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A B S T R A C T   

Introduction: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the 
diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH pat-
terns as “unusual”, but this is largely based on expert opinion, because detailed quantitative information about 
WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH dis-
tribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH 
patterns. 
Methods: Individual participant data (N = 3525, including 777 participants with subjective cognitive decline, 
1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic 
cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by 
participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 
brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH 
probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) 
based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), 
were implemented. 
Results: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. 
Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in 
at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 
93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, 
mainly located in subcortical areas. Only the machine learning method effectively identified individuals with 
unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely 
affected locations despite common locations not being affected. 
Discussion: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion 
distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis 
with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should 
be considered.   

1. Introduction 

White matter hyperintensities (WMH) are a frequent observation on 
brain MRI (Wardlaw et al., 2013). The prevalence of WMH is known to 
increase with age (de Leeuw et al., 2001; Prins and Scheltens, 2015). 
WMH of presumed vascular origin are primarily due to cerebral small 
vessel disease (SVD) (Wardlaw et al., 2015), which is the most frequent 
cause of vascular cognitive impairment and a major contributor to de-
mentia of mixed etiology (Wardlaw et al., 2013). In the context of de-
mentia, WMH, particularly in posterior regions, may also be related to 
presence of amyloid pathology (Weaver et al., 2019). Clearly, in a 
broader sense, WMH may be due to many other causes, including 
inflammation and metabolic disease. 

In patients attending a memory clinic, the potential clinical rele-
vance and likely etiology of WMH is often derived from their volume, 
location, and distribution (Prins and Scheltens, 2015; Biesbroek et al., 
2016). Different rating scales have been developed to visually assess the 
severity of WMH as a proxy for volume in clinical practice, for example 
the Fazekas (Fazekas et al., 1987) and Scheltens (Scheltens et al., 1993) 
scales. These scales show a fair correlation with volumetric WMH 
measures (Kapeller et al., 2003). In contrast, location and distribution 
are mostly appraised qualitatively, based on expert opinion. The absence 

of information about WMH distribution frequencies in memory clinic 
patients hampers the recognition of specific and possible unusual WMH 
patterns for an individual patient attending a memory clinic. Such un-
usual patterns may point to causes that are less common in patients 
presenting with memory complaints, such as rare monogenic conditions. 
For example, in Cerebral Autosomal Dominant Arteriopathy with 
Subcortical Infarcts and Leukoencephalopathy (CADASIL) WMH are 
commonly seen in the anterior temporal poles and superior frontal gyri 
whereas these areas are normally spared in SVD (Auer et al., 2001). 

With a large international multicenter collaboration of memory 
clinic studies, we provide detailed and representative data on WMH 
distribution frequencies in participants attending a memory clinic. 
Second, we aim to identify individuals with unusual WMH patterns in 
the dataset. We expected to be able to identify these individuals with 
rule-based scores based on the derived WMH frequency maps. 

2. Methods 

2.1. Participants 

We used data from a previous Meta VCI Map Consortium project 
(Coenen et al., 2023), involving individual participant data from 11 
memory clinic cohorts. Meta VCI Map is a consortium that aims to 
perform meta-analyses on strategic lesion locations for vascular cogni-
tive impairment using lesion-symptom mapping (Weaver et al., 2019). 
Cohorts for the present project were included based on the following 
criteria: (1) participants were evaluated at an outpatient clinic because 
of cognitive symptoms; (2) availability of MRI with T1-weighted and 
either FLAIR or T2-weighted images; (3) availability of neuropsycho-
logical data. Participants with any degree of symptom severity (i.e. 
subjective cognitive decline, mild cognitive impairment, dementia) 

1 ADNI data used in preparation of this article were obtained from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). 
As such, the investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not participate in 
analysis or writing of this report. A complete listing of ADNI investigators can 
be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ 
ADNI_Acknowledgement_List.pdf. 

M. Coenen et al.                                                                                                                                                                                                                                



NeuroImage: Clinical 40 (2023) 103547

3

could be included and the clinical diagnosis should be compatible with 
vascular, neurodegenerative or mixed etiology. Participants diagnosed 
with other causes of cognitive impairment (e.g., excessive alcohol con-
sumption, brain tumor, trauma, multiple sclerosis, psychiatric disorder) 
or monogenic disorders (e.g., CADASIL, presenilin mutations, or leu-
kodystrophies), were excluded. Central data processing and analysis 
were performed at the University Medical Center Utrecht (Utrecht, the 
Netherlands). For all cohorts, ethical and institutional approval were 
obtained as required by local regulations, including informed consent, to 
allow data acquisition and data sharing. 

