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Abstract 

Background:  The correct identification of pills is very important to ensure the safe administration of drugs to 
patients. Here, we use three current mainstream object detection models, namely RetinaNet, Single Shot Multi-Box 
Detector (SSD), and You Only Look Once v3(YOLO v3), to identify pills and compare the associated performance.

Methods:  In this paper, we introduce the basic principles of three object detection models. We trained each algo-
rithm on a pill image dataset and analyzed the performance of the three models to determine the best pill recogni-
tion model. The models were then used to detect difficult samples and we compared the results.

Results:  The mean average precision (MAP) of RetinaNet reached 82.89%, but the frames per second (FPS) is only 
one third of YOLO v3, which makes it difficult to achieve real-time performance. SSD does not perform as well on the 
indicators of MAP and FPS. Although the MAP of YOLO v3 is slightly lower than the others (80.69%), it has a significant 
advantage in terms of detection speed. YOLO v3 also performed better when tasked with hard sample detection, and 
therefore the model is more suitable for deployment in hospital equipment.

Conclusion:  Our study reveals that object detection can be applied for real-time pill identification in a hospital phar-
macy, and YOLO v3 exhibits an advantage in detection speed while maintaining a satisfactory MAP.

Keywords:  Convolutional neural network, RetinaNet, SSD, YOLO v3, Pill identification

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
In China, due to medical insurance policies require-
ments, oral pills for inpatients are dispensed individually 
by inpatient pharmacies according to the prescribed dos-
age, and pharmacists need to disassemble the packaging 
of the pills for dispensing. These cases usually require 
unpacking the pills from their original labeled containers. 
However, in contrast to management systems in coun-
tries such as the United States and Japan, the China Food 
and Drug Administration (CFDA) does not mandate 
that pills have an imprint code. Therefore, as some of the 
solid oral dosage forms may not be clearly distinguishable 
from each other in terms of size, shape, or color, when 
the packaging is removed it may be difficult for hospital 

pharmacists to distinguish between pills. Similar look-
ing pills that cannot be identified must be discarded, 
which results in a waste of medical resources. Solving 
this problem requires not only long-term knowledge and 
experience on the part of pharmacists, but also requires 
intense focus on their work. However, with China’s grow-
ing and aging population, the demand for medical care is 
increasing [1], which places considerable pressure on the 
limited medical resources [2]. In most primary care hos-
pitals, many pharmacists still dispense drugs and check 
them manually. Although some large hospitals have now 
adopted the expensive Automatic Tablet Dispensing 
Machine, it seems that filling errors, accidental dropping 
of medication into the machine, and other human errors 
remain unavoidable [3, 4]. ’Err is Human’ [5], and even 
experienced pharmacists can make mistakes under the 
pressure of constant high intensity work. Dispensing the 

Open Access

*Correspondence:  chenwenying2016@163.com
Department of Pharmacy, The Third Affiliated Hospital of Southern 
Medical University, Guangzhou 510000, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01691-8&domain=pdf


Page 2 of 11Tan et al. BMC Medical Informatics and Decision Making          (2021) 21:324 

wrong drug will seriously compromise the safety of treat-
ment [6, 7].

With the phenomenal development of machine learn-
ing in recent years, machine learning has been widely 
applied to computer vision, medical image processing, 
and many other fields. Some progress has been made in 
drug discovery [8], drug production [9] and semi-quan-
tification [10], but very little research has been done on 
pill identification. As sophisticated algorithms continue 
to emerge, it seems likely that it will be possible to apply 
image processing research to pill identification. The accu-
racy of the model is the basic indicator that determines 
whether this technology can assist a pharmacist’s work. 
In addition, the efficiency of the model is also impor-
tant. For example, if the model calculation takes too 
long, it will not be suitable for use in a busy environment. 
To investigate this possibility, we trained some current 
mainstream object recognition algorithms, including 
RetinaNet, Single Shot Multi-Box Detector (SSD), and 
You Only Look Once (YOLO v3), on a newly created 
pill dataset and compared the results in terms of accu-
racy and detection speed, to determine the best model to 
assist pharmacists and other healthcare workers dispense 
and check drugs affordably.

Related work
Early related research was mainly based on traditional 
machine learning. Lee et  al. proposed a Canny edge 
detection and invariant moments method to extract the 
feature vector from pill imprint images [11]. Morimoto 
et  al. used images captured from both-sides of tablets 
to identify them by matching distinctive marks [12]. 
Suntronsuk et  al. used Otsu’s thresholding with noise 
elimination to extract the imprint from pills as a vector, 
achieving precision and recall scores on the recognition 
of text on imprints of over 57% [13]. Neto et al. proposed 
a feature extractor based on shape and color in 1,000 
images of 100 different classes of pills, obtaining an accu-
racy of over 99% using various classifiers [14]. Dhivya 
et  al. used a support vector machine to recognize text 
imprinted on tablets [15].

