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Abstract 

A metabolic theory is presented for predicting maximum growth rate, overflow metabolism, 

respiration efficiency, and maintenance energy flux based on the intersection of cell geometry, 

membrane protein crowding, and metabolism. The importance of cytosolic macromolecular 

crowding on phenotype has been established in the literature but the importance of surface 

area has been largely overlooked due to incomplete knowledge of membrane properties. We 

demonstrate that the capacity of the membrane to host proteins increases with growth rate 

offsetting decreases in surface area-to-volume ratios (SA:V). This increase in membrane protein 

is hypothesized to be essential to competitive Escherichia coli phenotypes. The presented 

membrane-centric theory uses biophysical properties and metabolic systems analysis to 

successfully predict the phenotypes of E. coli K-12 strains, MG1655 and NCM3722, which are 

genetically similar but have SA:V ratios that differ up to 30%, maximum growth rates on glucose 

media that differ by 40%, and overflow phenotypes that start at growth rates that differ by 80%. 

These analyses did not consider cytosolic macromolecular crowding, highlighting the distinct 

properties of the presented theory. Cell geometry and membrane protein crowding are 

significant biophysical constraints on phenotype and provide a theoretical framework for 

improved understanding and control of cell biology. 
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INTRODUCTION  

Bacterial cell geometry is highly regulated and constrains the surface area available for acquiring 

nutrients and the volume available for synthesizing proteins (1-4). Cell geometry also impacts 

molecular crowding by fixing the dimensions of the spaces occupied by macromolecules (5-9). 

Three-dimensional, cytosolic molecular crowding has been analyzed both explicitly and implicitly 

in systems biology studies to predict catabolite repression and phenotype shifts including 

overflow metabolism (5-7, 10, 11). However, phenotypic constraints based on two-dimensional 

molecular crowding on a surface are not well studied (12, 13). Systems biology studies have 

applied three-dimensional enzyme metrics such as total protein mass to approximate crowding 

on a two-dimensional membrane surface, but these approaches generally miss the significant 

difference between a two- and three-dimensional crowding constraint (10, 14, 15). A 

quantitative and predictive understanding of the intersection of cellular geometry, two-

dimensional membrane protein crowding, and phenotype is largely unexplored (16-18). These 

are the foci of the current study.  

Membranes provide a barrier against environmental stressors, retain macromolecules, provide a 

platform for the selective transport of molecules, and play a critical role in energy metabolism 

including respiration (15, 19)(Fig. 1A). The lipid bilayer is a major building block of the 

membrane and has a finite capacity to host embedded and adsorbed proteins due to a 

combination of protein crowding and the loss of membrane integrity at high protein densities 

(19-23). While theoretical studies have addressed the role of surface area on metabolism (12, 

13), no study has developed a quantitative and predictive molecular level theory that accounts 

for strain-specific differences in SA:V ratios, growth rate dependent changes in SA:V ratios, and 

growth rate dependent changes in membrane protein crowding (24). Additionally, the current 

study makes a distinction between two- and three-dimensional protein crowding on the two-

dimensional membrane surface (10, 14). Enzyme requirements for membrane surface area are 

not readily predictable from the enzyme mass or volume. In fact, enzyme volume and occupied 

membrane surface area have a poor correlation, as we will show later from compiled literature 

data, highlighting the need to study each separately.  
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Membranes support major fluxes for macromolecule synthesis and maintenance energy 

generation. Maintenance energy is cellular energy consumed for functions other than the 

production of biomass components (25). Meeting maintenance energy requirements accounts for 

a significant fraction (30-90+%) of substrate fluxes (26-29). Metabolic pathways for primary 

macromolecules are well documented, but maintenance energy is inferred from calculations 

requiring several assumptions (26, 30). It can be difficult to compare maintenance energy values 

across studies because the assumptions necessary for their calculation are often not reported (30, 

31). Furthermore, maintenance energy calculations have not considered the impact of biophysical 

constraints like finite membrane surface area and membrane protein crowding.  

