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ABSTRACT
Background. China is the leading consumer of plastic film worldwide. Plastic film
mulched ridge-furrow is one of the most widely adopted agronomic and field man-
agement practices in rain-fed agriculture in dry-land areas of China. The efficiency of
plastic film mulching as a viable method to decrease evapotranspiration (ET), increase
crop yields, and water use efficiency (WUE), has been demonstrated extensively by
earlier studies.
Methods. A comprehensive evaluation of how co-application of plastic-filmmulch and
biochar in different agro-environments under varying climatic conditions influence
ET, crop yield, WUE, and soil microbial activity were assessed. We performed a meta-
analysis using the PRISMA guideline to assess the effect of plastic-film mulched ridge-
furrow and biochar on ET, yield, and WUE of wheat (Triticum aestivum L.), potato
(Solanum tuberosum L.), and maize (Zea mays L.) in northern China.
Results. The use of plastic film increased average yields of wheat (75.7%), potato
(20.2%), and maize (12.9%) in Gansu, Ningxia, Shaanxi, and Shanxi provinces,
respectively due to the reduction in ET by 12.8% in Gansu, 0.5% in Ningxia, and 4.1%
in Shanxi, but increased in Shaanxi by 0.5% compared to no-mulching. These changes
may be attributed to the effect of plastic film mulch application which simultaneously
increased WUE by 68.5% in Gansu, 23.9% in Ningxia, 16.2% in Shaanxi, and 12.8% in
Shanxi, respectively. Compared to flat planting without mulching, in three years, the
yield of maize increased with the co-application of plastic film and biochar by 22.86%
in the Shanxi and Shaanxi regions.
Conclusion. Our analysis revealed co-application of plastic film with biochar is integral
for improving soil and water conservation in rain-fed agriculture and as an integrated
practice to avert drought while simultaneously mitigating runoff and erosion.
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INTRODUCTION
Poor soil fertility and water scarcity pose a major threat to crop production to meet
the food needs of the increasing global population (Qin, Hu & Oenema, 2015). Soil
water conservation has been identified as an important strategy for enhancing crop
productivity in rain-fed agriculture (Ding et al., 2018). The amount of soil water and
nutrient during different growing seasons have marked impact on crop yields in rain-
fed agriculture, especially in semi-arid regions with rapidly changing climate (Grassini
et al., 2010). Unfortunately, most soils in rain-fed farming areas are nutrient-deficient
and susceptible to soil erosion and runoff (Liu et al., 2009). Thus, soil as an important
natural asset should be properly managed to ensure sustainable agricultural production
(Panpatte & Jhala, 2019). Appropriate land and water management practices are required
to reduce the risk of widespread water resource depletion in dry agricultural areas (Liu
et al., 2014b). For instance, Olsovska et al. (2016) reported drought-induced accelerated
leaf diffusion resistance against carbon dioxide (CO2 (gm)) flow resulting in decreased
stomatal conductance (gs), leaf mesophyll conductance for CO2, and net CO2 assimilation
rate (AN) in wheat. Hence, rain-fed crop production and management practices need to
be optimized to provide more resilient options to cope with decreasing precipitation and
extreme drought periods in these regions (Verhulst et al., 2011).

Soil water conservation by soil mulching has been projected as a feasible approach to
overcomewater scarcity for crop productivity in rain-fed agricultural areas. Local farmers in
the rain-fed agricultural areas of the Loess Plateau of China practice ridge-furrow rainwater
harvesting with plastic film mulching to improve yield and water use efficiency of crops
(Eldoma et al., 2016; Yu, Jia & Zhao, 2018; Zhang et al., 2018; Pan et al., 2019). Mulching
offers significant agro-ecological potential (Erenstein, 2003) and thus, one of the important
agronomic practices to improve moisture retention capacity of soils (Ye & Liu, 2012),
promotes carbon dioxide (CO2) retention in leaves (Samui et al., 2020), soil microbial
characteristics, and crop nutrients assimilation (Chakraborty et al., 2008). In unproductive
soils, plastic film mulching also promotes nutrient use efficiency. For instance, Mondal et
al. (2020) demonstrated 50% of the recommended dose of nitrogen with no rhizobium
resulted in maximum nitrogen use efficiency while under polythene mulch; significant
root nodules were recorded for treatments that received 75% of the recommended dose of
nitrogen with rhizobium inoculation.

Plastic film mulch reduces evapotranspiration and enhances plant growth (Qin, Hu &
Oenema, 2015; Shen et al., 2019). Plastic mulches usually leave residues in fields they have
previously been applied (Jabran, 2019). The residual effect of plastic mulching considerably
increased yields, andwater use efficiencies ofTriticum aestivum L. andZea mays L. (Qin, Hu
& Oenema, 2015) while reducing evapotranspiration (ET) (Fan et al., 2017). Contrarily,
ET increased by 38.1 and 9.3% on plastic film mulched ridge-furrow and flat-planted
non-mulched maize fields, respectively (Gong et al., 2017). In the first and second seasons
with plastic film mulching and flat planting (FP) with no-mulching areas, Mbah & Nwite
(2010) recorded an increment in yield from 55–78 and 108–142%. In two consecutive
growing seasons in China, plastic film mulching with biochar modification increased
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the root and shoot biomass and grain yield of maize (Xiao et al., 2016). Although plastic
film mulching has been the ultimate choice of mulching material in rain-fed areas, to
enhance water availability in the soil for plant growth (Zhang et al., 2017), it equally poses
a challenge of residual plastic film on farmlands which can impede soil structure, plant
growth, nutrients and water uptake (Liu, He & Yan, 2014). The persistence of residuals in
soils from pesticides (Hüffer et al., 2019) and fertilizers (Anyaoha et al., 2018) pose risks
to their continuous use as inputs in agriculture. Consequently, biochar applications with
plastic film mulching have been touted as an effective agronomic practice to mitigate the
negative effects of residual plastic film mulching under field conditions. However, studies
on the co-application of biochar and plastic film mulches in China are limited (Aller et al.,
2018).

