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Abstract

Nociceptive processing in the human brain is complex and involves several brain structures and varies across individuals.
Determining the structures that contribute to interindividual differences in nociceptive processing is likely to improve our
understanding of why some individuals feel more pain than others. Here, we found specific parts of the cerebral response
to nociception that are under genetic influence by employing a classic twin-design. We found genetic influences on
nociceptive processing in the midcingulate cortex and bilateral posterior insula. In addition to brain activations, we found
genetic contributions to large-scale functional connectivity (FC) during nociceptive processing. We conclude that additive
genetics influence specific brain regions involved in nociceptive processing. The genetic influence on FC during nociceptive
processing is not limited to core nociceptive brain regions, such as the dorsal posterior insula and somatosensory areas, but
also involves cognitive and affective brain circuitry. These findings improve our understanding of human pain perception
and increases chances to find new treatments for clinical pain.
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Introduction
Nociceptive processing is crucial for survival as it provides an
organism with information about potential or actual tissue
damage. The neural processes underlying this capacity are
evolutionary conserved, as evolved nociceptive systems are
observed in a variety of species (Walters and Williams 2019).
In humans, neuroimaging studies have established a large
network of brain regions that consistently activate in response
to nociceptive information (Jensen et al. 2016). Most such

activations are evoked independently of type of nociceptive
input and can be found in infants with minimal prior exposure
to pain (Goksan et al. 2015). This suggests that genes modulate
basic aspects of nociceptive processing in the human brain.

There is considerable variation in nociception between
individuals and attempts have been made to determine the
genetic influence on such differences (Mogil 2012). The genetic
influence on sensitivity to experimental pain, for example,
has been investigated by comparing identical and fraternal
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twins and estimated to 26% for heat- and 60% for cold-induced
pain (Nielsen et al. 2008). Another study found similar genetic
influence on individual sensitivity to pain, ranging from 22%
to 55% depending on pain modality (Norbury et al. 2007).
Studies that link single-nucleotide polymorphisms to functional
neuroimaging data (e.g., Zubieta et al. 2003; Oertel et al. 2008;
Vachon-Presseau et al. 2016) and studies of rare genetic muta-
tions that affect pain perception (Salomons et al. 2016) suggest
that our genes influence nociceptive processing, and our sub-
jective experience of pain. Yet, the specific neural mechanisms
and magnitude of such influence needs to be determined.

The experience of pain involves cross-communication
between both nociceptive and non-nociceptive brain regions
(Kucyi and Davis 2015; Geuter et al. 2020). To capture genetic
influences on nociceptive processing, it is therefore relevant
to move beyond mere activations in specific brain regions, to
consider also their interactions. Recent advances in the neu-
rosciences has seen a rapid increase in studies that model the
brain as a large-scale network, which allows for estimating the
degree of the interaction or cross-communication between brain
regions and/or subnetworks (Bullmore and Bassett 2011; Sporns
2013). For example, the default-mode network that consistently
activates during rest and deactivates when engaged in a task,
show increased deactivation during painful tasks (Kong et al.
2010; Kucyi et al. 2013). Recent findings also show decreased
functional connectivity (FC) between the primary somatosen-
sory cortex and the default-mode network in chronic low back
pain (Kim et al. 2019). Several studies have elucidated the rela-
tionship between genetics and functional brain network topol-
ogy by means of functional Magnetic Resonance Imaging (fMRI),
both for resting-state (Glahn et al. 2010; Fornito et al. 2011; Xu et
al. 2017; Miranda-Dominguez et al. 2018; Reineberg et al. 2019)
and experimental tasks (Alstott et al. 2009; Yang et al. 2016; Col-
clough et al. 2017). Estimates of the genetic influence of resting-
state brain networks are replicable across studies and imply
genetic influences on large-scale networks (Adhikari et al. 2018).

