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Abstract

China’s carbon emission performance has significant regional heterogeneity. Identified the

sources of carbon emission performance differences and the influence of various driving

factors in China’s eight economic regions accurately is the premise for realizing China’s car-

bon emission reduction goals. Based on the provincial panel data from 2005 to 2017, the

super-efficiency SBM model and Malmquist model are constructed in this paper to measure

regional carbon emission performance’s static and dynamic changes. After that, the Theil

index is used to distinguish the impact of inter-regional and intra-regional differences on dif-

ferent regions’ carbon emissions performance. Finally, by introducing the Tobit model, the

effect of various driving factors on carbon emission performance differences is analyzed

quantitatively. The results show that: (1) There are significant differences in different

regions’ carbon emission performance, but the overall carbon emission performance pres-

ents an upward fluctuation trend. Malmquist index decomposition results show substantial

differences in technology progress index and technology efficiency index in different

regions, leading to significant carbon emission performance differences. (2) Overall, inter-

regional differences contribute the most to the overall carbon emission performance, up to

more than 80%. Among them, the inter-regional and intra-regional differences in ERMRYR

contributed significantly. (3) Through Tobit regression analysis, it is found that residents’ liv-

ing standards, urbanization level, ecological development degree, and industrial structure

positively affect carbon emission performance. On the contrary, energy intensity presents

an apparent negative correlation on carbon emission performance. Therefore, to improve

the carbon emission performance, we should put forward targeted suggestions according to

the characteristics of different regional development stages, regional carbon emission differ-

ences, and influencing driving factors.
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Introduction

Climate change is one of the most severe environmental problems the world is facing today.

Both human activity and greenhouse gas emissions contribute to global climate change [1]. As

one of the leading greenhouse gases, carbon dioxide is closely related to climate change. With

the development of the economy, carbon dioxide emissions will continue to grow. So, the envi-

ronmental problems caused by carbon dioxide emissions have attracted scholars worldwide.

In the face of increasingly severe environmental issues, as the largest developing country, Chi-

na’s responsibility and obligation are to reduce carbon emissions and improve the ecological

environment [2]. To actively respond to climate change, the Chinese government has prom-

ised to gradually reduce emission after 2030 [3]. The imbalance and disharmony of China’s

regional development cause substantial differences in regional carbon emission levels. There-

fore, whether China’s carbon emission reduction targets can be achieved successfully depends

on the macro-control at the national level and the formulation of the "common but differenti-

ated responsibilities" principle at the regional level [4].

Due to China’s vast territory, different regions have significant differences in resource

endowment, economic development level, urban development level, industrial structure, eco-

logical environment, and other aspects, which lead to considerable carbon emission perfor-

mance differences. Therefore, identifying the characteristics of carbon emissions in different

regions accurately and discussing how to improve carbon emissions performance become the

key to realizing China’s carbon dioxide emission reduction target at an early date. However, if

only provincial-level carbon emission policies are formulated, the decision-making cost will be

increased, and it is not conducive to the national carbon trading market’s unification. There-

fore, some scholars try to divide China into three regions, namely the eastern, central, and

western regions, to study and analyze the differences in carbon emissions of the three regions

and put forward the carbon emission reduction targets for the three regions of China [5,6].

This partitioning approach is relatively rough. Therefore, according to the characteristics of

China’s regional economic growth and the level of economic development, this paper selects

eight economic regions with a similar level of economic development determined by the devel-

opment research center of the State Council of China as the research objects. The extensive

analysis of the differences in carbon emission performance and the main driving factors in dif-

ferent regions are helpful to formulate carbon emission reduction measures suitable for differ-

ent regions and promote China’s overall carbon emission reduction targets. Among the

research concern global environmental issues, there are more and more studies on carbon

emission estimation [7], carbon emission influencing factors [8–10], carbon intensity attenua-

tion rate [11], and carbon emission performance [12,13]. Ramanathan [14] used the DEA

model to measure carbon emission performance differences among countries regarding car-

bon emission performance methods. Zhou et al. [15] combined the DEA model and Malm-

quist index to analyze the carbon emission performance of 18 countries. However, because the

traditional DEA only focuses on the expected output in economic activities, it does not fully

consider the unexpected output. Therefore, it is easy to deviate the measured results from the

actual situation [16]. Considering unpredictable production conditions, some scholars adopt

improved models to measure carbon emission performance. Du et al. [17] adopt the direc-

tional distance function model to measure China’s carbon emission performance. Chang et al.

[18] and Wang et al. [19] established a DEA-SBM model to measure transportation’s carbon

emission performance. Then, Zhang et al. [20] introduced a super efficiency SBM model to

calculate each province’s carbon emission efficiency, reflecting each region’s carbon emission

differences. Therefore, based on the previous studies, this paper introduces the total factor

index for analysis, selects capital, labor, and energy consumption as input indicators, and takes
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Gross Domestic Product (GDP) and carbon dioxide emission as expected output and unex-

pected output in economic production, respectively, to accurately measure the carbon emis-

sion performance of different regions.

Different input factors may have different effects on output. To determine the influence of

different input factors on various output factors, this paper also conducts sensitivity analysis

on the factors to better improve regional carbon emission performance. Sensitivity analysis is a

method to quantitatively describe the importance of model input variables to output variables.