Traditional machine learning methods achieve the 
detection of targets by manually designing feature 
learning methods, and the characteristics of the fea-
ture extraction design and classifier selection often 
largely determine the final detection accuracy. Hence, 
the corresponding characteristic parameters need to 
be set manually for different tablets. However, because 
of China’s Centralized Drug Bidding and Purchase 
Mechanism, the same drug will be centrally tendered 
each year, which means that it may be supplied by dif-
ferent pharmaceutical companies. Therefore, due to 
the annual variation in the types of pills chosen, a 

manual approach to feature design generates a signifi-
cant amount of work. This approach may lack robust-
ness to the diversity of the pills and cannot handle large 
volumes. In particular, when there is no imprint code, 
the similar appearance of pills and the lack of the corre-
sponding parameters can degrade recognition accuracy. 
Also, the traditional object detection approach uses 
a computationally intensive sliding window method, 
which makes it difficult to achieve real-time perfor-
mance. Therefore, an improved solution is desirable.

Convolutional neural networks (CNN) are the most 
common deep learning algorithm, applying multiple 
convolutional layers and convolutional computation. 
They have efficient feature extraction capability and 
provide a better problem-solving method for object 
detection. Wong et  al. used the improved AlexNet-
based algorithm, which won the ILSVRC 2012 champi-
onship, and compared it with two traditional machine 
learning methods, k-nearest neighbors and random 
forests, for pill feature extraction, ultimately demon-
strating the superiority of AlexNet. The results showed 
that the top-1 pill recognition by the AlexNet-based 
network performed better than those with manu-
ally designed features, reaching 95.35% [16]. However, 
AlexNet, as a light network with only a few layers, can 
only implement simple applications, and as the com-
plexity of the task increases, it is not flexible enough 
to train a robust neural network for this task. Swastika 
et  al. proposed using three LeNet or AlexNet models 
to extract the three main features of pills, shape, color, 
and imprint, and combined three CNNs into an inte-
grated network for pill identification. The network was 
trained on 24,000 images of eight types of pill, achiev-
ing a recognition accuracy of up to 99.16% [17]. Ou 
et al. proposed a drug pill detection system similar to a 
two-stage target detection algorithm based on ResNet 
for localization detection and Xception for classifica-
tion. The training set included 131 categories and a 
total of 1,680 images for training. The top-1 accuracy 
rate for the trained network was up to 79.4% [18]. Based 
on these studies, deep learning has gradually replaced 
manual design extraction in pill feature extraction, and 
deep learning algorithms, such as LeNet, AlexNet, and 
ResNet, are able to address the problem of pill image 
classification. The CNNs used for target detection, such 
as Retinanet, SSD, and YOLO architectures, incorpo-
rate the structure of the above-mentioned CNNs used 
for image classification, and can accomplish both image 
classification and target localization, but they have not 
been applied to pill identification. In addition, in prac-
tical applications, especially in places with high work-
loads such as pharmacies, there is a need to consider 
accuracy while also focusing on preforming the task in 
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real-time. To the best of our knowledge, existing stud-
ies do not take real-time performance into account.

Object recognition technology based on deep learning
Current approaches using deep learning methods for 
target classification and regression can be divided into 
two categories. One is the two-stage algorithm repre-
sented by architectures such as R-CNN, Fast R-CNN, and 
Faster R-CNN. This type of algorithm is usually carried 
out in two steps. The first one is to use a selective search 
or Region Proposal Net (RPN) to generate possible tar-
get regions, and then complete classification and regres-
sion on Region Proposal. This method has high accuracy 
but also limits the detection speed. Another algorithm is 
the one-stage algorithm, which is represented by Reti-
naNet, SDD, or YOLO. The one-stage algorithms use a 
single network to directly predict object bounding boxes 
and class probability scores from images. The detection 
speed is improved by avoiding the use of RPNs. However, 
the accuracy of the one-stage algorithm for small target 
detection is not as good as the two-stage algorithm. The 
detection accuracy and detection speed of the model 
directly affect the feasibility of pill recognition.

RetinaNet is one of the representative one-stage algo-
rithms and the structure is shown in Fig. 1. The backbone 
uses ResNet and Feature Pyramid Net (FPN) structures. 

