMpn
http://paperpile.com/b/dr1lFr/iMpn
http://paperpile.com/b/dr1lFr/iMpn
http://paperpile.com/b/dr1lFr/JQ7Qc
http://paperpile.com/b/dr1lFr/JQ7Qc
http://paperpile.com/b/dr1lFr/JQ7Qc
https://doi.org/10.1101/2023.11.09.566389
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary figures.

Supplementary figure 1. Trial index plays an important role for vigor. a, b) Average position in
centimeters (a) and velocity in centimeters/s (b) in express responses with low prior (|z| < 25%
percentile), conditioned on the trial index, grouped by bins of 200 trials. c) Regression weights of the
movement time against prior evidence towards the response, stimulus evidence towards the
response, and trial index. Points represent individual animals. d) Regression weights (mean ± s.e.m.
across subjects) of the movement time against the trial index and the prior and stimulus evidence
towards the response, for different bins of reaction time. The impact of stimulus evidence is lower for
very short RTs (i.e. very short stimuli) while the impact of the prior decreases with increasing reaction
time. This pattern is expected for an accumulation model where the movement time depends on the
read-out of a decision variable whose offset and drift are determined by the prior and stimulus
evidence, respectively.
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Supplementary figure 2. Proportion of left-to-right reversals (left matrices) and right-to-left reversals
(right matrices) as a function of stimulus and prior evidence, for all animals.

Supplementary figure 3. a) GLM transition (left) and lateral (right) weights for human participants.
Orange: after correct trials; black: after error trials (Hermoso-Mendizabal et al. 2020). Thin lines
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denote individual participants; black lines represent the average across participants (error bars:
s.e.m.). b) Proportion of trajectory reversals as a function of reaction time for humans.

Supplementary figure 4. MNLE approximates the likelihood of the model. Each row represents fixed
trial conditions (stimulus, prior and trial index). a) Likelihood for the model (blue-shaded matrix) based
on 0.5M simulations and approximated likelihood obtained from the MNLE trained with 10M
simulations (red contours); for left and right responses, respectively. b-c) Probability of rightward
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choice (b) and fixation break (c) for both model and MNLE. We used 6 prototypical experimental
conditions: i) No stimulus evidence (s=0), prior towards the right (z=1.5), medium trial index (t.i.=400).
ii) Low prior (z=0.05) and high stimulus strength (s=1) both towards the right choice, medium trial
index (t.i.=400). iii) Prior (z=-1.5) towards the left choice, high stimulus (s=0.5) towards the right
choice, medium trial index (t.i.=400). iv) Medium prior (z=0.5) and low stimulus (s=0.25), both towards
the right choice, low trial index (t.i.=10). v) Strong prior (z=0.5) and strong stimulus (s=0.5), both
towards the right choice, medium trial index (t.i.=400). vi) Medium prior (z=0.5) and low stimulus
(s=0.25), high trial index (t.i.=800).

Supplementary figure 5. a-f) MNLE likelihood from two networks trained with a different set
of 10M simulations. Same conditions as in the previous figure (Supplementary Fig. 4). g)
Distance between the probability distributions from the network and the model, for different
sizes of training sets for the neural network. We computed two distance metrics using
200.000 model simulations for 100 random trials. The metrics used were the Bhattacharyya

distance (left panel), defined as ; and the𝑑(𝑃,  𝑄) =  − 𝑙𝑛(
𝑖

∑( 𝑃(𝑥
𝑖
) ·  𝑄(𝑥

𝑖
) )) 

Jensen-Shannon distance (right panel), defined as
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and approximated likelihoods, respectively.

Supplementary figure 6. Rat trajectories for a random subset of 150 trials of animal LE43 (blue
curves) plotted over the corresponding model trajectory density (red color plot), for different values of
stimulus evidence (left column: stimulus=-1; middle column: stimulus=0; right column: stimulus=1) and
prior evidence (top row: prior=-1, middle row: prior=0; bottom row: prior=+1). Model densities were
obtained by drawing trajectories for 150000 simulated trials with model parameters estimated for the
corresponding animal.
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Supplementary figure 7. Rats and model MT distributions of each rat.
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Supplementary figure 8. RT distributions from rats (gray/black lines) and model simulations
(orange/brown lines), for different levels of stimulus strength (light: stimulus strength = 0; dark:
stimulus strength = 1).
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Supplementary figure 9. Proportion of left-to-right reversals (left panels) and right-to-left reversals
(right panels) as a function of stimulus and prior evidence, for the model fitted to each individual rat.
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Supplementary figure 10. Fitted parameters for all rats. The parameter of the variance of the MT,
, is not plotted, as it reached the upper bound for all rats ( = 20).σ