According to its scope, it can be divided into local sensitivity and global sensitivity. To assess

multiple input factors’ sensitivity more accurately, more studies now tend to use the global

sensitivity analysis method [21]. Common global sensitivity analysis methods include the qual-

itative Morris method, Sobol method [22,23], FAST method, quantitative Extend FAST

method, and ANN-based weight analysis method [24]. The Sobol method, based on the vari-

ance decomposition principle, can be used for non-linear and non-monotonic mathematical

models. Its running results are robust and reliable. It can carry out quantitative equality for the

sensitivity of driving factors. So it has been widely applied in environmental modeling and

non-linear models in other fields [25–30]. Therefore, this paper uses the Sobol method to

study the sensitivity changes of different input factors and then uses the Monte-Carlo method

simulation to confirm the influence of various input factors on the results and determine the

most sensitive factors.

Unlike previous studies, this paper’s main research contributions include the following

three aspects: (1) This paper divides China’s regions in detail and studies the regional differ-

ences of carbon emission performance from dynamic and static perspectives. The article also

analyzes the global uncertainty and sensitivity. It puts forward specific measures to improve

the carbon emission performance of different regions, conducive to promoting the national

unified carbon trading market. (2) Calculate the size and variation trend of inter-regional and

intra-regional differences in carbon emission performance of eight economic regions, which is

conducive to improving carbon emission reduction targets with regional differences. (3)

According to the Tobit regression model, the influencing factors of carbon emission perfor-

mance values in different regions and their influencing degrees are analyzed at a deep level,

conducive to putting forward targeted suggestions for improving carbon emission perfor-

mance in different regions.

Data and methodology

Study area

This paper selects eight economic regions based on similar economic development levels

determined by the State Council’s development research center of China as the research object

to make a more precise division in China. It is specifically divided into the following eight eco-

nomic regions: Northeast Economic Region (NEER), Northern coastal economic region

(NCER), Eastern coastal economic region (ECER), Southern coastal economic region (SCER),

Economic region in the middle reaches of the Yellow River (ERMRYR), Economic region in

the middle reaches of the Yangtze River (ERMRYTR), Southwest economic region (SWER),

and Northwest economic region (NWER) (Fig 1).

Economic indicators, land use, and environmental factors vary significantly from region to

region. According to the average of the data of the research period, the region with the highest

economic level is ECER, which is 828005 billion yuan; the region with the lowest economic

level is NWER, which is only 1,142.929 billion yuan; and the region with the highest added

value of the tertiary industry is ECER, which is 3,622.941 billion yuan. The area with the most

significant population density is ERMRYR, up to 14,477.85 people per square kilometer. The
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region with the largest afforestation area is also ERMRYR, up to 1,459.29 thousand hectares.

This is related to the characteristics of the Yellow River Basin, which is caused by massive

afforestation to prevent soil erosion in this region. The region with the highest water resources

per capita, NWER, is much higher than other regions, closely related to the small population

in this region. The region with the highest level of urbanization is SCER (Table 1). Regional

resource endowments and different development stages are the fundamental reasons for vari-

ous carbon emission performances.

Data sources and data processing

According to the previous research [31], the three input indicators selected in this paper are

capital stock, labor force, and energy consumption. The expected output is GDP, and the

unexpected output is carbon dioxide emission. The statistical description of the primary input,

expected output, and unexpected output is shown in Table 2.

Labor is expressed as urban employees, GDP, and the capital stock is calculated by select

2005 as the initial year [32]. Energy consumption and carbon dioxide emission are calculated

Fig 1. The locations of China’s eight economic regions.

https://doi.org/10.1371/journal.pone.0250994.g001

Table 1. The mean value of China’s eight economic regions’ relevant data from 2005 to 2017.

Indicator

(Unit)

Population density

(person/square kilometer)

Added-value of tertiary

industry (100 million yuan)

GDP (100

million yuan)

Urbanization rate

(%)

Per capita water

resources (m3/person)

Afforestation area

(thousand hectares)

NEER 8298.23 13738.04 35452.51 58.62 4378.75 367.61

NCER 7974.15 33244.82 80709.76 54.70 757.27 547.76

ECER 7253.31 36229.41 82800.05 64.86 2749.85 97.55

SCER 7425.85 25826.69 61185.65 62.95 9774.47 248.40

ERMRYR 14477.85 16848.77 49077.57 45.47 3618.48 1459.29

ERMRYTR 11929.46 19177.68 49754.78 46.73 9221.64 778.77

SWER 11652.15 17150.78 45447.26 41.54 15622.79 1414.25

NWER 11846.85 4473.29 11429.29 41.68 18038.18 647.53

https://doi.org/10.1371/journal.pone.0250994.t001
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according to the Intergovernmental Panel on Climate Change (IPCC) [33]. The data of capital

stock, labor, and GDP are collected from the China Statistical Yearbook (2006–2018). And the

data of energy consumption and carbon dioxide emissions are derived from China Energy Sta-

tistical Yearbook (2006–2018). The specific calculation method is as follows.