Based on the FPN structure, a top-down path and hori-
zontal connection are added. Each level of the FPN is 
connected to the fully convolutional networks, which 
include two independent subnets that are used for clas-
sification and regression. The main innovation of Reti-
naNet is the addition of Focal Loss to the Classification 
Subnet. Since the imbalance of the number of posi-
tive and negative samples in the target detection of the 
one-stage algorithm will affect the training loss, Focal 
Loss assigns different weights to hard samples, which 
effectively solves the class imbalance problem in the tar-
get detection model. A study [19] in 2017 showed that 
RetinaNet could achieve detection speeds similar to 
some one-stage algorithms, and the detection accuracy 
exceeded many two-stage algorithms at that time.

SSD [20] was proposed by Wei Liu et al. and draws on 
the anchor mechanism of Faster R-CNN and the end-
to-end one-step structure of the YOLO algorithm in 
which object classification and location regression are 
performed directly in the convolution stage. The main 
network of the SSD algorithm is shown in Fig.  2. SSD 
uses the VGG-16 network as a backbone and modifies 
it by replacing the last two fully connected layers with 
convolutional layers while also adding another four con-
volutional layers later to finally form the feature extrac-
tion network as Conv4_3, Conv7, Conv8_2, Conv9_2, 

Fig. 1  RetinaNet structure
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Conv10_2, and Conv11_2, whose sizes are (38, 38), (19, 
19), (10, 10), (5, 5), (3, 3), and (1, 1), respectively. SSD is 
trained to obtain a set of fixed-sized bounding boxes and 
the class prediction scores of the targets in the bounding 
boxes. Then, redundant bounding boxes are filtered out 
and the final detection results are generated by the non-
maximum suppression (NMS) algorithm, which has good 
results both in terms of speed and accuracy of detection.

YOLO [21] proposes a new idea for target detection 
by transforming the task into a regression problem. The 
whole framework only needs to use a relatively simple 
CNN structure to directly complete the regression of 
target detection to predict the position of the bounding 

box and the class of the candidate box. The YOLO v3 
[22] backbone network structure does not have the 
pooling and fully connected layers, as shown in Fig. 3, 
and the convolutional transformation of the image 
is achieved by changing the step size of the convolu-
tional core. YOLO v3 uses Darknet-53 as the network 
skeleton, which makes the network structure deeper 
and better at extracting features, as demonstrated 
by its improved accuracy compared with YOLO v1 
and YOLO v2. Darknet-53 makes extensive use of the 
ResNet residual structure, which can avoid the vanish-
ing gradient problem even when the network structure 
is deep.

Fig. 2  SSD network structure

Fig. 3  YOLO v3 network structure
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Methods
Dataset preparation
The training of deep learning models typically requires 
many data samples to obtain reliable parameters and 
models. In 2016, the U.S. National Library of Medicine 
published an algorithm challenge competition on pill 
recognition, and publicly released the pill image dataset 
[23]. However, considering our particular situation in 
which there are some kinds of pills without an imprint 
code, this dataset was not considered suitable. There-
fore, we decided to create our own dataset for use in 
this experiment.

The appearance of our existing oral solid dosage forms 
was analyzed by observation, and images were taken 
using a high-speed photographic apparatus connected to 
a computer. The pills were placed at a random location 

on the board. Since the height of the high-speed photo-
graphic apparatus is fixed, the distance of each pill shot 
is also relatively constant. Each pill shot includes both 
front and back images, for a total of 5,131 images. The 
statistics of the dosage form, printing, shape, color, and 
manufacturer of the pills. There was a total of 261 varie-
ties of oral solid drugs commonly used in inpatient phar-
macies, including 70 capsules and 191 tablets, as shown 
in Table  1. We observed that some pills have a special 
code, manufacturer’s trademark image, and that several 
of them were printed at the same time after removing the 
packaging, which aids in identification. However, there 
are still some tablets that are hard to distinguish after 
removing the outer packaging. Representative images of 
the tablets are shown in Fig. 4.