In this study, we estimated the genetic influence on
nociceptive processing in the brain. A total of 246 twins (56
identical pairs; 67 fraternal pairs) participated in a fMRI study
that included an aversive conditioning paradigm using electrical
shocks. The aim was to estimate the genetic influence on 1)
neural responses in pain processing regions and 2) whole-
brain FC during nociceptive processing, as described in our
preregistration protocol (https://osf.io/zesw5). To achieve our
first aim, we constrained our analysis to pain processing regions
defined independently of the current study (Wager et al. 2013).
Regarding the second aim, we used a whole-brain parcellation
scheme to study task-based FC.

Materials and Methods
Subjects

Twins between ages 20 and 60 years were recruited for the
present study through the Swedish Twin Registry (STR). The STR
contains > 194 000 twins and representsean epidemiological
resource for the study of genetic and environmental influences
on human traits, behaviors, and diseases (https://ki.se/en/
research/the-swedish-twin-registry). Twin pairs with known
zygosity were selected based on their capability to undergo
magnetic resonance imaging as well as screened for substance
abuse, ongoing psychological treatment or medicine affecting
emotion or cognition. Only same-sex twin pairs were included
in this study and after initial screening, 305 participants were

recruited to the study and underwent fMRI scanning. Imaging
data were excluded from the analysis if one of the following
criteria were fulfilled 1) excessive amount of head motion (>50%
of the data frames contained framewise displacement above
0.5 mm) (n = 16); 2) presence of outliers in terms of amplitude of
brain responses. We here used the median absolute deviation
method (Leys et al. 2013) to detect and outliers (here meaning
a mean blood oxygenated level-dependent [BOLD] response
deviating > 3 times the medial standard deviation across the
whole sample). Imaging data from participants deemed to be
outlies were removed together with data from their co-twin
and not used in the subsequent analysis (n = 8); and 3) missing
data/incomplete data collection from both twin pairs (n = 35).
The final sample (n = 246) included 56 identical (35 female and 21
male) twin pairs (age: M = 34, SD = 8) and 67 fraternal (39 female
and 28 male) twin pairs (age: M = 33, SD = 11). All participants
provided written informed consent in accordance with the
Uppsala Ethical Review Board Guidelines. Participants received
reimbursement of SEK 1000 (roughly equal to 100 USD) for their
participation.

Brain Imaging

Imaging data were acquired using a 3.0 T scanner (Discovery
MR750, GE Healthcare) and an 8-channel head-coil. Foam
wedges, earplugs, and headphones were used to reduce head
motion and scanner noise. We acquired T1-weighted structural
images with whole-head coverage, time repetition (TR) = 2.4 s,
time echo (TE) = 2.8 s, acquisition time 6.04 min and flip angle 11
(degrees). Functional images were acquired using gradient echo-
planar-imaging (EPI), TR = 2.4 s, TE = 28 ms, and flip angle= 80
(degrees), with 47 seven volumes acquired with slice thickness
3.0 mm3 (no spacing, axial orientation, and phase-encoding
direction A/P). The slices were acquired in an interleaved
ascending order. Higher order shimming was performed, and
5 dummy scans were acquired before the experiment.

Stimuli and Contexts

Visual stimuli were presented on a flat screen in the MR scanner
via a projector (Epson EX5260) (see Supplementary Fig. S1). The
computer running the stimulus presentation used a custom
version of Unity (version 5.2.3, Unity Technologies) and com-
municated with BIOPAC for electrical stimuli (BIOPAC Systems)
through a parallel port interface. The software for the parallel
port interface was custom made and used standard .NET serial
communication libraries by Microsoft (Microsoft Corporation).