Calculation of capital stock. According to previous research [34], this paper estimates

the capital stock of different regions in different years by adopting the "perpetual inventory

method," which is more popular internationally, as follows:

RDKit ¼ ð1 � diÞRDKi;t� 1 þ Eit ð1Þ

RDKi0 ¼
Ei1

ri þ di
ð2Þ

Where RDKit, RDKi,t−1 represent capital stock at time t and t−1; Eit represent the gross

investment at time t; RDKi0, δi, and ρi denote the initial capital stock, depreciation rate, and

average growth rate of fixed investment with a constant price. This paper takes δi = 9.6%, and

the geometric average method is used to obtain ρi.
Energy consumption and carbon dioxide emissions. This research selected eight major

energy types, including coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, and natural

gas. Energy consumption is calculated by converting each type of energy consumption into

standard coal. We define carbon dioxide emissions in different regions as unexpected output.

This paper sorts out eight primary energy consumption in different regions. The cumulative

carbon dioxide emissions in different regions are calculated using the methods provided by

IPCC. The formula is as follows:

Cj ¼
P8

i¼1
Eij � Ki1 � Ki2 ð3Þ

Where Cj represents the total carbon dioxide emission of region j, Eij represents the con-

sumption of energy i in region j. K1, K2 represents the standard coal conversion coefficient and

carbon emission coefficient, respectively, as shown in Table 3.

Measurement and decomposition of carbon emission performance

Super-efficiency SBM model based on the unexpected output. The super-efficiency

DEA method proposed the concept of super-efficiency, and it is the improvement of the DEA

method. This method’s core idea is to exclude the decision-making units with insufficient

Table 2. System of regions’ carbon emission performance input-output index.

Sorts Indexes Unit Mean Median Standard deviation Minimum Maximum

Input Capital stock 100 million yuan 29999.34 22033.62 23281.89 2874.32 105508.90

Labor 10 thousand people 477.89 414.47 342.41 18.20 1973.28

Energy consumption million tons 257.41 201.17 182.08 10.86 945.50

Expected output GDP 100 million yuan 13861.90 10559.43 12430.29 543.32 69943.16

Unexpected output Carbon dioxide emissions million tons 198.62 154.20 142.78 7.26 710.73

https://doi.org/10.1371/journal.pone.0250994.t002

Table 3. The correlation coefficient.

Coefficient type Coal Coke Crude oil Gasoline Kerosene Diesel oil Fuel oil Natural gas

K1 0.7559 0.8550 0.5857 0.5538 0.5714 0.5921 0.6185 0.4483

K2 0.7143 0.9714 1.4286 1.4174 1.4174 1.4571 1.4286 1.3300

https://doi.org/10.1371/journal.pone.0250994.t003
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quantity and incomplete representation from the decision-making scope, observe the influ-

ence of the changes of input resources on the construction of DEA arbitrary boundary, and

then get the impact of resource input on carbon emission performance. During economic pro-

duction, the input of resources produces expected output and emerges unexpected output,

such as CO2. Tone [35] considered the unexpected output in the production process and pro-

posed the SBM model, which is more suitable for the actual situation. Compared with the tra-

ditional DEA model, it can solve both the slack of input-output and the efficiency problem

under unexpected output.

The super-efficiency DEA method has been widely used in industrial eco-efficiency [36],

comprehensive energy efficiency [37,38], energy-saving, emission-reduction efficiency [39],

and carbon emission performance [40,41]. Therefore, according to the previous research, this

paper combines the advantages of the super-efficiency DEA model and the SBM model, con-

structs the super-efficiency SBM model based on unexpected output, and discusses the carbon

emission performance of the eight economic regions. Assuming that the scale is constant, the

input, expected output, and unexpected output can be expressed as follows: x2Rm, yg 2
Rs1 ; yb 2 Rs2 ; The matrix X,Yg,Yb can be defined as follow: X = [x1, x2, x3,� � �,xn]2Rm×n,

Yg ¼ ½yg1; y
g
2; y

g
3; � � � ; ygn� 2 Rs1�n; Yb ¼ ½yb

1
; yb

2
; yb

3
; � � � ; ybn� 2 Rs2�n. Where S1, S2, n, and m repre-

sent the expected output, unexpected output, the number of decision-making units, and the

input unit, respectively. Suppose, X>0,Yg>0,Yb>0, then the P means all the feasible cases:

P ¼ fðX;Yg ;YbÞ; x � X�; yg � Yg�; yb � Yb�; � � 0g ð4Þ

After incorporating unexpected outputs into the DMU, the SBM model can be indicated as

Formula (5).

r ¼ min
1� 1

m

Pm
i¼1

s�i
xi0

1þ 1

S1þS1

Ps1
r¼1

Sgr
ygr0
þ
Ps2

r¼1

Sbr
ybr0

� �

s:t:

x0 ¼ X�þ S�

yg0 ¼ Yg�� S
g

yb
0
¼ Yb�� Sb

S� � 0; Sg � 0; Sb � 0; � � 0

ð5Þ

8
>>>><

>>>>:

Where S = (S−,Sg,Sb) is the relaxation variable of input and output, and ρ is the efficiency

value. Since model (5) is non-linear, for convenience of calculation, transformed model (5) is

into the linear model (6) by Charnes-Cooper transformation.

t ¼ min t �
1

m

Xm

i¼1

s�i
xi0

s:t:

1 ¼ tþ
1

S1 þ S1

Xs1

r¼1

Sgr
ygr0
þ
Xs2

r¼1

Sbr
ybr0

� �

x0t ¼ Xmþ S
�

yg0t ¼ Ygm � S
g

yb
0
t ¼ Ybm � Sb

S� � 0; Sg � 0; Sb � 0; m � 0; t � 0

ð6Þ

8
>>>>>>>>><

>>>>>>>>>:
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To ensure a more reasonable efficiency evaluation value, it is necessary to distinguish the

decision-making units whose efficiency value is 1. Therefore, this paper selects the super-effi-

ciency SBM model to calculate the carbon emission performance. The model expression is

shown in (7), in which the objective function value ρ� is the efficiency value of the decision-

making unit.

r� ¼ min
1

m

Pm
i¼1

�x �i
xi0

1

S1þS1

Ps1
r¼1

�ygr
ygr0
þ
Ps2

r¼1

�ybr
ybr0

� �

s:t:

�x �
Pn

j¼1;j6¼k �jxj
�yg �

Pn
j¼1;j6¼k �jy

g
j

�yb �
Pn

j¼1;j6¼k �jy
b
j

�x � x0; �yg � y
g
0; �yb � yb0; �y

g � 0; � � 0

ð7Þ

8
>>>>><

>>>>>:

Malmquist index. The Malmquist (ML) index was also used to analyze the eight eco-

nomic regions’ carbon emission performance change rates. In this paper, the ML index from t

to t + 1 is constructed. If the ML index is in the opening range of 0–1, carbon emission perfor-

mance is reduced, while when the ML index is greater than 1, carbon emission performance is

improved. Therefore, to make a dynamic analysis of carbon emission performance, this paper

also decomposes the ML index into technical efficiency index (EC) and technological progress

index (TC). The direction vector is defined as gt = yt-bt. Thus, the calculation formula of the

index of t−1 is as follows:

MLtþ1

t ¼ EC
tþ1

t þ TC
tþ1

t ð8Þ

MLtþ1

t ¼

(
1þ Dt

0

�!
ðxt; yt; bt; yt; � btÞ

1þ Dt
0

�!
ðxtþ1; ytþ1; btþ1

; ytþ1; � btþ1
Þ

1þ Dtþ1

0

��!
ðxtþ1; ytþ1; btþ1

; ytþ1; � btþ1
Þ

1þ Dt
0

�!
ðxtþ1; ytþ1; btþ1

; ytþ1; � btþ1
Þ

)1
2

ð9Þ

ECtþ1

t ¼
1þ Dt

0

�!
ðxt; yt; bt; yt; � btÞ

1þ Dt
0

�!
ðxtþ1; ytþ1; btþ1

; ytþ1; � btþ1
Þ

ð10Þ

TCtþ1

t ¼

(
1þ Dt

0

�!
ðxt; yt; bt; yt; � btÞ

1þ Dt
0

�!
ðxt; yt; bt; yt; � btÞ

1þ Dtþ1

0

��!
ðxtþ1; ytþ1; btþ1

; ytþ1; � btþ1
Þ

1þ Dt
0

�!
ðxtþ1; ytþ1; btþ1

; ytþ1; � btþ1
Þ

)1
2

ð11Þ

Theil index decomposition method

Theil index was first proposed by Theil [42] in 1967. It is one of the essential indicators to mea-

sure regional economic differences. The advantage of the Theil index is that it can decompose

the regional differences into two parts: intra-region and inter-region. This is conducive to fur-

ther evaluating the contribution rate of inter-region and intra-regional differences to the over-

all regional differences. Most scholars use the Theil index to measure the impact of regional

economic disparities, and few scholars use it to analyze the effects of regional carbon emissions

performance [43]. This paper takes 30 provinces in China as the basic spatial unit, decomposes

the Theil index by stages, and spoils the overall national differences into the differences among

eight economic regions and the provinces in each economic region. Therefore, the results of
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decomposition are as follows:

T ¼ TBR þ TWR ¼
Xn

i¼1

Ci
C
ln

Ci=C
Yi=Y

� �

þ
Xn

i¼1

Ci
C

Xm

j¼1

Cij
Ci
ln

Cij=Ci
Yij=Yi

 !" #

ð12Þ

Where TBR and TWR are the inter-regional and intra-regional differences, respectively; i
represents different regions, and j represents the provinces in each region; C denotes China’s

carbon emissions performance. Y indicates the GDP.

Sobol method of sensitivity analysis

It is a method to evaluate sensitivity based on variance decomposition, and the calculation

steps are as follows. Suppose �k is increasing the function f(x) is decomposed into the sum:

fðx1; x2; � � � xkÞ ¼ f0 þ
Pk

i¼1
f iðxiÞ þ

P
1�i<j�kf i;jðxi; yiÞ þ � � � þ f1;2;���;kðx1; x2; � � � xkÞ ð13Þ

The decomposition formula’s uniqueness has been proved, and multiple integrations can

obtain all the decomposition terms. The total variance of f(x) is:

Z ¼
Z

�k
f2
ðxÞdx � f2

0
ð14Þ

The decomposition formula can calculate the partial difference. (1�it<� � �<is�k,s = 1,2,� � �,

k)

Zi1 ;i2;���;is ¼
Z 1

0

� � �

Z 1

0

f2

i1;i2;���;is
ðxi1 ; xi2 ; � � � ; xikÞdxi1dxi2 � � � dxis ð15Þ

The sensitivity coefficient can be obtained by the following formula, where,

1�it<� � �<is�k.