The dataset for the current study was previously used to examine the 
cognitive impact of WMH in individuals attending a memory clinic 
(Coenen et al., 2023). Therefore, only participants with available neu-
ropsychological data were included, however the neuropsychological 
data were not used for the current analyses. 

Background and organization of the Meta VCI Map consortium is 
described in the design paper (Weaver et al., 2019) and on the con-
sortium website (https://metavcimap.org). A flowchart of participant 
selection is provided in Figure A.1. Details on MRI scan protocols per 
cohort are described in the supplements. 

2.2. Image processing and analysis 

Binary WMH segmentations were provided by the participating 
centers or automatically computed (Kuijf et al., 2019) at the UMC 
Utrecht, the Netherlands. FLAIR images were used for WMH segmen-
tation in ten cohorts; in one cohort (YOAD), WMH were segmented on 
T2-weighted images. More details on WMH segmentation methods are 
described in the supplementary material. 

All analyses were performed in a standard space rather than native 
space. To this end, WMH segmentations were registered to the 1 × 1 × 1 
mm resolution Montreal Neurological Institute (MNI)-152 brain tem-
plate for spatial normalization (Fonov et al., 2011) (see supplementary 
material for further details). Two cohorts (AUCD, ADNI) shared WMH 
segmentations that were already registered to MNI space. For the 
remaining cohorts, WMH segmentations were registered to the MNI 
template centrally using RegLSM (Biesbroek et al., 2019). First, the 
FLAIR or T2-weighted images were registered to the corresponding 
native T1 image with a linear registration. Second, the T1 image was 
subsequently transformed to the T1 1-mm MNI-152 template, using a 
linear registration followed by a non-linear registration. An age-specific 
MRI template (Fonov et al., 2011) was used as an intermediate step 
before the final registration to MNI-152 space in order to improve the 
quality of the results by providing a better match between participant 
and template. These transformations were combined into a single 
transformation that was used as a final step to transform the corre-
sponding WMH segmentation to the MNI-152 template. All registration 
results were visually inspected to ensure that the procedure was suc-
cessful. Failed registrations were excluded (in total 2.7 % of participants, 
see Figure A.1). 

Voxels located outside the white matter (defined using the MNI 
probabilistic white matter atlas (Fonov et al., 2009), threshold at 30 %) 
were removed from all individual WMH segmentations to minimize the 
effect of possible misclassifications. 

For quality control, a random subset of ten WMH maps was returned 
to each participating center where they were asked to check whether the 
registered WMH map properly represented the WMH segmentation on 
the original FLAIR/T2-weigthed images. This quality control step 
revealed no data handling or processing errors. More details on WMH 
segmentation, registration procedures, and quality checks were 
described previously (Coenen et al., 2023). 

2.3. WMH probability maps 

The binary WMH segmentations were registered to the MNI-152 
template (see Section 2.2). In this template space, all transformed 

binary WMH segmentations were summed and next divided by the total 
number of participants. This resulted in a WMH probability map at the 
voxel level, indicating the probability of a voxel containing a WMH 
lesion or not. In addition, to better visualize WMH distributions ac-
cording to WMH burden, three probability maps including participants 
with low / medium / high tertiles of normalized WMH volume were 
created. In the supplements, cutoff values show voxels affected in less 
than 0.1 %, 0.5 %, and 2.0 % of the participants, to visualize at which 
locations of the brain voxels are rarely affected. 

2.4. Detection of unusual patterns 

To identify unusual WMH patterns based on differential burden in 
different tracts, WMH probability maps at a region-of-interest (ROI) 
level were created using the JHU-atlas (threshold at 10 % (Hua et al., 
2008). This atlas considers twenty major white matter tracts. 