fMRI Paradigm Design

Noxious electrical stimuli were administered as part of a fear
conditioning procedure. The paradigm was used to test genetic
aspects of fear acquisition and results that focus on neural
responses to trials that did not include an electrical shock will
be reported elsewhere. Two virtual characters served as visual
stimuli (CS) and were presented at a distance of 2.7-m projected
on a screen in the MR scanner (see Supplementary Fig. S1).
One of the virtual characters served as the aversive cue (CS+)
and preceded the electrical stimuli whereas the other virtual
character served as a safety cue (CS−). Stimuli serving as CS+
and CS− were counterbalanced across participants. Each of the
cues appeared for 6 s. Participants were not told which character
would be associated with electrical shocks. Prior to the condi-
tioning phase, a habituation phase took place, during which each
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CS was presented 4 times without any electrical shocks. During
conditioning, each cue type was displayed 16 times. Eight of the
aversive cues co-terminated with presentation of the electrical
shock (US) and 8 of the aversive cues did not include a shock.
Four stimulus presentation orders were used to counterbalance
the timing of CSs across subjects. An interstimulus interval
(randomized jittering) followed each trial, with no cues present
for 8–12 s. Total duration for the conditioning task was 9 min
and 47 s. The initial 8 presentations (habituation) were not
considered for this analysis.

The electrical shocks were delivered to the distal part of the
participant’s left volar forearm (adjacent to the wrist) via radio-
translucent disposable dry electrodes (EL509, BIOPAC Systems,
Goleta, CA). As the present study also served to investigate
fear acquisition, that is, neural responses to trials that did not
include electrical stimulation (to be published elsewhere), the
US presentation was brief (16 ms). Shock delivery was controlled
using the STM100C module connected to the STM200 constant
current stimulator (BIOPAC Systems), using a unipolar pulse
with a fixed duration of 67 Hz. The physical voltage was individ-
ually calibrated before the experimental task using an ascending
staircase of electrical currents until shocks were rated as “aver-
sive” (Rosen et al. 2019). After finding the physical voltage that
participants rated as aversive, this parameter was kept constant
throughout the experiment. The determined average electrical
voltage was M = 31 V, SD = 7, and range = (15, 55).

Analysis of fMRI Imaging Data

Analyses of fMRI-data were performed using SPM12 (Welcome
Department of Cognitive Neurology, University College, Lon-
don, https://www.fil.ion.ucl.ac.uk/spm). Preprocessing of func-
tional image volumes included interleaved slice time correction,
realignment, co-registration to the T1-weighted image, spatial
normalization to Montreal Neurological Institute (MNI) space
(MNI152NLin6Asym), and spatially smoothed with an 8-mm
Gaussian kernel.

In the first-level analysis, an event-related approach was
used to estimate BOLD responses during nociceptive processing.
Three event types were modeled, using separate regressors: The
aversive cue that preceded the US (CS+US), the same CS+ that
did not precede the US (CS+no US), and the electrical shock itself
(US). Note that the aversive cue (CS+) co-terminated with the
onset of the US 50% of the times. The duration of the visual
cue (CS+) was set to 6 s and the US to 3 s. The first-level
contrast for each participant that was latter used to estimate
the genetic influence h2 on nociceptive processing per se was
modeled as (CS+US & US > CS+no US). Since the aversive cue
(CS+US) was immediately followed by the US, without any
delay, the CS+US and US were combined. The same visual cue
(CS+no US), not followed by the US, was then subtracted in order
to estimate the neural correlates to nociceptive processing
per se. The group-level result for the same contrast is found
in Supplementary Table S1 and Supplementary Figure S2. The
statistical significance threshold was set to P < 0.05, family-wise
error corrected (FWE) for multiple comparisons. Anatomical
labeling of significantly activated brain regions were performed
using the SPM Anatomy toolbox v.2.2c (Tzourio-Mazoyer et al.
2002).

Defining the Functional Connectome in Response to
Nociceptive Input

To investigate task-specific FC, the CONN FC toolbox was
used (Whitfield-Gabrieli and Nieto-Castanon 2012) (http://