Si1 ;i2;���;is ¼
Zi1 ;i2;���;is
Z

ð16Þ

Where Si represents the primary sensitivity index of xi, which quantitatively describes the

influence of xi on function f(x). Si1 ;i2;���;is represents the sensitivity index of order s of

xi1 ; xi2 ; � � � ; xik ; which is used to quantitatively describe the influence of the s driving factors on

the function f(x). Therefore, for the model with s influencing factors, the total sensitivity index

TSi1 of variable xi1 can be expressed as:

TSi1 ¼ Si1 þ Si1 ;i2 þ � � � þ Si1 ;i2;���;is ð17Þ

Influencing factors of carbon emission performance based on Tobit model

Besides the input and output indicators mentioned above, regional carbon emission perfor-

mance is also affected by many other factors. To further analyze the driving factors and influ-

ence degree of carbon emission performance, this paper takes the carbon emission

performance (CMP) of the eight economic regions from 2005 to 2017 as the explained vari-

able. It selects per capita GDP (RGDP), urbanization rate (URB), forest volume (FS), the pro-

portion of tertiary industry (PDI), and energy intensity (EI) as the explanatory variables. This

paper quantitatively analyzes the impact of residents’ living standards, urban development

degree, ecological development degree, industrial structure, and energy consumption level on

the eight economic regions’ carbon emission performance differences by building the Tobit
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model. The formula of Tobit model is as follows:

Yit ¼
ait þ bjXit þ ε; aþ bXþ ε > 0

0; aþ bXþ ε � 0
ð18Þ

(

Where Xit is the explanatory variable, which indicates the indicators that affect the carbon

emission performance, that is, the value of the j external factor in the t year. Yit is the explained

variable, that is, the carbon emission performance value of the i region in the t year. β is the

regression coefficient, and ε is the random disturbance term. Based on not changing the rela-

tionship and nature of data, to eliminate heteroscedasticity, this paper takes the natural loga-

rithm of the dependent variable data. The regression model of this paper is as follows:

ln CMP ¼ aþ b1 ln RGDPþ b2 ln URBþ b3 ln FSþ b4ln PDIþ b5ln EIþ ε ð19Þ

Where the CMP RGDP, URB, FS, PDI, and EI represent the value of carbon emission per-

formance, per capita GDP, urbanization rate, forest volume, the proportion of the tertiary

industry, and energy intensity, respectively.

Empirical results

Static analysis results of carbon emission performance

This paper takes the unexpected output into account in the super-efficiency SBM model based

on the traditional DEA model. The carbon emission performance results of the eight economic

regions calculated by the super-efficiency SBM model are shown in Table 4.

Analysis of changes in overall carbon emission performance. It can be concluded from

Table 3, the mean value of carbon emission performance in the eight economic regions during

the study period was significantly different. SCER, ERMRYR, and SWER had carbon emission

performances of 0.85, 0.80, and 0.81, respectively, where the average carbon emission perfor-

mance was higher than the national average in 2005–2017. NWER, NCER, ECER, and NEER’s

average carbon emission performance is 0.79, 0.78, 0.75, and 0.72, respectively, close to the

national intermediate level of carbon emission performance. The ERMRYTR is only 0.62,

which is 17 percentage points lower than the national level. Therefore, there is great potential

for the improvement of carbon emission performance in this region.

The evolution characteristics of time series. To compare the changing trend of carbon

emission performance in different regions, Fig 2 is drawn. And the differences are analyzed

from the overall annual change (Fig 2A) and the regional variation (Fig 2B). As shown in Fig

2A, the whole country’s overall carbon emission performance shows a fluctuating upward

Table 4. The carbon emission performance of China’s eight economic regions in 2005–2017.

Regions 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

NEER 0.50 0.54 0.59 0.63 0.67 0.71 0.74 0.77 0.78 0.81 0.83 0.86 0.91 0.72

NCER 0.58 0.61 0.64 0.67 0.70 0.73 0.76 0.79 0.82 0.87 0.91 0.97 1.04 0.78

ECER 0.60 0.63 0.66 0.69 0.72 0.75 0.76 0.80 0.76 0.78 0.82 0.89 0.93 0.75

SCER 0.80 0.76 0.80 0.81 0.81 0.83 0.85 0.86 0.84 0.86 0.90 0.93 0.99 0.85

ERMRYR 0.67 0.68 0.70 0.71 0.72 0.76 0.81 0.87 0.84 0.88 0.90 0.92 1.00 0.80

ERMRYTR 0.51 0.52 0.55 0.58 0.61 0.63 0.63 0.64 0.63 0.66 0.68 0.71 0.75 0.62

SWER 0.75 0.74 0.74 0.79 0.81 0.78 0.79 0.80 0.83 0.85 0.86 0.91 0.92 0.81

NWER 0.75 0.73 0.75 0.74 0.75 0.76 0.79 0.78 0.80 0.83 0.84 0.87 0.92 0.79

Nation 0.65 0.65 0.68 0.70 0.72 0.74 0.77 0.79 0.79 0.82 0.84 0.88 0.93 0.77

https://doi.org/10.1371/journal.pone.0250994.t004
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trend. The entire country’s cumulative carbon emission performance had increased from 5.16

in 2005 to 7.16 in 2017. The eight economic regions’ carbon emission performance has also

improved to varying degrees. NEER and NCER have the most significant increase, with 82%

and 79% respectively in 2017 compared with 2005. The carbon emission performance of all

economic regions showed an upward trend, among which NCER showed the most massive

increase, with the carbon emission performance value increased by 0.46, followed by NEER,