Biochar is a carbon-rich product of the thermo-chemical conversion of organicmaterials
used as soil amendments due to their gradual decomposition rate and influence on nutrient
dynamics (Gao et al., 2019). The focus of biochar research has advanced from its effects on
semi-arid soils to its potential as a soil management material for global agriculture (Karer
et al., 2013). In arid areas, biochar application improves soil water adsorption capacity,
fertility, microbial activity, organic matter content, soil porosity, water retention, soil
quality, soil aeration, and nutrients uptake for enhanced crop production (Yang & Ali,
2019). Biochar has appreciable carbon sequestration value and may act as a modifier or
carbon sink to reduce CO2 emissions from decaying biomass, nutrient leaching, soil bulk
density, erosion, or fertilizer needs (Mohan et al., 2014; Kavitha et al., 2018). The shared
impact of plastic filmmulching with biochar on ET, crop yield, andWUE as a ridge-furrow
rainwater harvesting technology in China are currently less understood (Nelissen et al.,
2012; Fischer et al., 2019). Therefore, understanding how biomass in China and across the
world can change under the combined application of plastic film and biochar and processes
activated as a result of these changes is key to harnessing their potential for wider use in
agriculture (Antala et al., 2020).

The effects of plastic film mulched ridge-furrow with biochar on ET, crop yield, and
WUE in rain-fed agro-ecological areas in China have been reported in the past with mixed
results. We, therefore, hypothesized that the co-application of plastic film with biochar in
semi-arid regions is an optimum agronomic practice for minimizing the adverse impact
of drought while simultaneously mitigating runoff and erosion. Here, we performed a
meta-analysis on relevant literature using the PRISMA guideline (Moher et al., 2009) to
ascertain the impact of ridge-furrow plastic film mulching with biochar on ET, crop yield,
and WUE of maize, wheat, and potato.

MATERIALS & METHODS
Data collection
Data from only peer-reviewed publications in English investigating the effects of plastic film
mulching and biochar on field crops from 1990–2020 were retrieved from online databases
(ISI Web of Science, Scopus (Elsevier), ScienceDirect, PubMed, JSTOR, and Google Scholar).
Nevertheless, articles from conference proceedings were excluded from this meta-analysis.
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In the databases, ‘yield’, and/or ‘plastic film’, and/or ‘biochar,’ and ‘mulching’ were
used as search keywords. Erastus Mak-Mensah and Eunice Essel performed the Search
Strategy and independently decided on appropriate publications for the study. Qi Wang
intervened and resolved by discussing cases where Erastus Mak-Mensah and Eunice Essel
had disagreements on the use of a particular reference in the study. The search produced
a total of 556 publications, which were screened based on (1) on-field experimentation
containing at least plastic film mulched ridges and no mulch treatments; (2) experimental
sites located in rain-fed agriculture areas of China in Gansu, Ningxia, Shaanxi, and Shanxi
provinces; (3) colors of the plastic film were black and transparent; (4) the publication
included estimates of ET, crop yield, or WUE. Subsequently, due to insufficient and
missing data, 535 papers were excluded from this meta-analysis and the final analysis
was conducted on 21 studies (papers) based on ET, yields, and WUE after the screening
process. The process of screening of publications for the meta-analysis is depicted in a
flowchart (Fig. 1); which was adapted from the PRISMA protocol (Moher et al., 2009).
Farming provinces and locations of field experiments for all the crops in this study are
shown in Table 1 and Fig. 2. Data within the selected publications were categorized based
on estimated biophysical parameters (Table 2). Variations in ET, yield, andWUE of wheat,
maize, and potato under plastic film and no-mulching applications were shown in Table 3
while Table 4 shows the mean, range, and coefficient of variation (CV) of ET, yield, and
WUE in different locations and precipitations in northern China. The mean, range, and
coefficient of variation (CV) of yield of maize for plastic film mulched ridge-furrow and
no-mulching in Shanxi and Shaanxi provinces in China are shown in Table 5.

Data analysis
Meta-analysis enables the statistical analysis of effect sizes and quantitative evaluation of
experimental outcomes reported by other authors. Meta-analysis enhances the statistical
capacity available for testing the hypotheses and the reaction variations between treatments
in different environments. Unbiased estimation of the underlying true effect size, subject
to random variance, can be assumed to be the effect size observed in each sample. The
Newcastle Ottawa Scale (NOS), (Zeng et al., 2015), was used to assess the importance of the
papers involved in this study. High-quality publications (papers) were considered based
on ≥ 7 score. The scores for NOS varied from 6 to 9 (Table 1). More weight is given to
data from experiments with more reliable measurements because they have a larger effect
on the overall calculation (Yu et al., 2018).