www.nitrc.org/projects/conn, version 18b). As input to the
CONN toolbox, we used the same preprocessing pipeline as
outlined above except for removing the spatial smoothing.
This decision was to minimize a spurious increase in local
connectivity that would be induced otherwise. Subsequently,
image data underwent ART-based outlier detection of volumes
(version 2015-10) followed by image scrubbing. For the scrubbing
procedure, we used a liberal threshold of the 99th percentile of
normative sample, with a global-signal z-value threshold of 9
standard deviations and a subject motion threshold of 2 mm.
Next, confounders were removed from the data. These consisted
of the effect of each task (in order to remove constant task-
induced responses in the BOLD signal), cerebrospinal fluid,
white matter, SPM covariates (6 motion parameters and their
quadratic effect), and regressors for scrubbing per individual
(one regressor for each volume deemed a potential outlier; from
zero to a maximum of 25 regressors per individual). Finally,
image data were low-pass filtered [0.008 and 0.09]. BOLD time-
series were extracted using a parcellation scheme with 400
nodes (Schaefer et al. 2018). We computed first-level weighted
ROI-to-ROI functional connectivity (wFC) by computing task-
specific bivariate correlation using weighted least squares
(WLS), with weights defined as condition timeseries convolved
with a canonical hemodynamic response function. Results were
Fisher-transformed correlation coefficients between each pair
of nodes. The first-level contrasts were modeled in the same
way as described above for brain activations (CS+US & US >

CS+no US). Figure 2A and C shows the group-level result for
the same contrast. For visualization purpose, we computed the
within-network and between-network sum of FC between each
pair of networks (Fig. 2C). For each network, say A and B, we
sum the FC between A and B and divide by the number of nodes
contained in the 2 networks. If A = B, the result is the sum of
the within-network connectivity; otherwise the result is the
between-network connectivity.

Estimation of Genetic Influences on Brain Function

Exclusion of outliers: We identified univariate outliers in our data
sample using the median absolute deviation method (Leys et
al. 2013). Any participant with a mean BOLD response devi-
ating more than 3 times the median standard deviation was
removed as well as their respective twin (number of participants
removed = 8). Included in the final analysis was a sample of 56
monozygotic (35 females and 21 males) and 67 dizygotic (39
females and 28 males) twin pairs.

In brief, the phenotypic variance can be decomposed into
additive genetic variance (A) as genetic effects for a pheno-
type or trait that add up linearly, common or shared environ-
mental variance (C) and unique environmental, or error vari-
ance (E) (Falconer and Mackay 1996). Using the simplest Fal-
coner’s formula, the A, C, and E-factors can be estimated by
contrasting monozygotic-twin pair correlations with dizygotic-
twin pair correlations. The A-factor can be identified because
monozygotic-twins are genetically identical while dizygotic-
twins share 50% of their co-segregating alleles on average. Addi-
tionally, we assume that a shared environmental contribution
(C) is equally shared within pairs regardless if they are monozy-
gotic or dizygotic twins. Finally, any variance not attributable
to factors shared between twins (A and C), that is, that make
twins in pairs dissimilar, in the model assigned to the E-factor.
The genetic influence (h2), is the proportion of a phenotypic
variance explained by additive genetic effects, that is, h2 is equal
to A/(A + C + E). In the present study, we computed heritability

https://www.fil.ion.ucl.ac.uk/spm
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab206#supplementary-data
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn


Genetic Influence on Nociceptive Processing in the Human Brain Kastrati et al. 269

using the APACE software package (Accelerated Permutation
Inference for the ACE model; Chen et al. 2019). APACE uses a
non-iterative linear regression-based method based on squared
twin-pair differences, with permutation-based multiple testing
correction to control the FWE rate. For the mass-univariate
analysis, for each first-level contrast described above, we used
the Neurologic Pain Signature as a priori template for regions
in which to test for significant differences in genetic influences
between twin groups (Wager et al. 2013). The number of per-
mutations was set to 1000 and we used the cluster-based infer-
ence in the APACE (accelerated permutation inference for ACE
models) software package (Chen et al. 2019) with cluster-forming
threshold set to P < 0.05 based on the parametric likelihood
ratio null-distribution. We additionally computed an estimate
of the genetic influence of choice of threshold for the electrical
stimulation using the mets package (Scheike et al. 2014; Holst et
al. 2016) implemented in R (R Core Team 2017).