ECER, ERMRYR, and ERMRYTR, with the performance value between 0.30 and 0.42, which

are all higher than the national carbon emission efficiency growth of 0.29 (Fig 2B). However,

there are three regions whose growth rate of carbon emission performance is far less than the

national growth rate, namely SCER (0.19) and SWER (0.17) NWER (0.17). As shown in

Table 4, regions with a slight increase in carbon emission performance show significant time

series fluctuations. For example, SCER efficiency decreased from 0.8 in 2005 to 0.76 in 2006

and from 0.86 in 2012 to 0.84 in 2013. Meanwhile, SWER and NWER regions also fluctuated

in the range of 0.75–0.79 and 0.73–0.78, respectively. The emergence of this fluctuating sce-

nario is also the main reason for the slight increase in carbon emission performance.

Analysis on the spatial pattern angle of regional decomposition. To more intuitively

reflect the spatial heterogeneity of carbon emission performance in different regions, each prov-

ince’s carbon emission performance in 2005, 2010, 2015, and 2017 is plotted (Fig 3). In 2005, the

regions with the highest carbon emission performance were Hainan, Shanxi, Guizhou, Qinghai,

and Ningxia, with carbon emission performance more significant than 1. Among them, Qinghai

and Ningxia belong to the NWER. The lowest provinces were Liaoning, Jilin, Gansu, and Xin-

jiang, and their carbon emission performance values were no more than 0.5 (Fig 3A). Except for

Shanxi, the areas with high carbon emission performance in 2010 are similar to those in 2005,

but the carbon emission performance value drops to 0.9–0.99. Only Xinjiang has a carbon emis-

sion performance value of less than 0.6 (Fig 3B). The regions with the highest carbon emission

performance in 2015 added to Tianjin, Shandong, Jiangsu, Guangdong, Inner Mongolia, Hunan,

and Yunnan based on 2005, and the carbon emission performance of these regions was more sig-

nificant than 0.9. The lower provinces are Xinjiang, Gansu, and Liaoning, whose carbon emission

performance value is less than 0.8 (Fig 3C). In 2017, there are 16 provinces with carbon emission

performance value greater than 1, and only Gansu is less than 0.80, while the performance values

of other regions are between 0.84–0.99(Fig 3D).

Comparing the temporal and spatial evolution of each province, we can see that over time,

the differences in carbon emission performance of each area are decreasing, and the carbon

emission performance values are generally improved. It can be seen that the provinces with

high carbon emission performance have been Ningxia and Qinghai in the NWER, Hainan in

the SCER, and Guizhou in the SWER. This is due to the poor resource endowment, relatively

backward economy, less energy consumption, and less carbon emission in this region, so the

carbon emission performance is relatively high. On the contrary, Shanghai and Zhejiang in the

ECER region are more developed in economy and energy consumption, which are also the

critical provinces of energy conservation and emission reduction.

Dynamic analysis results of carbon emission performance

Apart from analyzing the static characteristics of eight economic regions’ carbon emission effi-

ciency with the super-efficiency SBM model, this paper further explores the dynamic change

characteristics of eight economic regions’ carbon emission efficiency by using the ML index.

The ML index and its decomposition results are shown in Fig 4.

From the time dimension analysis, the NEER’s MI value decreased from 1.08 in 2005 to

1.07 in 2017, showing a downward volatility trend. From the decomposition value perspective,
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Fig 2. Changes in carbon emission performance of China’s eight economic regions during 2005–2017.

https://doi.org/10.1371/journal.pone.0250994.g002

Fig 3. The spatial pattern of carbon emission performance of various provinces from 2005 to 2017.

https://doi.org/10.1371/journal.pone.0250994.g003
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the decrease of overall carbon emission performance in the region is mainly caused by the EC

index’s decline. The carbon emission performance of the other seven economic regions

showed a fluctuating upward trend. The MI value of SCER increased the most, which

increased by 9% from 0.98 in 2005 to 1.07 in 2017. This is mainly due to the significant

improvement of the TC index in the region, which indicates that the rapid progress of technol-

ogy in the region has promoted its carbon emission performance. As in SCER, the MI values

of ERMRYR and ERMRYTR increased significantly, mainly due to the increase of the TC

index. The other four regions have a substantial similarity, and the MI index’s stable growth

primarily comes from improving the technology progress index. This shows that most regions’

carbon emission technology is steadily improving, but the technical efficiency index is only

slightly improved. Therefore, more consideration should be given to enhancing carbon emis-

sions’ overall efficiency by improving technical efficiency. In terms of mean value, the ML

index varies significantly in different regions. The MI value of NEER and NCER is the highest,

reaching 1.053 and 1.052, respectively. The critical reason is that their TC index is higher in

these regions than in the other regions. On the contrary, the technical efficiency index of

ECER and SCER is lower than that of the other regions, only about 0.99. So, the regions should

pay more attention to improving the technical efficiency to enhance the overall carbon emis-

sion performance.

Fig 4. The ML index and its decomposition results.

https://doi.org/10.1371/journal.pone.0250994.g004
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Results of the Theil index decomposition method

Overall difference of the Theil index. According to Eq (12), the Theil index and its

decomposition value of China’s eight economic regions are obtained. Overall, the inter-

regional differences account for more than 80% of the fundamental differences and show a

slight growth trend. The intra-regional differences only account for less than 15% of the overall

contrast, slightly decreasing from 2005 to 2017 (Fig 5).