Additionally, two rule-based scores and a machine learning-based 
score were explored. The first rule-based score (RB Score 1) was 
derived from WMH distribution frequencies, assigning a high score to 
participants having WMH voxels in low-probability regions based on the 
probability distribution of the whole cohort. It was calculated as 1 – the 
probability of a lesion in a certain voxel, and this was summed up for all 
voxels. The score was individually adjusted for total normalized WMH 
volume, by dividing the score with the square root of the total 
normalized WMH volume per participant. 

The second rule-based score (RB Score 2) assigned a high score to 
lesions (of at least ten voxels in size) at locations where less than five 
participants had a lesion. It was implemented by assessing only lesions at 
locations where less than five participants in the dataset had a lesion by 
masking out all other locations, and computing the sum of 1 – the 
probability of a lesion in a certain voxel for all remaining voxels. The 
score was individually adjusted for total normalized WMH volume, by 
dividing the score with the square root of the total normalized WMH 
volume per participant. 

The machine learning-based score used Local Outlier Factor (LOF) 
(Breunig et al., 2000), an unsupervised anomaly detection method. LOF 
considers the full 3D distribution of WMH voxels of each participant, 
whereas the rule-based scores mainly consider individual or regionally 
clustered voxel locations. LOF assigns a low (negative) score to partic-
ipants whose total 3D WMH distribution deviates substantially with 
respect to all other participants in the dataset. 

We assumed that a score which was strongly correlated to normal-
ized WMH volume, was not suitable in the detection of unusual patterns. 
This would mostly identify participants with a high total WMH volume 
as outliers, whereas rare spatial distribution patterns may be related to 
location instead of volume. 

2.5. Statistical analyses 

Baseline characteristics were calculated using IBM SPSS Statistics 
26.0.0.1. The resulting WMH probability map is published on Data-
verseNL (https://doi.org/10.34894/FYL9ID). The correlation between 
RB score 1, 2, and LOF with total normalized WMH volume was calcu-
lated using Pearson correlation in SciPy. 

The implementation of RB score 1, 2, and LOF was published on 
GitHub (https://github.com/Meta-VCI-Map/WMH_distribution_memo 
ry_clinic). 

3. Results 

3.1. Participants 

The total study sample consisted of 3525 participants (49.9 % fe-
male) from 11 memory clinic cohorts. Mean age was 71.6 years (SD 9.0 
years). A total of 777 participants (22.0 %) had subjective cognitive 
decline (SCD), 1389 participants (39.4 %) had mild cognitive 
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impairment (MCI), and 1359 patients (38.6 %) had dementia. Of those 
with dementia 804 patients (59.2 %) were diagnosed with Alzheimer’s 
disease, 85 patients (6.3 %) with vascular dementia, 44 patients (3.2 %) 
with frontotemporal dementia, 24 patients (1.8 %) with Lewy body 
dementia, and 59 patients (4.3 %) with dementia with other etiology. 
For the remaining 343 patients (25.2 %) with dementia the etiology was 
unknown or not available in the database. Median normalized WMH 
volume was 6.1 ml (IQR 2.2–16.3 ml). Table 1 shows the participant 
characteristics according to WMH tertile. 

3.2. WMH probability maps 

Voxel wise WMH probability maps of WMH distribution for the 
whole cohort are shown in Fig. 1 and for the three WMH tertiles in Fig. 2. 
In total, WMH locations involved 82 % of the white matter. 

3.2.1. Commonly affected locations 
Despite the observation that 82 % of the white matter could be 

affected by WMH, only few locations were affected in a substantial 
subset of participants. For example, only 1.7 % of the white matter was 
affected in at least 20 % of participants, 4.6 % in at least 10 %, and 9.9 % 
in at least 5 %. The periventricular areas—including frontal, occipital, 
and parietal—were most commonly affected (Fig. 1; shown in red). This 
was consistently observed in all three WMH tertiles (Fig. 2). The 
centrum semiovale and corona radiata were relatively commonly 
affected by WMH in all three tertiles, but the overall probability 
increased with total normalized WMH volume. 

3.2.2. Moderately frequent affected locations 
Subcortical areas, just outside the periventricular areas commonly 

referred to as “deep”, were affected by WMH with moderate frequency 
and more often affected in the medium and high WMH tertiles (Fig. 2). 
The frontal, occipital, and parietal areas were equally affected, with 
increasing probability as total normalized WMH volume increases. The 
temporal lobe was less frequently affected, compared to these other 
lobes; and rarely affected in the low and medium WMH tertiles. 