Estimating the Genetic Effect on the Functional
Connectome

All individual-level FC matrices (CS+US & US > CS+no US) were
entered into APACE (Chen et al. 2019) and the genetic influences
was computed by fitting the model to each edge in the matrices.
This resulted in a 400 by 400 symmetric matrix with h2 esti-
mated for each edge. Subsequently, we used a method based
on network-based statistics (Zalesky et al. 2010) to compute a
significant cluster or “largest connected component” of the h2

matrix. We ran 1000 iterations and re-computed the 400 × 400
h2 matrix with permuted twin identity. Finally, we computed
the largest connected component of our observed h2 matrix and
compared with the distribution of randomly generated h2 matri-
ces, determining significance at α = 0.05. Of note, the network-
based statistics approach requires a choice of a threshold for
which below all values are set to zero and all values above are set
to one. The usage of thresholds that are set too conservatively
typically results in network components that are too small to
be deemed significant compared with random networks. On the
other hand, thresholds that are set too low results in very large
network components that are biologically unrealistic. We found
that the largest component broke at h2 = 0.328, however we show
that there are larger components that are significant by comput-
ing components over several thresholds from h2 = 0.25 up to 0.32
in steps of 0.01 (see Supplementary Fig. S5). For interpretability,
we chose the component from the largest threshold, denoted
the h2-component (h2 = 0.328) for visualization. To further aid
interpretability, we computed the sum of within-network and
between-network edges in the h2-component (Fig. 2D). All brain
graphs where visualized using BrainNet Viewer (Xia et al. 2013).
Node labeling was done with the automated anatomical labeling
(AAL; Tzourio-Mazoyer et al. 2002) by taking the coordinates
from the Schaefer parcellation (Schaefer et al. 2018) that overlap
between the AAL and the h2-component.

Notes on the Preregistration

The aim of the current study as stated in the preregistration
(https://osf.io/zesw5) was to characterize the genetic influence
on FC in pain related brain regions. Our first approach was
to use the automated online meta-analysis tool Neurosynth
(Yarkoni et al. 2011) to determine the brain regions of interest.
We here instead decided to use the Neurologic Pain Signature
(Wager et al. 2013), since it is more well-defined and validated.

In addition, instead of focusing on the FC between brain regions
related to pain, we took a whole-brain approach. This way,
we could estimate the genetic influence on functional interac-
tions between nociceptive and non-nociceptive brain regions.
We decided furthermore to use weighted functional connectivity
(wFC) instead of generalized psychophysiological interactions
(gPPI; McLaren et al. 2012) since the former is conceptually
simpler, especially since wFC yields undirected graphs, as com-
pared with gPPI that deals with effective connectivity. Future
studies can investigate genetic influences on causality in the
brain in relation to pain, either through gPPI, granger causality
or dynamic causal modeling. Finally, the permutation test based
on network-based statistics (Zalesky et al. 2010) was added later,
since element-wise (per edge) estimates of genetic influence
assumes independence between edges, and would also match
the cluster-based statistics from the univariate analysis.

Results
Genetic Influence on Brain Activations during
Nociceptive Processing

In response to nociceptive stimuli, we detected local increases
in BOLD fMRI signals in the bilateral anterior insulae, bilateral
posterior insulae, cingulate cortex, thalamus, cerebellum, and
the right amygdala (P< 0.05, FWE corrected). For a full represen-
tation of all regions activated during nociceptive processing see
Supplementary SI Appendix, Supplementary Table S1 and Sup-
plementary SI Appendix, Supplementary Figure S2. Estimates of
the genetic influence on brain responses during nociceptive
processing was constrained to brain regions defined by the
Neurologic Pain Signature (Wager et al. 2013). Using permutation
tests to assess the degree of genetic influence (h2 ranging
from 0 to 1) on brain activation patterns (Chen et al. 2019), we
found significant effects in the right (contralateral) postcentral
gyrus (h2 = 0.52), right posterior insula (h2 = 0.50), right superior
temporal gyrus (h2 = 0.45), right supramarginal gyrus (h2 = 0.44),
left postcentral gyrus (h2 = 0.54), left supramarginal gyrus
(h2 = 0.52), left posterior insula (h2 = 0.43), left superior temporal
gyrus (h2 = 0.43), left anterior cingulate cortex (h2 = 0.46),
right posterior-medial frontal gyrus (h2 = 0.41), and bilateral
midcingulate cortex (h2 = 0.40; Fig. 1; see Supplementary Fig. S3
for an unthresholded image of the genetic influence, and see
Supplementary Fig. S4 for twin-pair correlations). We note that
since CS+no shock was not modeled together with a 3-s period
following stimuli offset, this might influence the results. We
also performed a symmetric modeling, adding a regressor
representing a 3-s period following the offset of CS+ no shock,
keeping all other steps the same. Supplementary Figure S5
shows that this step did not affect the group-level GLM results.