Spatial differences of regional Theil index. The top three inter-regional Theil index

regions are ERMRYR, ECER, and NWER, and the bottom three are NCER, SWER, and ERM-

RYTR. The difference between the maximum and minimum regions is significant, which indi-

cates that the carbon emission performance of different regions varies greatly. From the

average contribution rate of inter-regional differences, the ERMRYR has an enormous contri-

bution rate, with an average contribution rate of 43.46% and a slight change from 2005 to

2017. The contribution rate of ECER, SCER, and NWER is also as high as 16.26%, 13.77%, and

14.04%, respectively, among which NWER has the fastest growth rate, rising from 7.4% to

20.66%. The contribution rate of regional difference between SCER and NWER decreases

gradually by about six percentage points. NCER, SWER, and ERMRYTR showed a slight

increase, but the difference contribution rate between regions was still low. The specific growth

trend is shown in Fig 6A.

The regional distribution of the maximum and minimum values of carbon emission perfor-

mance of the intra-regional is similar to the inter-regional. Still, the difference is relatively

Fig 5. Decomposition results of the Theil index in 2005–2017.

https://doi.org/10.1371/journal.pone.0250994.g005
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Fig 6. Inter-regional and intra-regional differences in China’s eight economic regions.

https://doi.org/10.1371/journal.pone.0250994.g006

PLOS ONE Analysis of carbon emission performance and regional differences in China’s eight economic regions

PLOS ONE | https://doi.org/10.1371/journal.pone.0250994 May 5, 2021 15 / 21

https://doi.org/10.1371/journal.pone.0250994.g006
https://doi.org/10.1371/journal.pone.0250994


more minor. From the average contribution rate of intra-regional differences, the contribution

rate of ERMRYR is the largest, reaching up to 67.98%. From 2005 to 2017, ERMRYR showed a

fluctuating growth from 64.63% to 71.69%. The second is ECER (10.56%). In this region, the

contribution rate decreases rapidly with a total decrease of 4.74%, indicating that each prov-

ince’s carbon emission difference is getting smaller. The contribution rate of NEER, NCER,

SWER, and SCER all decreased to different degrees, which indicates that each region has

begun to pay attention to the adjustment of carbon emission differences to achieve regional

coordinated development. The intra-regional difference contribution rate on the time series of

each region is shown in Fig 6B.

Discussion

Structural decomposition and parameters of the Sobol method

Simulink is a visual simulation tool of MATLAB based on the block diagram design environ-

ment of MATLAB and can be used to realize dynamic system modeling, simulation, and analy-

sis. In this paper’s study, the Monte-Carlo simulation was carried out, and the SIM command

of MATLAB was used to call the model. The simulation results were obtained, and the output

range of the model and each driving factor was determined, which was used to analyze the

source of uncertainty of the model. In the sensitivity analysis of this section, the X1, X2, X3, X4,

and X5 respectively represent the three input factors of labor, capital stock, energy consump-

tion, expected output GDP, and un-expected output carbon dioxide emissions.

The first-order effects and total effects of the test functions and parameters of 1000 itera-

tions are calculated, as shown in Fig 7. The results show that the parameter X5 is the most sen-

sitive parameter and the parameter X4 is the leat sensitive parameter. In terms of total effects,

similar behavior appears in Fig 7. The overall sensitivity of X1 is very high, which indicates that

it has significant interaction between other parameters. Conversely, the total effect of X2 and

X4 is very close to zero. That is, there is not much interaction between them and other parame-

ters. The results show that labor has the highest sensitivity to carbon emission performance,

followed by energy consumption and carbon emissions. Therefore, from the perspective of

input-output analysis, people’s work efficiency can be improved by promoting high-tech

industries and appropriately improving artificial intelligence technology to improve the per-

formance of carbon emissions. Secondly, it can also encourage carbon emission performance

by developing energy-saving and emission reduction technologies and implementing carbon

sequestration and other technologies.

The influencing factors of carbon emission performance

Using the Tobit model to analyze the influencing factors of carbon emission performance in

eight economic regions of China, the results are shown in Table 5. Residents’ living standard

has a significant positive impact on carbon emission performance. The correlation coefficient

is the largest, indicating that people’s environmental quality requirements are also continu-

ously improved, thus promoting regional carbon emission performance to enhance residents’

living standards. The degree of urban development has a significant positive impact on carbon

emission performance, which indicates that regions with high urbanization rates are more

inclined to adopt new technologies in action and have higher energy utilization efficiency to

achieve higher carbon emission performance. The degree of ecological development has a sig-

nificant impact on carbon emissions performance at the 1% level. The correlation coefficient is

high, closely related to China’s commitment to achieve the peak of carbon emissions in 2030

and achieve carbon neutrality in 2060. The influence of industrial structure on carbon emis-

sion is significant at the level of 10%, indicating that with the continuous increase of the
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tertiary industry proportion, carbon emission performance will be promoted. Different from

other factors, energy consumption level has a significant negative impact on carbon emission

performance, indicating that under the condition of a certain level of economic development,

the higher the energy consumption is, the more carbon emissions will be generated, and the

lower the carbon emission performance will be.