Escherichia coli is a facultative anaerobe and a convenient host for studying tradeoffs between 

cell geometry, membrane protein crowding, and phenotype. Two well studied and genetically 

similar E. coli K-12 strains, MG1655 and NCM3722, have distinct phenotypes including different 

maximum growth rates on minimal salts medium, different acetate overflow metabolisms, and 

different cellular geometries. NCM3722 has a specific growth rate on glucose salts media that is 

~40% faster than MG1655 (0.97 ± 0.06 h-1 vs. 0.69 ± 0.02 h-1, respectively, supplementary data 

S1). MG1655 displays an acetate overflow metabolism at growth rates  0.4 ± 0.1 h-1 while 

NCM3722 displays acetate overflow at growth rates  0.75 ± 0.05 h-1, which are faster than max 

for MG1655 (supplementary data S1). Additionally, MG1655 has a cellular volume that is 

approximately two times larger than NCM3722 at a growth rate of 0.65 h-1, whereas NCM3722 

has a surface area to volume (SA:V) ratio ~30% larger than MG1655 at this growth rate 

(supplementary data S2). Cells display exquisite control over their geometry, and we propose 

that this helps balance the flux of nutrients and energy between surface area- and volume-

associated processes (1-3) and present a systems biology theory centered around membrane 

surface area and protein crowding to test and support this proposal.   

RESULTS 

Membrane protein capacity increases with growth rate, offsetting decreases in SA:V ratio. 

The inner membrane provides finite surface area for nutrient transport and energy generation 

(Fig. 1A). The two-dimensional occupancy of proteins is not necessarily indicative of their three-

dimensional volume (Fig. 1B), and analyses of 22 central metabolism enzymes shows no clear 
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correlation between membrane surface area requirements and enzyme volume (Fig. 

1C)(supplemental data S1). E. coli SA:V ratios decrease with increasing growth rate (Fig. 1D) due 

to increases in cell length and diameter (2, 16)(supplementary data S2). While the SA:V ratio 

decreases with growth rate, the capacity of the membrane to host proteins per cell volume 

increases with growth rate (Fig. 1E)(32-35)(supplementary data S3). We hypothesize this 

increase in membrane protein density is central to optimal phenotypes as it enables essential 

transport of substrates, cycling of redox cofactors, and generation of cellular energy. Membrane 

protein loading in Fig. 1E is presented on a cell volume basis to facilitate comparison with the 

SA:V data in Fig. 1D. Other normalizations are presented in supplementary data S2. The areal 

density of membrane proteins for E. coli K-12 strain MG1655 was determined using three 

curated proteomics data sets (32-35) and cell geometry data (2). Proteomics data from E. coli K-

12 strains MG1655 and BW25113 were pooled for the presented analyses as the related strains 

have similar growth rates, cell geometries, and phenotypes (36). Copy number of membrane-

associated proteins per cell was converted into an occupied surface area using enzyme 

properties and cell geometry (2, 32-35)(supplementary data S3). Membrane protein hosting 

increased faster than the decrease in surface area per volume, resulting in a net gain of 

membrane catalytic potential with growth rate (Fig. 1D, 1E). The increase in membrane protein 

is proposed to be a result of the growth rate dependent increase in cell diameter which helps 

stabilize the membrane at higher protein loading (2, 3, 22, 37, 38). The presented trends are 

limited to growth rates supported by glucose salts media. The cited proteomics studies used in 

Fig. 1E included data for faster growing cultures. However, faster growth requires complex 

media with multiple substrates. The cited studies did not measure which of the available 

substrates were consumed, preventing an analysis of utilized surface area. SA:V data in Fig. 1D 

do not require substrate consumption data and therefore are plotted over a larger range of 

growth rates. 

Growth rate and biomass yield are constrained by membrane surface area, protein crowding, 

and maintenance energy fluxes. 

Membrane surface area and membrane capacity to host proteins are finite (1, 12, 13, 17, 18). We 

hypothesize these biophysical properties constrain phenotype and developed a systems biology 

theory to test the hypothesis. The specific membrane surface area (sMSA, units: nm2
 

(g cdw)-1) 
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required for membrane-associated enzyme fluxes was quantified using enzyme properties 

including flux per g cell dry weight (cdw), surface area requirements, and kcat. Total sMSA required 

for a phenotype was tabulated by summing the contribution of all active membrane-associated 

enzymes and by accounting for the growth rate dependent SA:V ratio. Mathematical development 

is presented in Box 1 while parameters are reviewed in supplementary data S4.  