Genetic Influence on FC during Nociceptive Processing

During nociceptive processing we observed increases in FC
between several brain networks, including the somatomotor
and dorsal attention networks (Fig. 2A and C). The FC within the
default-mode-network decreased during nociceptive processing
and increased within the visual network. To estimate the
genetic influence on FC, we used a permutation test based on
network-based statistics (Zalesky et al. 2010). This approach
allowed us to identify a cluster of connections from the full h2-
matrix (Fig. 2B), where each connection represents the genetic
influence on FC (Fig. 2D–F; thresholded at P < 0.05, corrected
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Figure 1. Twin-data brain regions with genetic influences during nociceptive processing. Sagittal view of clusters with significant genetic influence, including the
contralateral somatosensory cortex, bilateral dorsal posterior insula, anterior and midcingulate cortex. The threshold was set at P < 0.05, FWE-corrected for multiple

comparisons at the cluster-level. The heat bar represents h2 heritability values.

using 1000 permutations). The most conservative threshold
where a significant cluster of connections could be determined
(h2-component) was h2 = 0.328 (see Supplementary Fig. S6 for a
comparison to other thresholds). The edges of the h2-component
linked together brain regions located within as well as outside
the Neurologic Pain Signature (Fig. 2F). Nodes within the h2-
component were spatially situated in the dorsal posterior insula,
anterior-, mid- and posterior cingulate cortex, precuneus, and
orbitofrontal cortex.

Genetic Influence on Behavioral Sensitivity to Electrical
Stimuli

There was a significant genetic influence on nociceptive thresh-
olds, based on perception-matched aversive electrical stimuli
(P < 0.0001, h2 = 0.18, on choice of threshold). Estimates of the
between-twin correlation of nociceptive thresholds for monozy-
gotic twins was higher (r = 0.18 and 95% CI = [−0.02–0.38]) than
the between-twin correlation for dizygotic twins (r = 0.09 and
95% CI = [−0.01–0.19]).

Discussion
There is high variability in the way humans respond to nocicep-
tive stimuli and express pain, yet there is little knowledge about
the contributions of nature versus nurture to this variation. In
this study, we used a twin-study approach to determine the
magnitude and spatial representation of genetic influences on
brain circuits involved in nociceptive processing. We found sig-
nificant genetic influence on activity in brain regions typically
activated by nociceptive processing (Fig. 1 and Table 1). Interest-
ingly, genetic influence on nociceptive FC was not restricted to
these areas but also included regions across the brain (Fig. 2D–F).

Nociceptive responses in bilateral dorsal posterior insula and
mid/anterior cingulate cortex were influenced by genetics (Fig 1
and Table 1), even if the cluster on the contralateral insular side
was more pronounced. Previous studies have suggested that the
dorsal posterior insula may be of importance for nociceptive
processing (Segerdahl et al. 2015). It is a primary projection
point from the ventral medial nucleus of the thalamus and
constitutes a core pathway for nociception in all primates (Craig
2003). This thalamocortical pathway is believed to provide a
sensory reflection of the condition of the body, and thereby has

great evolutionary value (Craig 2003). This is corroborated by
fMRI data from new-born babies as it reveals a large overlap
between nociceptive processing in adults and infants, including
the thalamus, insula and mid/anterior cingulate cortex (Goksan
et al. 2015). This network could be considered as potential targets
in studies searching for markers of chronic pain and novel
treatment, especially for conditions with known familial risk.
Genetic variability is likely to be involved in the mechanisms
underlying some of our most common pain conditions (Parisien
et al. 2017) but the mediating mechanisms are poorly under-
stood. The results presented here demonstrate that nociceptive
processing is significantly influenced by genetics and is likely to
mediate the different nociceptive processing seen in individuals
with chronic pain (Jensen et al. 2009; Hashmi et al. 2013).