We used the construction confidence interval analysis (Gao et al., 2019) to correlate
the severity of the response ratio between the plastic film mulched ridge-furrow and
no-mulching treatments. The effect size was computed as the natural log (ln R) of the
response ratio (R) (Gao et al., 2019; Qin, Hu & Oenema, 2015), which reflects the severity
of the effect of plastic film mulch on ET, yield, and WUE in this meta-analysis (Hedges,
Gurevitch & Curtis , 1999), Eq. (1):

R= θt/θc (1)

Mak-Mensah et al. (2021), PeerJ, DOI 10.7717/peerj.10967 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.10967


Figure 1 Flowchart of literature identification, and screening for use in this study. Adapted from
PRISMA (Moher et al., 2009).

Full-size DOI: 10.7717/peerj.10967/fig-1

InR= In(θt/θc)= Inθt− Inθc (2)

where θt and θc equates the mean values of ET, yield, and WUE in plastic film mulched
ridge-furrow and no-mulching, respectively. To further authenticate the outcomes from
this analysis, the percentage of change (Z) in ET, yield, and WUE were determined
according to Li et al. (2018a), Li et al. (2018b) as:

Z = (R−1)×100% (3)

where a negative value for percentage change shows a decline in the variable with plastic
filmmulching relative to no-mulching and a positive value for percentage change, indicates
an enhancement in thematching variable for plastic filmmulching relative to no-mulching.
Conversely, the sample sizes of the variables and standard deviation (SD) involved were
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Table 1 Study areas, crops and literature sources used in this meta-analysis

Province Study areas Geo-coordinate
(N, E, m a.s.l)

Crop Reference NOS

Qingyang 35◦42′, 107◦20′ Gao et al. (2014) 9
Tangjiabu, Dingxi 35◦57′, 104◦59′, 1970

Wheat
Li et al. (2004) 8

35◦33′, 104◦35′, 1896.7 Zhao et al. (2012) 7
35◦33′, 104◦35′, 1896.7 Zhao et al. (2012) 7Dingxi

35◦33′, 104◦35′, 1874 Qin et al. (2016) 8
36◦02′, 104◦25′, 2400 Zhao et al. (2014) 6
36◦02′, 104◦25′, 2400

Potato

Liu & Siddique (2015) 8
36◦2′, 104◦25′, 2400 Eldoma et al. (2016) 8

Zhonglianchuan,
Yuzhong

36◦02′, 104◦25′, 2400
Maize

Zhou et al. (2009) 9
Gaolan 36◦2′, 103◦7′, 1780 6

Gansu

Yuzhong 35◦9′, 104◦1′, 1800
Wang et al. (2005)

6
35◦51′, 106◦48′, 1658 Wu et al. (2017) 7Ningxia Pengyang
106◦45′, 35◦79′, 1800

Potato

Zhang et al. (2017) 8
34◦59′, 107◦38′, 1220 Lu et al., 2020 8
35◦14′, 107◦41′, 1206 Zhang et al., 2011 8
35◦14′, 107◦41′, 1200–1206 Lin et al. (2019) 6
35◦14′, 107◦42′, /

Maize

Qin et al. (2018) 6

Changwu

35◦12′, 107◦45′, 12000 Wheat He et al. (2016) 9
35◦15′, 110◦18′, 910 Li et al. (2012) 9

Shaanxi

Heyang
35◦15′, 110◦18′, 910 Han et al. (2013) 8
37◦54′, 113◦09′, 1273 Gaimei et al. (2017) 7

Shanxi Shouyang
37◦45′58′ ′, 113◦12′9′ ′, 1202

Maize

Gong et al. (2017) 7

obtained in addition to the means from the articles or computed using the following
equation (Yu et al., 2018):

SD= SE×
√
n. (4)

For studies which did not report SD; the average coefficient of variation (CV) within
each data was computed and then approximated as the unavailable SD using the following
equation (Yu et al., 2018):

SD=CV ×θ (5)

where θ equates the mean of plastic film mulched ridge-furrow with biochar or no-
mulching. The effect sizes of plastic film with biochar and no-mulching for ET, crop yield,
andWUEwere continuous variables, hencewere calculated by random-effectsmodels using
the Review Manager software (RevMan; ver. 5.3, Nordic Cochrane Centre, Denmark). The
heterogeneity between studies used in this analysis has been measured with Chi2 and I2

statistics (Table 6). The parameters for heterogeneity for the I2 test were as follows: I2

<25% indicates no heterogeneity; moderate heterogeneity is considered to be 25–75%;
strong heterogeneity is considered to be I2 >75% (Table 7). Random-effects models were
implemented in cases of mild to high heterogeneity, indicated by a Chi2 p-value< 0.05
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Figure 2 Experimental locations from the peer-reviewed publications for the meta-analysis ArcGIS
10.6 software (ESRI, Redlands, California) was used to produce the map.

Full-size DOI: 10.7717/peerj.10967/fig-2

and X2 > 50%. The RevMan program weighed the mean differences of the plastic film
with biochar and no-mulching groups according to their SE and sample sizes, and their
confidence intervals (CI) were computed from their weighted effect sizes. The impact of
a treatment was significant if there was no zero in the 95% CIs of the effect size of that
treatment. Conversely, the treatment was considered not significant when the 95% CIs
includes zero. Similarly, a general linear model in SPSS statistical software (ver. 26.0, SPSS
Inc., Chicago, USA) was used to compute the effect of location, crop type, and rainfall
on ET, crop yield, and WUE. The frequency distribution of effect sizes (Odds ratio) was
computed using Excel 2016 spreadsheet to illustrate the distribution symmetries of the
individual studies.