3.2.3. Rarely affected locations 
A large part of the white matter was rarely affected. For example, 

68.3 % was affected in less than 0.1 % of participants, 30.4 % in less than 

1.0 %, and 20.8 % in less than 2.0 %. All rarely affected WMH locations 
were widespread throughout the white matter (Fig. 1; shown in yellow). 
Even in the low WMH tertile, WMH could be present dispersed across 
rarely affected locations. The infratentorial regions were more rarely 
affected compared to the supratentorial white matter. When the infra-
tentorial white matter was affected, WMH were mostly located in the 
pons. The basofrontal white matter and the temporal lobes were rarely 
affected by WMH, especially in the low and medium WMH tertiles. The 
internal capsule was also rarely affected, but in higher WMH tertiles 
WMH were sometimes present more cranially and in the anterior limb. 
Compared to the internal capsule, the external capsule was relatively 
more often affected in the medium and high WMH tertiles. 

In the genu of the corpus callosum, WMH were almost never 
observed in any of the WMH tertiles. The body of the corpus callosum 
was hardly affected in the low / medium WMH tertiles and only some-
times in the high WMH tertile. This also held for the splenium, except 
that the septum pellucidum (at the splenium / CSF boundary) can 
appear hyperintense on FLAIR or T2 imaging and is sometimes classified 
as WMH. In Fig. 3, the corpus callosum is part of multiple tracts. Given 
that the corpus callosum itself was rarely affected, the occurrence of 
WMH in these tracts was thus caused by the lateral extensions of each 
tract. 

The grey matter in the basal ganglia contained some WMH for par-
ticipants in the high WMH tertile. This is likely owing to the partial 
volume effect—where a single voxel can contain both gray and white 
matter—in combination with the used threshold of 30 % for the pres-
ence of white matter in individual voxels of the MNI probabilistic atlas. 
In addition, this might also be partially attributed to technicalities, such 
as errors in the automatic segmentation or misregistration. 

Eighteen% of the white mater was not affected by WMH in any of the 
participants, which mostly include juxtacortical white matter. 

3.3. Detection of unusual patterns 

Figure A.2 shows that 2387 participants (67.7 %) had a lesion- 
containing voxel at a location where the overall lesion prevalence 
was < 0.1 %, 3018 participants (85.6 %) had a lesion-containing voxel at 
a location where the overall lesion prevalence was < 0.5 %, and 3305 
participants (93.8 %) had a lesion-containing voxel at a location where 
the overall lesion prevalence was < 2.0 %. In other words: the vast 

Table 1 
Participant characteristics and WMH features according to voxel based WMH 
distribution.  

Characteristics Normalized WMH volume 

Low Medium High 

Number of participants 1175 1175 1175 
Age (years), mean (SD) 67.9 (8.8) 72.0 (8.4) 74.8 (8.6) 
Female, n (%) 605 (51.5) 557 (47.4) 597 (50.8) 
Diagnosis, n (%)    
SCD 402 (34.2) 222 (18.9) 153 (13.0) 
MCI 490 (41.7) 463 (39.4) 364 (37.1) 
Dementia 283 (24.1) 490 (41.7) 586 (49.9) 
Dementia, n (%)$    

AD 145 (51.2) 290 (59.2) 369 (63.0) 
VaD 1 (0.4) 11 (2.2) 73 (12.5) 
LBD 5 (1.8) 13 (2.6) 6 (1.0) 
FTD 14 (4.9) 18 (3.7) 12 (2.0) 
Dementia with other etiology 13 (4.6) 18 (3.7) 28 (4.7) 
MMSE, mean (SD) 26.5 (4.1)# 24.7 (4.6)# 23.9 (5.0)# 

Normalized WMH volume (ml), range 0.0 – 3.2 3.2 – 11.4 11.4 – 202.8 
BPF, median (IQR) 0.7 (0.1)$ 0.7 (0.1)# 0.7 (0.1)# 

Characteristics are presented per normalized WMH tertile. A WMH lesion was 
defined as 10 neighboring affected voxels. *missing in < 1 %, # missing in 1–10 
%, $ missing in > 10 %. SCD: Subjective Cognitive Decline, MCI: Mild Cognitive 
Impairment, AD: Alzheimer’s disease, VaD: Vascular Dementia, LBD: Lewy body 
dementia, FTD: Frontotemporal dementia, MMSE: Mini Mental State Examina-
tion, BPF: brain parenchymal fraction. 