𝑀𝑇 
σ

𝑀𝑇 
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Supplementary figure 11. Model analysis of splitting times and changes of mind. a-c) Model
schematics illustrating the dependence of splitting time (ST) on RT (Figure 6g). All panels show the
evolution of the decision variable x(t) and the trajectory for two example stimuli (cyan and blue traces).
ST can be defined as the interval between stimulus onset (black vertical line) and the moment when
the two trajectories are statistically different (red vertical line, Methods). For RT < taff + teff, because of
the afferent and efferent latencies, the stimulus can only be detected in the second read-out (a). After
the updating of vigor, the subsequent trajectory depends on stimulus evidence (compare cyan and
blue trajectories). In this condition, ST can be broken down into: ST ~ RT + taff + teff + offset , where
the offset is the time it takes for the two updated trajectories to be distinguished (red double-arrow
line), an interval that ultimately depends on the read-out difference between the two stimuli. For RT
just above the value taff + teff (b) the stimulus starts to be detected in the first read-out making the ST ~
RT + offset. As RT grows more, the first read-out can be more different between the two stimuli,
generating very distinct trajectories that yield ST ≈ RT. d) ST as a function of reaction time for
simulated model (averaged across animals), for various values of afferent time taff (inset) and fixed
efferent time teff = 30 ms. The other parameters were set to the values obtained in fitting the model to
one animal data. Larger dots indicate minimum splitting time for each value of taff. Note that the
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minimum increases with taff. e) Prediction of minimum splitting time, given by min(ST) = taff + teff +
offset, as a function of efferent time. The offset was manually set to 10 ms. Gray line represents 𝑦 = 𝑥
. f) Minimum splitting time vs teff obtained from model simulations shows good agreement with
predictions in panel b. In simulations, the offset is caused by the noise in the evidence accumulation
and motor processes and depends on the number of trials. g) Probability of CoM against probability of
having a proactive trial, obtained by progressively slowing the model’s urgency signal (i.e. by
increasing the boundary of the action initiation process), for the model fitted to the data of rat LE42.
Note that CoMs vanish when there are no proactive trials (for very high values of the action initiation
boundary). The value of the boundary found by maximum likelihood fitting yields the highlighted point

.(θ*
𝐴𝐼

= 2. 06)

Supplementary figure 12. a-b) Proportion of left-to-right CoMs (a) and of CoMs that are detected as
trajectory reversals (b) as a function of stimulus and prior evidence, for the model fitted to rat LE42.
Note that the probability of left-to-right reversals is the product of these two quantities, since
p(reversal)=p(CoM)p(reversal|CoM). CoMs are frequent when prior and stimulus evidence are
incongruent, almost irrespective of the strength of evidence (or if anything, more frequently for
weak/moderate evidence). However, CoMs are more often detected when evidence is strong. This is
because the trajectory is more likely to cross the reversals detection threshold when the prior is strong
and provides sufficient initial vigor. In turn, only a strong stimulus is capable of reversing a strong
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prior. c) Schematic of CoM generation for increasing reaction times (RT). When RT is small (express
responses), the first read-out is determined by the prior (here, to the left) while the second read-out
integrates contradictory evidence from the stimulus, leading to a CoM. By contrast, when the RT is
large, the same evidence accumulation process leads to a first read-out which is already aligned with
the stimulus (i.e. no CoM).

Supplementary videos.

Supplementary Video 1. Example responses from 8 rats showing two consecutive trials
each: a correct non-CoM followed by a CoM (see label in the bottom right of the video).
Every pair of consecutive trials is played first at real time and then replayed at a slowed
velocity (x 0.25). Blue circles show the seven points tracked in the rat’s body used to
estimate the general pose. The point at the base of the snout used to generate the orienting
trajectories is shown in yellow followed by a “trail” composed of the location in the last 10
frames. The ninth tracked point at the tip of the snout is not shown for clarity. At the bottom
right of the video, during the CoM trial, “y_rev” indicates the reversal point of the trajectory in
pixels (detection threshold was set at 8 pixels (i.e. 0.56 cm).
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