RESULTS
Yield response of wheat, maize, and potato in different locations and
climate
Considering climate variables (precipitation and air temperature), the meta-analysis
indicated that in the growing-seasons, precipitation and air temperature had no significant
(p> 0.05) effects on maize, wheat, and potato yields in the plastic film mulched ridge-
furrow treatment (Fig. 1). The meta-analysis dataset had pH in all the areas of study as
slightly alkaline (>7) hence no comparison was made in that regard (Table 4). Therefore,
we investigated in three categorized soil types, i.e., light, medium, and heavy, the impacts
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Table 2 Categorization of data within the selected publications.

Annual mean
precipitation

Annual air
temperature

Organic C
content

Soil bulk
density
(0–20 cm)

Soil texture
(0–20 cm)

pH Soil
available
N

Soil
available
P

Soil
available
K

<400 mm <9 ◦C <9 g/kg <1.3 g cm−3 Light: sandy and sandy loam soils Very acidic: pH< 5 <50 mg kg−1 <20 mg kg−1 <150 mg kg−1

>400 mm >9 ◦C >9 g/kg >1.3 g cm−3 Medium: loamy sand and loam soils Acidic: pH 5-6 >50 mg kg−1 >20 mg kg−1 >150 mg kg−1

Heavy: clay loam, silty clay, and clay soils Neutral: pH 6-7

Slightly alkaline:> 7

Notes.
a< 400 (low mean precipitation);> 400 mm (high mean precipitation).
b< 9◦C (low mean temperature);> 9◦C (high mean temperature).
c< 9 g/kg (low organic C content);> 9 g/kg (high organic C content).
d< 1.3 (low soil bulk density) g cm−3;> 1.3 g cm−3 (high soil bulk density).
e< 50 (low soil available N) mg kg−1;> 50 mg kg−1 (high soil available N).
f< 20 (low soil available P) mg kg−1;> 20 mg kg−1 (high soil available P).
g< 150 (low soil available K) mg kg−1;> 150 mg kg−1 (high soil available K).
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Table 3 Variations in yield, evapotranspiration (ET), and water use efficiency (WUE) of wheat, maize, and potato under plastic film and no-mulching application

Treatments Parameters Variable Yield ET WUE

n Mean Range CV n Mean Range CV n Mean Range CV

Gansu 10 8821.6 2162.3–45882 151 7 279 215.4–386.5 22 7 33.3 0.8–129.95 138
Ningxia 2 12926 12779.3–13072.5 1.6 2 435 375.5–494.3 19 2 30.4 26.8–34.1 17
Shaanxi 7 9313.1 4931.8–13079.3 32.6 3 367 300–409.5 16 3 25.5 22–32.1 22.2

Location

Shanxi 2 11408 11290–11526.7 1.47 2 391 345.4–435.7 16 2 14.9 3.4–26.5 110
Maize 13 9813.4 2420–13079.3 32.8 8 392 300–494.3 15 7 23.9 3.4–34.1 42.3
Wheat 2 3547.1 2162.3–4931.8 55.2 1 273 – – 1 0.75 – –

Crop
type

Potato 6 11235 2359.3–45882 152 5 259 215.4–333.7 18 6 38.7 6.4–129.95 123
<400 8 9532.4 2359.3–45882 156 6 281 215.4–386.5 23 6 38.7 6.4–129.96 123

Rainfall
>400 13 9678.2 2162.3–13079.3 35.3 8 378 272.5–494.3 19 8 21 0.8–34.1 59.2
<9 13 9776.2 2162.3–45882 119 11 328 215.4–494.3 27 11 29.4 0.75–129.95 125

Plastic
film

Temperature
>9 8 9660.8 4931.8–13079.3 28.7 3 367 300–409.5 16 3 25.5 22–32.07 22.2
Gansu 10 5021.3 353–27385.5 162 7 320 253.5–461.1 26 7 19.7 0.6–79.6 144
Ningxia 2 10755 9978.3–11532 10.2 2 437 400–473.99 12 2 24.6 24.2–24.9 1.93
Shaanxi 7 8249.1 4650.4–10422.3 27.5 3 365 289.7–404 18 3 22 19.5–26 16.2

Location

Shanxi 2 10116 9988.3–10243.3 1.78 2 407 380.6–433.3 9.2 2 13.2 2.7–23.7 113
Maize 13 7896.5 353–11532 44 8 398 289.7–473.99 13 8 17.8 0.9–26 57
Wheat 2 2639.8 629.1–4650.4 108 1 273 – – 1 0.56 – –

Crop
type

Potato 6 6960.7 833–27385.5 147 5 313 253.5–461.1 29 5 27.4 3.6–79.6 113
<400 8 5537.7 353–27385.5 163 6 328 253.5–461.1 27 6 22.9 0.9–79.6 129

Rainfall
>400 13 8107.4 629.1–11532 38.7 8 382 273.1–473.99 18 8 17.8 0.6–26 57.5
<9 9 7069.7 353–27385.5 122 11 357 253.5–474 24 11 19.4 0.56–79.6 117