The sMSA constraint was evaluated using a metabolic model of E. coli (39, 40) and flux balance 

analysis (FBA)(41). The sMSA constraint was implemented by incorporating a flux proportional 

membrane surface area requirement for each membrane-associated reaction, termed MREi 

(membrane real estate)(Box 1)(12). Flux through membrane-associated enzymes was 

constrained by a finite sMSA pool which varied in magnitude based on growth-rate dependent 

SA:V ratios, strain-specific SA:V ratios, and protein crowding (quantified as the fraction of the 

Membrane Surface Area occupied by central metabolism protein, fMSA)(supplementary data S5, 

Box 1). The sMSA balance was enforced concurrently but orthogonally to standard FBA 

metabolite mass balances (mmol (g cdw h)-1). The in silico theory was termed specific 

Membrane Surface Area-constrained Flux Balance Analysis (sMSAc-FBA) (41). This formulation 

contrasts with previous studies where the weights on the membrane-associated fluxes were the 

molecular masses of the protein (10, 14, 15, 42) as opposed to the occupied membrane surface 

area as in the presented work. Case specific constraints and objective functions are described 

below and in the supplementary material.  

Cell growth requires fluxes for biomass synthesis and maintenance energy. The theoretical 

impact of finite sMSA on these fluxes was quantified for E. coli strain MG1655 growing on 

glucose salts medium (Fig. 2A). These analyses were entirely predictive. sMSAc-FBA simulations 

applied a general matrix of biomass synthesis rates and maintenance energy fluxes as 

constraints while the FBA objective function minimized glucose flux. Metabolic processes 

competing for a finite pool of sMSA resulted in rate-yield tradeoffs (13, 43). Phenotypes with 

high biomass yields (g biomass (g glucose)-1) required larger investments of sMSA for high 

efficiency ETC components, quantified by the P/O number (Fig. 2B). The P/O number is the ratio 

of ATP produced via respiration per two electrons transferred to O2. E. coli can theoretically 

operate ETC configurations with P/O numbers from ~0 - 2 as discussed in more detail below (44-

46). ETC efficiency is not influenced by substrate-level phosphorylation such as ATP synthesis 
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associated with acetate overflow. Phenotypes with low growth rates and small maintenance 

energy fluxes can support high P/O numbers because of the modest sMSA requirements for 

transporters and ATP synthase (upper left Fig. 2B). Phenotypes with high growth rates require 

larger investments of sMSA for glucose transporters (PtsG) which necessitates submaximal P/O 

numbers (Fig. 2B, Fig. 2C, supplementary data S6). These tradeoffs generate gradients in other 

phenotypic properties including the potential for maintenance energy fluxes (qATP)(Fig. 2A), use 

of parallel ETC enzymes Nuo (Fig. 2D) or Ndh II (Fig. 2E), and acetate overflow metabolism 

(qacetate)(Fig. 2F). Secretion of acetate generates ATP via substrate-level phosphorylation and 

reduces the need for sMSA-intensive ETC components and ATP synthase complexes (12, 13). 

Presented qATP fluxes account for the capacity to generate the sum of growth- and nongrowth-

associated maintenance energy and did not include ATP required to polymerize monomers into 

macromolecules for biomass synthesis (supplementary data S5). 

Extracellular fluxes predict a specific membrane surface area usage. 

E. coli K-12 strains MG1655 and NCM3722 are closely related (24) yet have distinct phenotypes 

and cell geometries (supplementary data S1, S2). Experimental data from six MG1655 batch 

cultures (47) and two NCM3722 batch cultures (48), all grown on glucose salts media, were 

mapped to strain-specific, rate-yield phenotype spaces to interpret the experimental data 

through the lens of cell geometry and membrane protein crowding. In silico simulations for 

MG1655 and NCM3722 used the same metabolic model with the same enzyme parameters to 

facilitate interpretation and to increase transparency. However, strain-specific SA:V ratios which 

arise from different cell dimensions were applied (Fig 1D). The similarity between experimental 

and in silico extracellular fluxes was quantified using Euclidean distance. Each experimental flux 

was evaluated 100 times while randomly perturbing the fluxes within an assumed error range of 

±7%. The mean Euclidean distance from the 100 simulations is plotted in Fig 3A. The sMSA 

constraint defines a relationship between growth rate, glucose consumption rate, and overflow 

metabolism (qacetate) due to enzymes competing for limited sMSA. Experimental fluxes for both 