Fig. 1. WMH probability map at the voxel level for the whole cohort. This 
figure shows the spatial probability distribution of WMH overlaid onto the MNI- 
152 template. Colors indicate the percentage of participants who have a WMH 
in a given voxel. L = left, R = right. 
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majority of participants had lesions at locations that might be consid-
ered unusual just based on lesion frequency alone. 

Consistent with the voxel-based results, WMH probability maps at 
tract-based ROI level (Fig. 3) showed that in the periventricular tracts 
(anterior thalamic radiation left and right, and the forceps major), the 
occurrence of WMH was slightly higher than in the other tracts. This was 
best observed in the low WMH tertile. Fig. 3 also showed that the 
probability for occurrence of WMH was low in the cingulum and 
cingulate gyrus, across all three WMH tertiles. However, differences in 
probabilities between tracts were small (Table A.1). We therefore 

concluded that a tract-based ROI approach did not help to identify un-
usual patterns. 

Results of RB Score 1 were essentially collinear with normalized 
WMH volume (R = 0.99, P = 0.0), also after individualized WMH vol-
ume adjustment, i.e. the score that included the square root of the total 
normalized WMH volume (R = 0.96, P = 0.0). This score was therefore 
deemed unsuitable to identify individuals with unusual patterns and no 
further analyses were performed. This is in line with the findings in 
Figure A.2, which show that almost all participants in our pooled cohort 
had WMH at a location that is rarely affected in the total study sample. 

Fig. 2. WMH probability map at the voxel level stratified by WMH tertile. This figure shows the spatial probability distribution of WMH overlaid onto the MNI-152 
template per WMH tertile. Colors indicate the percentage of participants who have a WMH in a voxel in that tertile. L = left, R = right. 

Fig. 3. Region-of-interest based WMH probability map. This figure shows the region-of-interest based WMH spatial probability distribution for the whole cohort and 
per normalized WMH tertile. Regions-of-interest are defined according to twenty major white matter tracts defined in the JHU atlas (probability threshold of 10 %) 
(Hua et al., 2008). Colors indicate the percentage of participants who have a WMH (partially) overlapping with that region-of-interest. L = left, R = right. 
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Results of RB Score 2 were moderately correlated with normalized 
WMH volume (R = 0.48, P < 0.0001), also after individualized WMH 
volume adjustment, i.e. the score that included the square root of the 
total normalized WMH volume (R = 0.32, P < 0.0001). Participant 
characteristics, including age, sex, and diagnosis, and WMH segmenta-
tions in native space were assessed for twenty participants with the most 
extreme scores (highest values) for Score 2. Visual inspection of the 
results revealed that Score 2 mostly detected WMH patterns with WMH 
at common locations. Score 2 also identified WMH patterns from par-
ticipants with a high normalized WMH volume. Therefore, Score 2 does 
not seem an appropriate method in the detecting unusual patterns. Score 
2 also identified some errors made by the automatic WMH segmentation 
in 12 out of 20 participants, including acute or chronic infarcts 
segmented as WMH. Fig. 4 shows the five most unusual WMH patterns 
for Score 2, after exclusion of segmentation errors. 

Results of the LOF were weakly correlated with normalized WMH 
volume (R = 0.24, P < 0.0001). The results from LOF were assessed by 
examining the participant characteristics and WMH segmentation in 
native space for twenty patients with the most extreme scores (i.e. 
lowest values). Visual inspection of the WMH segmentations showed 
asymmetric patterns and absence of WMH at common locations. Besides 
this, LOF also revealed errors made by the automatic WMH segmenta-
tion in 10 out of 20 participants. Fig. 5 shows the participant charac-
teristics and WMH segmentations of the five most unusual WMH 
patterns, after exclusion of segmentation errors. 

As a reference, to check whether segmentation errors were a specific 
finding of LOF or reflected a more common occurrence of segmentation 
errors in the study sample, a random sample of 60 participants from the 
whole dataset was rechecked. This sample revealed no segmentation 
errors. 