No
mulching

Temperature
>9 8 7590.7 4650.4 -10422.3 28.3 3 365 289.7–404 18 3 22 19.5–26.03 16.2
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Table 4 Mean, range, and coefficient of variation (CV) of yield, evapotranspiration (ET), and water use efficiency (WUE) of wheat, maize, and potato under plastic
filmmulching and nomulching in different locations and precipitations in northern China

Treatments Parameters Variables Yield ET WUE

n Mean Range CV n Mean Range CV n Mean Range CV

<9 8 10504 2162.3–45882 140 6 334 215.4–494.3 29 6 32.9 0.75–129.95 147Organic C
content >9 7 11369 9260–13079.3 13.2 4 403 375.5–435.7 6.4 4 28.8 22.5–34.07 18.3

<1.3 8 11190 2162.3–45882 129 6 327 230.9–435.7 23 5 47.5 6.35–129.95 103
Bulk density

>1.3 9 9399.7 4255.75–13072.5 36.6 6 379 259.2–494.3 20 6 22.5 3.36–34.07 50.4
pH >7 11 11729 2420–45882 102 7 381 215.4–494.3 23 7 36.5 6.35–129.95 115

Light 5 16667 2549.8–45882 101 4 340 215.4–435.7 27 4 50.5 11.7–129.95 106
Medium 5 7571.2 2162.3–13079.3 57.8 3 254 230.9–272.5 8.4 3 23.4 0.75–52.85 114Soil texture
Heavy 10 7938.6 2359.3–13072.5 50.1 6 388 300–494.3 17 6 18.8 3.36–32.07 60.8
<50 4 7221.3 2420–13079.3 76.8 2 301 215.4–386.5 40 2 8.98 6.35–11.62 41.5

N
>50 6 9935.7 2162.3–13072.5 41.7 5 388 272.5–494.3 20 5 23.2 0.75–34.07 57.5
<20 8 9775.4 2420–13079.3 40.9 4 423 375.5–494.3 13 4 23.4 6.35–34.07 50.9

P
>20 4 7636.7 2162.3–12545.3 57.5 4 343 272.5–409.5 20 4 19.3 0.75–32.07 68.4
<150 7 9788.8 4931.8–13079.3 31.2 4 384 300–435.7 15 5 20.8 0.75–32.07 57.3

Plastic
film

K
>150 4 20382 9794.5–45882 83.7 3 401 333.7–494.3 21 3 63.6 26.8–129.95 90.5
<9 8 6676.5 353–27385.5 137 6 374 273.1–473.99 23 6 21.5 0.56–79.6 140Organic C

content >9 7 8891 5282–10422.3 20.6 4 410 400–433 3.9 4 23.5 19.5–26.03 12.1
<1.3 8 7499.1 353–27385.5 118 6 332 253.5–433.3 22 5 31.1 0.85–79.6 94.3

Bulk density
>1.3 9 7215.8 2184.5–11532 49.2 6 386 253.8–473.99 19 6 18.1 2.7–26.03 51.3

pH >7 11 8213.5 353–27385.5 91.4 7 417 344.1–473.99 10 7 25.4 0.85–79.6 102
Light 5 11622 833–27385.5 83.1 4 410 344.1–461.1 12 4 33 3.6–79.6 98.9
Medium 5 4872.7 629–8848.5 66.2 3 260 253.5–273.1 4.3 3 14.3 0.56–30.9 108Soil texture
Heavy 10 6206.8 353–11532 65.2 6 392 289.7–473.99 15 6 15.6 0.85–26.03 70.5
<50 4 4989.9 353–9925.2 102 2 431 400–461.05 10 2 2.23 0.85–3.6 87.4

N
>50 6 7606 629.1–11532 53.6 5 390 273.1–473.99 19 5 19 0.56–26.03 55.8
<20 8 7569.7 353–11532 50 4 427 400–473.99 8.2 4 18.4 0.85–24.9 63.6

P
>20 4 6172.1 629.1–10422.3 67.1 4 342 273.1–404 21 4 16.6 0.56–26.03 66.7
<150 7 8210.3 4650.4–10422.3 27.2 4 382 289.67–433.3 17 5 18 0.56–26.03 56.1

No
mulching

K
>150 4 13544 5282–27385.5 70.9 3 406 344.1–473.99 16 3 42.9 24.23–79.6 74.1
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Table 5 Mean, range, and coefficient of variation (CV) of yield of maize for plastic filmmulched ridge-
furrow and nomulching in Shanxi and Shaanxi provinces in China

Treatments Crop n Mean Range CV

Plastic film + biochar mulching Maize 3 11.913 10.43–14.7 20.3
No-mulching Maize 3 9.6967 9.11–9.99 5.24

of ridge-furrow plastic film mulching on maize, wheat, and potato yields (Table 4). In
the plastic film mulched ridge-furrow treatment, the mean effect size for the light soil
type (1.68 [0.38–2.99]) was significant (p= 0.01) as compared to the medium and heavy
soil types (Fig. 3). The mean effect size was not significantly (p> 0.05) different among
the medium and heavy soil types in the plastic film mulched ridge-furrow treatment.
Maize yields in Shanxi ranged from 11,290 to 11,527 kg ha−1 in the plastic film mulched
ridge-furrow treatment and were significantly (p< 0.05) higher than for Ningxia which
ranged from 12,779 to 13,073 kg ha −1 in our meta-analysis dataset (Table 3). The impacts
of plastic film mulched ridge-furrow on yield varied with the soil bulk density (Table 4).
Plastic film mulched ridge-furrow significantly (p< 0.05) improved yield in light soils by
43% compared with flat planting with no-mulching in areas with a soil bulk density of
>1.3 g cm−3(Fig. 3). Soil organic carbon (SOC) content of 0–10 cm soil layer in areas of
>9 g kg−1) in the plastic film mulched ridge-furrow treatments was improved (27.8%)
compared with flat planting with no-mulching. With high soil available N (>50 mg kg−1),
plastic film mulching exerted a greater impact on maize, wheat, and potato yield with high
soil available P (>20 mg kg−1) and low soil available K (<150 mg kg−1).