Object image annotation
Since the object recognition method used in this experi-
ment is a type of supervised learning, it is necessary to 
obtain the labeling information of the pill to be detected 
in the image; this includes the pill category informa-
tion and the pill border location information. LabelImg 
is written in Python. Since the labeling format of Labe-
lImg is consistent with PASCAL VOC and has a good 
graphical interactive interface with a rich array of short-
cut keys, it was used to improve the labeling efficiency in 
our experiment. The image annotation process is shown 
in Fig.  5. After labeling the tablets with LabelImg, the 
information of each image is saved in an "xml" file with 
the same name. The xml file contains all the information 

Table 1  Appearance of pills

Dosage form Printing Non-
round 
shape

Non-round 
appearance

Total number 
of pill varieties

Naked tablet 2 0 7 21

Sugar coated 
tablet

1 0 8 14

Film-coated 
tablet

111 66 66 156

Capsule 34 – 55 61

Soft capsule 1 – 8 9

Total 149 66 144 261

Fig. 4  Example images of solid oral dosage forms
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needed for training the network, including the class of 
the object and the location of the object in the image. 
After the image annotation work was completed, the 
image dataset was enlarged to 51,310 images by means of 
horizontal flip enhancement, vertical flip enhancement, 
mirror symmetry enhancement, affine change, rota-
tion, Gaussian noise addition contrast change, and scale 
transformation.

Training models
The experimental platform configuration for this paper 
is the following: OS, Win10; GPU, NVIDIA GeForce 
GTX 1080Ti; CPU, Intel(R) Core(TM) i7-7700  K CPU 
@ 4.20 GHz. The experimental platform was built based 
on the Python programming language and the PyTorch 
framework.All three models were trained on this con-
figuration. The specific parameters are shown in Table 2. 
The models were all pre-trained on the Ms. COCO data-
set, and then transferred to the pills dataset for training. 
After the training parameters were set, the dataset was 
divided according to the ratio of 6: 2: 2 for the training 
set, validation set and testing set, respectively.The train-
ing set was used to train the model and the validation set 
was used to check the state of the model during the train-
ing process to assess whether the model was over-fitting. 
After the training was completed, the test set was used 
to evaluate the generalization ability of the model. The 
value of the loss function is shown in the Fig. 6. When the 
training starts, the descent gradient increases rapidly, but 

then the change in Loss value gradually slows down, and 
finally stabilizes.

Evaluation indicators
To compare the results of the three deep learning-
based models for pill recognition, we applied a range 
of standard metrics commonly used to evaluate these 
models. There are four possible outcomes based on the 
output categories of the test samples compared with 
the categories of the true labels, as follows: true posi-
tives (TP), false positives (FP), false negatives (FN), and 
true negatives (TN). If the target type is detected cor-
rectly, the center coordinates of the detection frame 
and the dimensions of the detection frame are within 
tolerable limits, then the detection result is recorded as 
TP. FP refers to a target category recognition error or 
the detection frame is not within the preset threshold. 
The predicted result of a target that is not detected is 

Fig. 5  LabelImg tool for image labeling

Table 2  Parameter configuration

Parameter Value

Batch 64

Sub-divisions 16

Learning rate 0.001

Momentum 0.9

Decay 0.0001
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recorded as FN. As we did not predict the absence of a 
pill, the category of TN was not used.

The observed counts are combined into standard 
metrics including recall, precision, F1 score (F1), mean 
average precision (MAP), and frames per second (FPS). 
In the process of target detection, precision is the 
ratio of correctly detected targets to the number of all 
detected targets; recall is the ratio of the number of 
correctly detected targets to all targets in the sample 
set. The definition of precision and recall are shown in 
Formulas 1 and 2, respectively:

F1 is the weighted harmonic average of precision and 
recall. Since the amount of data for each pill is not the 
same, the F1 score is used to evaluate performance. The 
F1 score can be calculated from the precision and recall 
rates, as defined in Formula 3:

Average precision (AP) is the precision across all ele-
ments of a category of pills, as defined in Formula 4:

MAP is numerically equal to the average value of the 
AP sum across all categories, and this value is used to 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F1 =
2PR

P + R

(4)AP =

1∫

0

p(r)dr

evaluate the overall performance of the model. The defi-
nition is shown in Formula 5:

FPS is a common indicator for evaluating the speed of 
model detection. This refers to the number of images that 
can be processed per second. In general, FPS over 30 is 
considered to have achieved real-time detection.

Results and discussion
Comparison of algorithm detection results
After training, the different algorithms were used for pill 
identification on the test set; the results are shown in 
Fig.  7 and Table  3. Compared with YOLO v3 and SSD, 
RetinaNet has a higher MAP by 2.20% and 0.18%, respec-
tively. However, YOLO v3 can predict multiple bounding 
boxes and their categories simultaneously, and the detec-
tion speed is faster than that of the other network model 
structures. As shown in Fig.  8, YOLO v3 detects 51 
images per second, and SSD detects 32 images per sec-
ond. The detection speed of these two algorithms exceeds 
30 FPS, which is much faster than RetinaNet. If detection 
efficiency is considered, YOLO v3 performs best among 
the three models, while RetinaNet does not meet the 
real-time requirements, which limits its potential appli-
cations. Based on the analysis of the above experimental 
results, RetinaNet is more suitable if the higher MAP of 
pill recognition is required, but YOLO v3 may be more 
suitable for use when the priority is real-time perfor-
mance and it is feasible to accept a slightly lower MAP. 
Therefore, we believe that YOLO v3 has the potential 
to be applied to assist pharmacists to identify pills in a 