K-12 strains were most similar to simulations with a membrane protein crowding of fMSA = 0.05-

0.07 (5-7% of surface area occupied by central metabolism enzymes, Box 1)(Fig. 3A). These 

values are lower than values estimated by Szenk et al. (12). The current study adjusted enzyme 

kcat values to a culture temperature of 37°C, resulting in faster kcat values and therefore smaller 
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fMSA requirements (49). Both strains had similar predicted protein crowding despite a 40% 

difference in maximum growth rate. MG1655 and NCM3722 have different SA:V ratios as a 

function of growth rate, and the predicted fMSA values also occur at different growth rates 

potentially providing NCM3722 an advantage for hosting membrane protein. The fMSA parameter 

range for both E. coli K-12 strains is further tested and interpreted in the sections to follow. 

MAX is a Pareto tradeoff between growth rate and maintenance energy generation.   

Finite sMSA creates phenotypic tradeoffs providing a new theory to interpret maximum growth 

rate. Consensus extracellular flux data were assembled for E. coli strains MG1655 and NCM3722 

growing on glucose salts media. Data span growth rates from 0.1 h-1 to max (supplementary data 

S1)(6, 34, 42, 50, 51). These data did not include the data used in Fig. 3A to keep the analyses 

independent. The experimental consensus data were interpreted using sMSA theory by applying 

the fluxes as constraints to sMSAc-FBA analyses and quantifying maximum possible maintenance 

energy generation (qATP) as a function of growth rate, cell geometry, and fMSA (0.04-0.08)(Fig 3B, 

3C). Maintenance energy was defined here as any ATP produced that was not directly required to 

synthesize biomass precursors nor to polymerize monomers into macromolecules and would 

include growth and nongrowth-associated maintenance energy. qATP was calculated 100 times for 

each scenario by randomly and independently perturbing each experimental consensus flux 

within an assumed error interval (±7% of flux) and using these perturbed fluxes as sMSAc-FBA 

constraints. Data points in Fig. 3B and 3C are the mean from 100 simulations; error bars are the 

standard deviation.  

Membrane protein crowding (fMSA) has major biological significance as it constrains the energetic 

efficiency of respiration by altering the capacity of the cell to extract energy from substrates. For 

example, there was ~4-fold increase in MG1655 maintenance energy potential (10 ± 3 vs. 39 ± 4 

mmol ATP (g cdw h)-1) for the same consensus substrate fluxes ( = 0.5 h-1) if the enforced protein 

crowding increased from 4% to 8% (fMSA = 0.04, 0.08)(Fig. 3B, supplementary data S6). Similar 

trends were observed for strain NCM3722 at  = 0.7 h-1. The maximum possible maintenance 

energy fluxes increased ~5-fold from fMSA = 0.04 to 0.08 (7 ± 2 vs. 37 ± 4 mmol ATP (g cdw h)-1), 

Fig. 3C, supplementary data S6). The difference in maintenance energy potential is based on the 

availability of sMSA required to conserve more of the substrate energy as ATP via the use of higher 
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efficiency ETC components and expressing more ATP synthase complexes. We hypothesize that 

E. coli operates at a maximum membrane protein capacity as this significantly increases the 

possible cellular energy fluxes, thereby improving fitness.  

Positive slopes between growth rate and maintenance energy flux (Fig. 3B, 3C) indicate both rates 

can increase simultaneously without penalty as the membrane can accommodate a balanced 

increase of substrate transporters, ETC complexes, and ATP synthase complexes. A slope of zero 

indicates the growth rate can increase with no reduction in qATP; the membrane hosts more 

substrate transporters while holding the other processes constant. A negative slope indicates the 

growth rate can increase only with a concurrent decrease in qATP; the increased substrate 

transporter demand requires a decrease in ETC components and ATP synthase complexes. 