ET and water use efficiency of wheat, maize, and potato in different
locations
Compared with flat planting without mulching, plastic film mulched ridge-furrow
significantly increased WUE (16.1%; p= 0.01) in regions with an air temperature >9 ◦C,
but, had no significant impact on ET (0.46%; p= 0.64) (Fig. 4). This increase in WUE
was significant in regions with heavy soil type and texture (20.68%; p= 0.01), soil organic
carbon content of > 9 g kg−1 (22.2%; p= 0.03), and soil available N of > 50 mg kg−1

(22%; p= 0.01) (Fig. 5). In contrast, plastic film mulched ridge-furrow had no significant
effects on ET in heavy soil type (0.99%; p= 0.96), soil organic carbon content of > 9 g
kg−1 (1.67%; p= 0.91) and soil available N of > 50 mg kg−1 (0.51%; p= 0.95) (Fig. 4).
The average WUE of maize in Ningxia was significantly increased by 33.9% (p= 0.01) with
plastic film mulched ridge-furrow higher than 16.2% in Shaanxi compared to flat planting
without mulching (Fig. 5). The increase in WUE with plastic film mulched ridge-furrow
may be attributed to the increase in yield and decrease in ET, as demonstrated by our
analysis.

Influence of co-application of plastic film mulched ridge-furrow and
biochar on yield
In three years, the yield of maize increased significantly with the co-application of plastic
film and biochar by 22.86% (p= 0.05) compared with flat planting without mulching
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Table 6 Heterogeneity analysis on yield, evapotranspiration (ET), and water use efficiency (WUE) of
wheat, maize, and potato under plastic film and no-mulching treatments using random-effects models

Items Parameters Categories n Heterogeneity

df P Chi2 I2 (%)

Gansu 22 9 1 0.68 0
Ningxia 5 1 0.37 0.82 0
Shaanxi 27 6 0.59 4.67 0

Location

Shanxi 5 1 0.9 0.01 0
Maize 39 12 0.2 15.72 24
Wheat 7 1 0.79 0.07 0

Crop
type

Potato 14 5 0.99 0.44 0
<400 18 7 1 0.55 0

Yield

Rainfall
>400 43 13 0.92 6.66 0
Gansu 14 6 1 0.3 0
Ningxia 5 1 0.53 0.4 0
Shaanxi 10 2 0.71 0.68 0

Location

Shanxi 6 1 0.35 0.87 0
Maize 23 7 0.88 3.05 0
Wheat 2 – – – –

Crop
type

Potato 10 4 0.99 0.22 0
<400 12 5 1 0.29 0

ET

Rainfall
>400 23 7 0.89 2.99 0
Gansu 14 6 1 0.37 0
Ningxia 5 1 0.19 1.71 41
Shaanxi 10 2 0.33 2.19 9

Location

Shanxi 6 1 0.5 0.46 0
Maize 23 7 0.69 4.79 0
Wheat 2 – – – –

Crop
type

Potato 10 4 0.99 0.35 0
<400 12 5 1 0.37 0

WUE

Rainfall
>400 23 7 0.68 4.87 0

in the Shanxi and Shaanxi regions. Although, in the plastic film mulched ridge-furrow
and biochar co-application treatments, the mean effect size for maize (0.79 [−0.92–2.50];
p= 0.05) was not significant as compared to the flat planting without mulching in these
regions. Mean crop yields ranged from 10.43 –14.7 (t ha−1) (10,430–14,700 kg ha−1) with
plastic film mulched ridge-furrow and biochar combination treatment as compared to
9.11–9.99 (t ha−1) (9,110–9,990 kg ha−1) in the flat planting without mulching (Table 5).

DISCUSSION
In the Loess Plateau, variability in the amount and distribution of seasonal precipitation
is a major source of variation in ET, which includes evaporation from the soil surface and
crop transpiration (Lu et al., 2014). This meta-analysis indicates the yield of wheat, maize,
and potato was increased with plastic film mulching compared with flat planting with

Mak-Mensah et al. (2021), PeerJ, DOI 10.7717/peerj.10967 12/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.10967


Table 7 Heterogeneity analysis on yield, evapotranspiration (ET), and water use efficiency (WUE) of wheat, maize, and potato under plastic
film and no-mulching treatments using random-effects models

Items Parameters Categories n Heterogeneity

df P Chi2 I2 (%)

<9 20 7 1 0.45 0Organc C con-
tent >9 20 6 1 0.28 0

<1.3 25 7 0.97 1.78 0
Bulk density

>1.3 25 8 0.9 3.43 0
pH >7 30 10 0.97 3.51 0

Light 13 4 0.99 0.25 0
Medium 10 4 0.99 0.32 0Soil texture
Heavy 34 9 0.93 3.68 0
<50 9 3 0.99 0.09 0