Conclusions and limitations

Conclusions

Based on the provincial panel data from 2005 to 2017, this paper makes an empirical analysis

on the differences in carbon emission performance, the driving factors, and their influence

Fig 7. First-order effects and total effects of the five parameters using Sobol’s method of sensitivity analysis.

https://doi.org/10.1371/journal.pone.0250994.g007

Table 5. Regression results of the Tobit model.

Explanatory variable Coef. Std. Err. t P>|t| 95% Conf. Interval

ln RGDP 0.0643 0.0073 8.7900 0.0000 [0.0499,0.0787]

ln URB 0.0423 0.1935 -0.2200 0.08270 [0.0228,0.3383]

ln FS 0.0404 0.0080 5.0400 0.0000 [0.0246,0.0561]

ln PDI 0.0255 0.1955 0.1300 0.08960 [-0.3590,0.4099]

ln EI -0.0167 0.0069 2.4200 0.0160 [-0.0031,0.0303]

https://doi.org/10.1371/journal.pone.0250994.t005
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degree in China’s eight economic regions. According to the results above, some main conclu-

sions are drawn as follows.

(1) During the study period, the eight economic regions’ carbon emission performance

showed significant differences. As time went on, the overall carbon emission performance

showed a fluctuating upward trend. The average carbon emission performance of SCER,

SWER, and ERMRYR is 0.85, 0.81, and 0.80, respectively, which is significantly higher than

the national intermediate level. On the contrary, the carbon emission performance of ERM-

RYTR is only 0.62, which is 17% lower than the national average level, mainly due to the poor

carbon emission performance of the Hubei and Jiangxi provinces in this region. Therefore,

when improving the overall carbon emission performance of the ERMRYTR region, emphasis

should be placed on enhancing Hubei and Jiangxi provinces’ carbon emission performance.

(2) From the dynamic analysis results of carbon emission performance, we can see that

each region’s TC index in the time series is higher, which is the main reason for improving the

ML index. However, the EC indexes of different regions are not the same. The average of the

EC values of ECER and SCER is less than 1. It can be found that the EC indexes of these two

regions fluctuated wildly from 2005 to 2017, which shows that the technical efficiency of these

two regions has excellent potential to improve. Overall, the eight economic regions’ technical

progress level is relatively fast, but the technical efficiency level is relatively low. Therefore, to

promote each region’s carbon emission performance, each region’s technical efficiency should

be improved first. The maximum output can be obtained through the technical level improve-

ment under the same input situation, and the technological efficiency can be improved,

thereby improving the carbon emission efficiency [44,45].

(3) From the perspective of differences in carbon emission performance, the overall differences

in China’s eight economic regions’ carbon emission performance show a fluctuating upward

trend. The contribution rate of inter-regional difference shows a slight upward trend, while the

contribution rate of intra- regional difference by a downward trend is also consistent with Liu

[46]. Among them, ERMRYR has the highest contribution rate, and the contribution rates of

inter-regional and intra-regional differences to the whole country are as high as 43.46% and

67.98%, respectively. As Shanxi, Shaanxi, and Inner Mongolia are resource-based regions with a

high proportion of coal consumption, it is necessary to accelerate low-carbon technology in the

ERMRYR region and vigorously develop new energy to control carbon emissions from the

source. We should restrict the access of high energy consumption and high pollution industries in

the region, maintain the total energy consumption, adhere to the principle of green mining and

utilization, and strictly grasp the environmental protection standards of traditional energy such as

coal to realize its efficient transformation and the transformation of new and old kinetic energy.

(4) Through the analysis of the driving factors affecting carbon emission performance, it is

shown that residents’ living standard, urbanization level, ecological development degree, and

industrial structure upgrading all have a significant positive impact on the improvement of

carbon emission performance on the contrary, energy consumption level harms the progress

of carbon emission performance [47]. Therefore, it is essential to enhance residents’ living

standards, promote the urbanization rate, and reduce the energy intensity to improve carbon

emission performance. Meanwhile, efforts should be made to build a low-carbon economic

development model, optimize the industrial structure, encourage high-tech industries, and

promote the harmonious development of energy, economy, and environment.

Strengths and limitations

In this paper, the research objects are divided into eight economic regions in China, changing

the research direction of provincial or industrial level in the previous carbon emission
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performance measurement. The research results are more targeted and more conducive to the

unification of the national carbon trading market. First of all, the combination of the super-

efficiency SBM model and Malmquist index model illustrates the characteristics of carbon

emission performance from both static and dynamic perspectives, which makes up for the

shortcomings of preliminary discussion of a single model. Secondly, through the decomposi-

tion of regional carbon emission performance differences, the inter-regional and intra-

regional differences of carbon emission performance can be obtained, which provides conve-

nience for reducing regional differences.

However, there are still some shortcomings in this paper. This paper only considers eight

primary energy consumption to estimate the carbon emissions, which has a particular gap

with the actual regional carbon emissions. In the analysis of driving factors, this paper only

considers the influence of five major factors on regional carbon emission performance, with-

out in-depth study on the impact of scientific and technological progress, government macro-

regulation, average rainfall, and population aging carbon emission. We will continue to pay

attention to the development of regional carbon emission performance in future work. We

will improve the above deficiencies to obtain a more accurate carbon emission performance

value and provide suggestions for improving regional carbon emission performance.
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