4. Discussion 

This study provides a detailed 3D map of WMH lesion distribution 
frequencies in a large multicenter memory clinic cohort. Due to the large 
sample size, we were able to identify commonly, moderately frequent, 
and rarely affected lesion locations. Additionally, LOF was able to 
identify unusual WMH distribution patterns. These unusual patterns 
included asymmetric WMH patterns and WMH presence at rare loca-
tions in the absence of WMH at common locations. This work can be 
used to compare against published WMH distribution maps of other 
neurodegenerative disease groups (Dadar et al., 2022) or aid clinical 
research studies (Botz et al., 2023). 

Voxel wise WMH probability maps (Figs. 1 & 2) showed that WMH 
distribution frequencies are highly variable and that it is common to 
have WMH at unusual locations: e.g. 93.8 % of participants had at least 
one lesion-containing voxel at a location that was affected in less than 2 
% of individuals (Figure A.2). Of note, 18 % of the white matter was not 
affected by WMH in any of the participants, indicating that the proba-
bility of WMH to occur in these voxels is below 0.03 %. The periven-
tricular areas were most commonly affected. Rarely affected locations 
were widespread throughout the white matter. Since many participants 
had lesions at locations that might be considered as unusual based on 
lesion frequency alone, the total distribution pattern should be consid-
ered when assessing unusual distribution patterns on the level of an 
individual participant. Our results are in line with previous smaller 
studies on WMH distribution in a memory clinic setting, indicating that 
periventricular lesions are common (Prins and Scheltens, 2015; Yoshita 
et al., 2006; Holland et al., 2008), and the infratentorial regions and the 
corpus callosum are rarely affected (Yoshita et al., 2006; Barkhof and 
Scheltens, 2002). Another study including community-based individuals 

Fig. 4. Results of Rule based Score 2. Clinical characteristics and WMH distribution patterns of the five participants with the highest Score 2 are presented, after 
exclusion of segmentations errors. Score 2 assigns a high score to lesions (of at least ten voxels in size) at locations where less than five participants had a lesion and 
this score was calculated by computing the sum of 1 – probability of a lesion in a certain voxel for these locations. The FLAIR sequence and WMH lesion map in native 
space are shown. L = left, R = right. 
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also showed that with increasing WMH volume, WMH were expanded to 
more subcortical areas (DeCarli et al., 2005). In this study, we performed 
all WMH distribution analyses in the MNI-152 template space. An 
inherent consequence of image registration (which enables analyses of 
WMH distribution and volume across participants and corrects for dif-
ferences in brain size) is possible changes in WMH volume, but the 
relative spatial distribution remains intact. Since the primary focus of 
this study was WMH distribution frequencies, any possible volume 
changes owing to registration would not influence our conclusions 
drawn from the WMH distribution frequencies. 

ROI based WMH probability maps, considering twenty major white 
matter tracts, showed that differences in probabilities between tracts 
were small and therefore this approach seemed not very informative in 
detecting unusual WMH patterns. Using two rule-based scores to iden-
tify unusual WMH patterns proved also unsuccessful, mainly identifying 
participants with a high total normalized WMH volume or distribution 
patterns with WMH at commons locations. A data-driven machine 
learning approach, using the anomaly detection method LOF, did prove 
successful in identifying unusual WMH patterns, which included in-
dividuals with asymmetric patterns or the absence of WMH at common 
locations. 

Our study has several strengths. To our knowledge, this is the largest 
study presenting and analyzing a 3D voxel wise WMH distribution map 
in a memory clinic setting. By including data from eleven memory clinic 
cohorts, we were able to create a WMH distribution map that almost 
covers the full white matter. The WMH distribution maps on the voxel 
level provide a high spatial resolution and allows for quantitative 
visualization and analysis of the heterogeneity of WMH distributions. 
The use of our previously published and validated image analysis 
workflow (Biesbroek et al., 2019) creates uniform output for all cohorts 
included in our study, enabling the analysis of multicenter data with 

different MRI scanners and acquisition protocols. This also enabled post- 
hoc pooling of multicenter data of a heterogeneous population, 
improving generalizability to a memory clinic setting. 