N
>50 16 5 0.96 1.04 0
<20 22 7 0.87 3.2 0

P
>20 12 3 0.78 1.11 0
<150 23 6 0.76 3.4 0

Yield

K
>150 9 3 0.8 1.01 0
<9 13 5 0.99 0.48 0Organc C con-

tent >9 13 3 0.69 1.48 0
<1.3 14 5 1 0.33 0

Bulk density
>1.3 17 5 0.74 2.74 0

pH >7 18 6 0.98 1.14 0
Light 10 3 0.92 0.5 0
Medium 6 2 0.99 0.02 0Soil texture
Heavy 17 5 0.78 2.46 0
<50 4 1 0.99 0 0

N
>50 14 4 0.81 1.57 0
<20 10 3 0.89 0.65 0

P
>20 12 3 0.87 0.72 0
<150 13 3 0.87 0.72 0

ET

K
>150 7 2 0.8 0.45 0
<9 13 5 1 0.25 0Organc C con-

tent >9 13 3 0.33 3.41 12
<1.3 12 4 1 0.17 0

Bulk density
>1.3 17 5 0.8 2.38 0

pH >7 18 6 0.91 2.09 0
Light 10 3 0.48 2.47 0
Medium 6 2 0.95 0.11 0Soil texture
Heavy 17 5 0.95 2.41 0
<50 4 1 0.86 0 0

N
>50 14 4 0.62 2.66 0
<20 10 3 0.49 2.43 0

P
>20 12 3 0.52 2.28 0
<150 15 4 0.62 2.61 0

WUE

K
>150 7 2 0.42 1.75 0
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Figure 3 (A) Odds ratios of crop yields in different locations and climate. (B) Odds ratios of yield in
different soil properties. The error bars signify 95% confidence intervals, and the values above the bars
indicate the number of observations (n).

Full-size DOI: 10.7717/peerj.10967/fig-3

Figure 4 (A) Odds ratios of evapotranspiration (ET) in different locations and climate. (B) Odds ratios
of evapotranspiration (ET) in different soil properties. The error bars signify 95% confidence intervals,
and the values above the bars indicate the number of observations (n)

Full-size DOI: 10.7717/peerj.10967/fig-4

no-mulching in Gansu, Ningxia, Shaanxi, and Shanxi provinces. This may be ascribed to
increased WUE and decreased in ET in the treatment fields. This is consistent with Mbah
& Nwite (2010), who reported plastic film mulch boosts maize yield (55–78%) in the first
and second seasons (108–142%) of maize production. Ding et al. (2019) found that with
plastic filmmulching, soil hydrothermal conditions improved and substantially accelerated
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Figure 5 (A) The odds ratios of water use efficiency (WUE) for plastic film relative to nomulching in
different locations and climate. (B) The odds ratios of water use efficiency (WUE) for plastic film rel-
ative to nomulching in different soil properties. The error bars show the 95% confidence intervals, and
the values above the bars indicate the number of observations (n).

Full-size DOI: 10.7717/peerj.10967/fig-5

the emergence of wheat leaves and tiller growth, resulting in increased spike number and
grain yield. Again, transpiration (Zhou et al., 2009), and soil evaporation (Zribi et al., 2015)
decreased with the application of plastic film mulch hence maize yield was improved.
Thus, plastic film mulching significantly improves crop production and increases resource
use efficiency, as a potential soil amendment for sustainable dryland farming (Ding et al.,
2019).

Several studies have subsequently shown that plastic film mulching enhances yield and
WUE in different crop fields (Anikwe et al., 2007). In this study, plastic film mulching
significantly (p= 0.01) increased WUE and decreased ET (p> 0.05) in the low and
high areas of rainfall in Gansu, Ningxia, Shaanxi, and Shanxi provinces. In these areas,
the decrease in ET improves the volume of soil water that enhances crop emergence
and maturity. This finding is consistent with a research by Liu et al. (2014a); Liu et al.
(2014b), which asserted full-year double ridge–furrow plastic film mulching could increase
grain yields of maize (110 kg N ha−1) and conserve soil water during periods of drought.
Simulation of soil water and heat flow in ridge cultivation with plastic filmmulching on the
Chinese Loess Plateau decreased ET where plastic film mulching was less efficient practice
for increasing WUE in dryland agriculture (Zhao et al., 2018). Plastic film mulching can
provide conducive surroundings for attaining high potato yield (Wang et al., 2019) and
facilitating maize grain filling hence maximizing yield (Liu et al., 2016). Consequently,
plastic film mulched ridge-furrow approach may serve as a promising agronomic method
in arid and semiarid regions to increase potato yield (Qin et al., 2016).