Regarding the FC results, we observed that the nodes within
the so-called h2-component (connectivity influenced by genet-
ics) were members of several different networks, most notably,
the somatomotor, default-mode, and dorsal attention networks
(Fig. 2D–F). This indicates that genetic influence on FC during
nociceptive processing encompasses both sensory and affective-
cognitive processes. Since nociception is shaped by interac-
tions between sensory, cognitive, and affective processes there
is indeed a possibility that some aspect of all these components
is heritable. The brainwide pattern of connectivity might reflect
the integration of functionally specialized subsystems such as
attention and somatosensory processing. We observed that the
largest number of connections in the h2-component was found
between the default-mode and somatomotor networks (Fig. 2D)
even though FC between the 2 was not the strongest (Fig. 2A and
C). Several studies show evidence for the involvement of default-
mode and somatomotor network in pain processing (Kong et
al. 2010; Kucyi et al. 2013; Goffaux et al. 2014; Kim et al. 2019;
Perini et al. 2020). In general, genetic influence on the integration
between multiple networks may support the multifaceted expe-
rience of nociception and pain. For example, genetic influence
on the level of integration between attention and nociception
could give rise to individual differences in pain sensitivity.

Here, we isolated the genetic contribution to task-evoked FC.
Yet, several findings show great similarity between task-evoked
and resting-state FC (Fox and Raichle 2007; Cole et al. 2014).
Such similarities, however, should not be transferred by analogy
to a comparison between resting-state and pain-evoked FC.
Even comparing non-painful and painful stimuli shows marked
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Figure 2. Twin-data FC during nociceptive processing. (A) Group-averaged FC during nociceptive processing. Positive values (red) indicate edges with stronger FC during
nociceptive processing. (B) Unthresholded genetic influence (h2) for every edge in the FC during nociceptive processing. (C) Graphical summary of the FC results in (A).
The diagonal squares represent the within-network and off-diagonal squares represent the between-network sum of FC during nociceptive processing. Positive values
are represented by warm colors. Minimum and maximum values denote the mean ±2 standard deviations. (D) The number of edges in the connectivity cluster defined

by genetic influence, called the h2-component, within and between networks. Dark color denotes higher number of edges. The largest number of edges was found
between the somatomotor and default-mode network. (E) Brain graph representing the h2-component from (D). The edges comprise a h2-component that represents
significant genetic influences on nociceptive processing (P < 0.05, corrected, h2 threshold = 0.328). (F) The number of nodes in the parcellation scheme that overlap
with the h2-component (blue) (defined with a threshold of h2 = 0.328) or the Neurologic Pain Signature (orange).
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Table 1 Genetic influence, h2 during nociceptive processing (P < 0.05, FWE corrected)

MNI

Area of local maximum h 2 X Y Z Voxels in cluster

R Postcentral 0.52 60 −16 30 876
R Insula 0.5 30 −20 18
R Superior temporal gyrus 0.45 54 −30 18
R Supramarginal gyrus 0.44 56 −24 18
L Supramarginal gyrus 0.54 −65 −20 28 627
L Postcentral gyrus 0.52 −62 −22 32
L Insula 0.43 −36 −20 18
L Superior temporal gyrus 0.43 −64 −30 22
L Anterior cingulate 0.46 0 20 28 620
R Posterior-medical format 0.41 2 −14 58
R Midcingulate 0.40 8 −14 40
L Midcingulate 0.40 −2 −4 40

Notes: R = right hemisphere, L = left hemisphere.

differences whereby the former resembles a network formation
akin to resting-state (Zheng et al. 2020). The cluster of edges
identified in the present study captures variance associated
with additive genetics supporting the search for a genetically
informed neural pain signature (Davis et al. 2020). Future studies
should compare resting-state and task-evoked FC and estimate
the extent of their shared genetics and the neural targets of their
shared and non-shared genes.