However, several potential limitations of the study should be noted. 
Participating cohorts had different inclusion criteria and therefore our 
study sample may not be exactly representative to a general memory 
clinic population. In particular, different cohorts used different stan-
dardized diagnostic criteria for SCD, MCI, and dementia which may 
have caused heterogeneity in terms of diagnostic groups. Of note, we 
only included participants where the clinical diagnosis was compatible 
with vascular, neurodegenerative or mixed etiology, likely also 
including participants without major pathology. Participants with other 
diagnoses, which may have been based on aberrant patterns of WMH, 
were excluded by design. Hence, the findings of our study primarily 
apply to the selected patient categories. However, it should also be noted 
that from 343 patients with dementia (25 %) the etiology was unknown 
or not available in the database. It can therefore not be ruled out that 
these patients meet one of the exclusion criteria. As expected, the clin-
ical characteristics of participants in the three WMH tertiles are slightly 
different (e.g. age, diagnosis), which should be taken into account when 
comparing WMH distribution frequencies across these groups. Different 
cohorts used different scan protocols and different resolution, although 
all scans where registered to the same standard space this will have 
affected the granularity of the results. Moreover, one cohort, including 
994 (28.2 %) participants had missing segmentations of the infratento-
rial region. Hence, the WMH probability of < 0.1 % in the majority of 
infratentorial regions and < 0.5 % in the central pons (Figure A.2), may 
be a slight underestimation. Results of the ROI-based analyses are 
limited by the spatial coverage of the JHU atlas, which only covers 
approximately 40 % of the total white matter (despite using a low 
probability threshold). Besides unusual patterns, LOF also revealed 

Fig. 5. Results of local outlier factor. Clinical characteristics and WMH distribution patterns of the five participants with the lowest local outlier factor (LOF) score 
are presented, after exclusion of segmentations errors. LOF assigns a low (negative) score to participants whose total 3D WMH distribution deviates substantially with 
respect to all other participants in the dataset. The FLAIR sequence and WMH lesion map in native space are shown. L = left, R = right. 

M. Coenen et al.                                                                                                                                                                                                                                



NeuroImage: Clinical 40 (2023) 103547

8

errors made earlier during the automatic segmentation of WMH, where 
acute or chronic infarcts were incorrectly segmented as WMH. Such 
errors are to be expected in a study with this sample size. In a post-hoc 
random quality controls sample of 60 scans no such errors were iden-
tified. Hence, LOF could also be used as a computer-assisted quality 
control for large studies using WMH segmentations to detect segmen-
tation errors. Finally, other aspects of lesions, such as shape, may be 
considered to identify abnormal patterns. Here we primarily addressed 
spatial distribution. 

Future work could repeat distribution analyses in other settings, such 
as community-based cohorts; to provide complimentary information to 
the results presented here. In the current study it was not possible to 
assess to which extent the observed WMH pattern is because of disease 
processes related to cognitive impairment or normal aging. A previous 
study by Wollenweber et al. (2017) (Wollenweber et al., 2017) 
compared the spatial distribution of different SVD imaging markers 
between community-based participants and patients with CADASIL and 
cerebral amyloid angiopathy (CAA). However, that study was limited in 
terms of sample size and different etiologies. 

In clinical research or routine LOF might serve as an alert to notify 
observers about unusual patterns to which extra attention should be 
paid and other causes than sporadic SVD or amyloid pathology could be 
considered. Future studies should examine to which extent lesion dis-
tributions provide diagnostic or prognostic information, or help to 
recognize specific etiologies. For example, WMH distribution maps per 
diagnostic group (i.e. SCD, MCI, and dementia) using standardized 
diagnostic criteria could be addressed. Second, a semi-automated tech-
nique, like LOF, may be helpful in identifying WMH in a multispot 
pattern which is part of the Boston 2.0 criteria (Charidimou et al., 2022) 
for CAA and which is now currently based on visual review. This is a 
field which is rapidly evolving, benefiting from developments in ma-
chine learning and artificial intelligence. 

In summary, this study provides a quantitative WMH distribution 
map in a large multicenter memory clinic cohort. Many participants 
proved to have at least some WMH at a location where WMH occurred 
infrequently. Identifying unusual WMH patterns is therefore not 
straightforward on visual evaluation or rule-based schemes alone, but 
can be achieved by an automatic machine learning method. This 
knowledge may be helpful to researchers and clinicians in assessing 
WMH distribution and identifying unusual patterns which might be 
associated with other causes than sporadic SVD. 
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