(5)MAP =
1

n

n∑
i=1

APi

Fig. 6  Graph of Loss function
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hospital dispensary environment. The precision of the 
three models is lower than the recall score because after 
removing the packaging of the tablets, part of the identi-
fiable information is removed. Faced with many pills of 
similar colors or shapes, it is difficult to distinguish them 
from each other even for human experts. This task is also 

Fig. 7  Graph of model performance measures

Table 3  Evaluation of deep learning models

Algorithm Precision (%) Recall (%) F1 (%) MAP (%)

RetinaNet 64.98 83.86 73.26 82.89

SSD 63.69 88.89 74.21 82.71

YOLO v3 69.65 80.67 74.77 80.69

Fig. 8  Performance of deep learning model
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challenging for convolutional neural networks. Due to 
the level of difficulty, the model sometimes identifies pills 
incorrectly, which leads to an increase in the FP score. 
From Formulas 1 and 2, the increase in FP will lead to a 
decrease in precision, while recall is not affected by the 
FP rate.

Hard sample detection comparison
To more effectively reflect the effect of the model in 
identifying tablets with similar colors and shapes, we 
selected some tablets that are particularly hard to iden-
tify. As shown in Fig. 9a, since the tablets are small and 
have no obvious printed codes, they are visually more 
difficult to distinguish, and Fig. 9b showed the detection 
effect of the YOLO v3. Results from the hard to identify 
group are shown in Table 4. The three algorithms exhibit 
little difference in the MAP, but YOLO v3 has obvious 
advantages in FPS and model size. Features that cannot 
be distinguished visually can be learned through train-
ing (back-propagation), using the convolution kernel in 
the CNN. The features learned by the network can then 
be used as the basis for correct judgment of the type of 
pills, which greatly accelerates manual dispensing and 
checking. In the pharmacy, we can set the confidence 
threshold to assist the pharmacist in judging the medi-
cine. When the probability (confidence) that the network 
judges that the current pill belongs to a certain category 
is lower than our set value, we interpret that the network 
model is having difficulty judging the current pill, and at 
this time, pharmacists can participate manually to ensure 
correctness.

Conclusion
We collected pill images and used LabelImg to cre-
ate a standard PASCAL VOC format image database. 
Three currently dominant object detection methods, 
RetinaNet, SSD, and YOLO v3 were trained using the 
pill dataset. The loss function of YOLO v3 converges 
faster, indicating that the training time of the YOLO 
v3 model is shorter than that of the other two models. 
Hence, it can better deal with the impact of retraining 
the model due to frequent changes of pills in pharma-
cies. By comparing the evaluation indicators, each of 
the three models has its own advantages and disad-
vantages. RetinaNet has a high MAP (82.89%), but the 
detection speed (FPS: 17) is not fast enough for real-
time application. SSD is intermediate in performance, 
with scores between the other two networks on both 
speed (FPS: 32) and MAP (82.71%). Although YOLO 
v3 does not have the highest MAP (80.69%), it can 
greatly improve the detection speed and achieve real-
time performance (FPS: 51). In busy hospital pharma-
cies, pill identification requires not only a high enough 
MAP, but also a fast detection speed. YOLO v3 may be 
the best compromise. This method can quickly help 
pharmacists identify drugs, reduce the probability 

Fig. 9  Actual detection effect of the model a hard samples, b YOLO v3 detection results

Table 4  Indicators of models in identifying hard samples

Algorithm MAP (%) FPS Model size

RetinaNet 79.61 22 157M

SSD 79.03 41 149M

YOLO v3 79.02 69 89M
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of dispensing the wrong drug, and therefore can help 
improve patient safety. On the basis of model size, the 
YOLO v3 network can meet the requirements of the 
low-performance platforms and provides fast detection 
speeds. Therefore, it has broad development prospects 
and practical application value.

There are some shortcomings in our study, such as 
limitations in the experimental dataset, as we have only 
collected images of split pills from one hospital. A larger 
dataset would make the results more robust. Another 
important factor is that some different types of oral solid 
dosage forms currently in clinical use have a very simi-
lar appearance, which will reduce the MAP of model 
recognition. In future work, we will build larger data-
sets and keep testing new algorithms to further opti-
mize the model and improve both the MAP and speed of 
detection.
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