The ridge furrow (RF) rainfall harvesting planting with N:P fertilizer rate (300:150 kg
ha−1) significantly increased (p< 0.05) the meanWUE over 2 years by 53% compared with
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the traditional flat planting (Li et al., 2018a). Conversely, Zhang et al. (2019) in a report
suggested 50 cm mulched ridge:10 cm bare furrow ridge-plastic film furrow mulching
(RFM) system was more effective in increasing maize growth compared to conventional
flat planting. This increased maize grain yield and WUE from 43.1% to 59.2% and from
38.5% to 57.4%, respectively. Concurrently, yield, and WUE in a study by Fan et al.
(2019) revealed improved grain yield of 20.0% and 3.45 kg ha−1 mm−1 with plastic film
mulched ridge-furrow, respectively. Furthermore, Dang et al. (2016) in 2014 discovered
plastic film-mulched ridge-furrow (RF) used 17.9% less water and 33.1% more WUE
than flat planting (FP) with no-mulching. In 2015, RF showed 56.2% higher yield, 15.0%
lower water use (ET), and 63.4% higher WUE than FP, respectively. Zhao et al. (2012)
in 2009 and 2010 also reported yields from plastic film mulched fields which increased
from 33.9–92.5% and 62.9–77.8%, respectively, relative to FP, and corresponding WUEs
increased from 41.4–112.6% and 45.9–70.6%. Compared to traditional flat planting, the
average four-year maize yield increased from 1497.1 kg ha−1 to 2937.3 kg ha−1 using the
ridge and furrow farming method, and the WUE increased from 2.3 kg ha−1 mm−1 to 5.1
kg ha−1 mm−1 (Ren et al., 2016b). Approximately, in a three-year study, Ren et al. (2016a)
revealed WUE and yield of winter wheat was significantly higher in a 60 cm ridge with 60
cm furrow width than in the conventional flat planting without ridging by 2.39 kg mm−1

ha−1, and 405.1 kg ha−1 (p< 0.05). However, with increases in mulch length, both tuber
yield and WUE decreased, indicating plastic film mulch requires early removal (Wang et
al., 2009). The biodegradable mulch from our analysis improved by 64.5–73.1%, WUE
in maize, wheat, and potato compared to FP (Deng et al., 2019). In addition, Xiaoli et al.
(2013) in a three-year field experiment integrating various furrow-appliedmulches inmaize
production under a plastic film mulched ridge and furrow rainwater harvesting (PRFRH)
in China’s Loess Plateau semi-arid lands revealed a decrease in plastic film with a thickness
of 0.08 mm use. This indicates soil evaporation losses may be minimized by mulching and
emphasizes the potential to increase crop sustainability via integrated PRFRH systems in
semi-arid areas.

Xiang et al. (2017) in a meta-analysis revealed biochar modifications increased root
biomass by 32%, root diameter by 9.9%, root volume by 29%, root tips by 17%, root
length by 52%, and surface area by 39%. Plant roots play key roles in plant maturity (Yu
et al., 2019). By altering the growth of roots and rhizosphere microbial activities, biochar
may accelerate plant growth and nutrient uptake (Lehmann & Joseph, 2012). Joseph et al.
(2010) found plant roots or root hairs enter soil macro-pores filled with water or attach
to the surface of biochar, triggering assorted reactions to facilitate absorption of nutrients.
Furthermore, the use of biochar by Mensah & Frimpong (2018) in maize production on
acidic soils in Ghana resulted in a substantial increase (p< 0.01) in leaf number, plant
height, and stem girth. Agegnehu et al. (2016) established significant correlations in maize
grain yield with total biomass, leaf chlorophyll, N and P foliar content, soil organic matter,
and soil water content as direct effects of biochar application compared to control. Liu et
al. (2014a) in an experiment obtained the highest yield of sweet potato (53.77%; p< 0.05),
whichwas higher compared to no biochar treatment (control). Liang et al. (2014), following
biochar application, obtained 10% higher grain yield in winter wheat and summer maize
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than control (no biochar). Again, Liang et al. (2014) reported an increase in soil pH with
increasing biochar application rates.

According to Xiao et al. (2016), 20 and 30 t ha−1 biochar treatments increased wheat
yields by 9 and 13% in 2012 and 11 and 14% in 2013 compared to no biochar treatments,
respectively. Wheat grain yield remarkably improved by 6 and 9% in 2012 and 2013
with plastic film mulched ridge-furrow with 20 t ha−1 biochar treatments compared
to plastic film mulched ridge-furrow without biochar treatments (Xiao et al., 2016). In
addition, Jeffery et al. (2011) in a meta-analysis indicated biochar-treated soils increased
crop productivity averagely at 10% (–28% to 39%) compared with plots without mulching.
Residual impact of biochar on soil fertility largely accounted for an increase in crop yield
under co-application of plastic filmmulched ridge-furrowwith biochar treatment (Rehman
& Razzaq, 2017).

CONCLUSIONS
In rain-fed agricultural regions with minimal rainfall in cropping seasons, ridge-furrow
mulching with plastic film results in improved crop yields and WUE. The co-application
of plastic film mulched ridge-furrow with biochar may potentially mitigate the adverse
effects of plastic film application including greenhouse gas emissions, and plastic film
residue buildup in soils. Our analysis indicates WUE and yield of maize, wheat, and potato
in Gansu, Ningxia, Shaanxi, and Shanxi provinces were significantly influenced by the
plastic film mulch application compared to control (no-mulching) (p< 0.05). Plastic film
mulched ridge-furrow approach of farming had a significant (p= 0.01) impact on light
soil type compared to the medium and heavy soil types. ET was significantly decreased
as compared with FP during the planting seasons. The combined application of plastic
film mulch with biochar in these regions improved yield by 22.86% compared with FP.
This may be an ideal agronomic practice that may be employed by smallholder farmers
in crop production for optimum yield. The practice may equally serve as a potential soil
and water-saving practice in rain-fed agriculture especially in areas with changing climate
to minimize the effect of drought while mitigating runoff and erosion. A future study on
plastic film mulched ridge-furrow rainwater harvesting system with biochar may assess
and provide detailed information on the combined effect of biochar with plastic film on
soil physico-chemical properties under field conditions.
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