The role of genetics for the variability in nociceptive pro-
cessing, is likely expressed at all levels of the neural axis, for
example a recent study suggested a link between a Neanderthal
gene (SCN9A), and the initiation of nociceptive signaling in the
periphery (Zeberg et al. 2020). In the brain, however, the nocicep-
tive signal is represented in several brain regions, and thus far
it has been difficult to determine which aspects of nociception
are heritable and which ones are shaped by life experience. The
data in the present study provides the first genetically informed
nociceptive signature that distinguishes between heritable and
acquired nociceptive responses in the brain. There is currently
a need for better characterization of the biological and genetic
foundations of the neural representation of pain. One review
and a recent consensus paper by leading pain clinicians and
scientists (Tracey et al. 2019; Davis et al. 2020) explicitly ask for
pain biomarkers—verifiable in preclinical models and patients.
Stratification biomarkers may increase the probability of suc-
cess in pharmacological clinical trials by as much as 21% in
phase III clinical trials in all disease areas (Davis et al. 2020).
Our results may help determine if clinical pain is manifested in
genetically inferred nociceptive regions, and hopefully lead to
beneficial sub-grouping and patient stratification.

We note that the experiment also included a fear condition-
ing task, which entails a risk that our findings are confounded
by cognitive and affective processes related to learning and
anxiety. Related to this, there are other psychological factors
that are heritable, for example anxiety, that could influence
nociceptive processing. We can, therefore, not exclude the con-
tribution of closely related heritable factors to our findings. For
example, genetic factors could influence anxiety that in turn
influence nociceptive processing. On the one hand, our ana-
lytical approach aimed to isolate the effects of the nociceptive
stimulus itself and hopefully minimized any brain activations
related to the fear learning component of the experimental

paradigm. On the other hand, there is an inherent affective
component of nociception and it will thus be difficult to remove
all fear-related brain activations as they may also be present
during the nociceptive stimulation modeled in our analysis.
An experimental design that controls for related features, such
as salience, could more clearly probe the genetic influence of
network-level processes underlying nociception and pain. As
we have noted, however, pain and nociception are composed of
multiple features and it may be difficult to part these in fMRI.

Besides the difficulty of dissociating nociception, or pain,
from other features of the brain, there are some limitations that
need to be considered in interpreting our results. We examined
the genetic influence on nociceptive processing and not subjec-
tive pain. Although the nociceptive stimuli in our study repre-
sent aversive events in the sensory domain (Lee et al. 2020), par-
ticipants did not provide subjective ratings of pain. This would
have allowed a clearer relationship between genetic influences
on brain activation and FC with the subjective pain experience.
Further, this study examined only one nociceptive modality—
electrical stimulation. Even if our findings elucidate heritable
neural mechanisms that overlap with findings among patients
with clinical pain they may not generalize to a clinical context.
If we had used other nociceptive stimuli that stimulate deeper
tissues, and provide C-fiber mediated activations, it would have
made a stronger case for a possible clinical translation. Finally,
the sample size is relatively small and may be underpowered
to detect some effects. With our sample size, reaching 80%
power (Pα = 0.05) requires the true effect of additive genetics to
be 0.5. These calculations (Visscher 2004; Visscher et al. 2008) are,
however, based on a generic tool for twin studies and may not
be comparable to the statistics of neuroimaging.

To summarize, our twin-design elucidates specific aspects
of nociceptive processing in the brain that are under genetic
influence. Also, the genetic influence on FC during nociceptive
processing is not limited to core nociceptive brain regions, such
as the dorsal posterior insula and somatosensory areas, but also
involves cognitive and affective brain circuitry. Recent efforts
to characterize the association between functional brain net-
works and gene expression (Richiardi et al. 2015) point to the
importance of factoring in genetics in the mapping of human
brain function. A genetically informed model of nociceptive
processing in the brain is likely to complement recent studies
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suggesting a clinically relevant signature of pain (Lee et al. 2021)
and provide insights into clinical pain conditions.
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