Negative slopes define a Pareto front between simultaneous increases in growth rate and qATP 

(Fig. 3B, 3C)(52). Experimental E. coli MG1655 cultures have a max of 0.69 ± 0.02 h-1 on glucose 

salts media (blue shaded area, Fig. 3B) which coincides with the start of a negative slope between 

growth rate and qATP (fMSA = 0.07). Experimental E. coli NCM3722 cultures growing on glucose salts 

media have a max of 0.97 ± 0.06 h-1 (red shaded area, Fig. 3C). max for NCM3722 also corresponds 

with the initiation of a phenotypic tradeoff between growth rate and qATP when fMSA is between 

0.07 and 0.08. The predicted membrane protein crowding range is similar to the independent 

data presented in Fig. 3A. Interestingly, strains MG1655 and NCM3722 have similar potential for 

qATP at their respective max (38 ± 5 and 34 ± 4 mmol ATP (g cdw h)-1) despite NCM3722 having a 

specific growth rate ~40% faster than MG1655 (Fig. 3B, 3C). All reactions in the in silico model 

were balanced for atoms and electrons (supplementary material S4). Therefore, all simulations 

necessarily balanced consensus fluxes with appropriate CO2 and O2 fluxes as no other electron 

donors or acceptors were available for the simulations. 

Maximum growth rate maximizes the areal density of ATP synthase and rate of ATP hydrolysis.  

Maximizing qATP corresponds with a maximal areal density of ATP synthase complexes, which 

provides a molecular basis for interpreting max. The in silico areal density of the enzyme reached 

a maximum just prior to the start of overflow metabolism, coinciding with strain-specific max (Fig. 

3D). Predicted areal density of ATP synthase (complexes m-2) for strain MG1655 correlated well 

with experimental values from curated proteomics data (Fig. 3D)(32-35); there was no analogous 
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proteomics dataset for wildtype strain NCM3722. The MG1655 in silico rate-yield space was 

analyzed for the areal density of ATP synthase (Fig 3F, fMSA = 0.07). The zone of maximal ATP 

synthase density corresponded with commonly observed E. coli rate-yield phenotypes (43). Strain 

MG1655 has an experimental max of 0.69 h-1 while the available sMSA could support a specific 

growth rate of 1.4 h-1, and it has an experimental biomass yield on glucose of 0.4 g g-1 while it is 

theoretically possible to support yields as high as 0.7 g g-1 (Fig 2A, supplementary data S1). Neither 

of these maxima are realized because maintenance energy fluxes divert substrate energy. Instead, 

E. coli K-12 realizes an intermediate growth rate and yield while maximizing the rate of substrate 

energy dissipation per area of membrane via ATP (53). Interestingly, this corresponds with 

maximizing biomass yield for a particular maintenance energy flux (white qATP isocline, Fig 3F). 

Systems biology studies typically adjust the growth- and nongrowth-associated maintenance 

energy parameters so that simulations and growth data align. Fig. 3F shows the range of solutions 

available from a stoichiometric model and how the maintenance energy parameters select a small 

subset of the possible solution space.   

Submaximal P/O numbers optimize energy conserving potential of finite membrane surface 

area.   

E. coli has a branched ETC that can convey electrons using multiple enzymatic routes to acceptors 

including O2 (44-46). As mentioned previously, E. coli ETC components can theoretically operate 

at P/O numbers between ~0 and 2 (44-46). P/O number can significantly influence maintenance 

energy calculations (30). E. coli cultures typically operate at submaximal P/O numbers in the range 

of 1 to 1.5 even at O2 sufficiency (reviewed in supplementary data S4). Few theories have been 

proposed to explain this phenotype (54, 55). We hypothesize sMSA theory is relevant to the 

experimentally observed submaximal P/O numbers. Here, we use a combination of predictions 

and interpretations to further develop the biological significance of sMSA theory. 

Data from four proteomics studies (32-35, 51) and enzyme kcat numbers (supplementary data S4) 

were used to calculate experimental P/O numbers as a function of growth rate (Fig. 4A, 4B, 

supplementary data S7). Experimental values were compared to in silico P/O numbers calculated 

using sMSAc-FBA (Fig. 4A, 4B). In silico P/O numbers for both strains at max were similar to the 

experimental values (1.0-1.03 ± 0.06 compared to 1.03-1.07 ± 0.04). We propose the submaximal 
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P/O numbers represent an optimized use of the finite sMSA that enables optimal substrate fluxes 

for growth and cellular energy generation and now present additional evidence for this 

conclusion. 

Membrane surface area and membrane protein crowding predict initiation of overflow 

metabolism. 

The intersection of metabolism, membrane protein crowding, and cellular geometry predicts 

the onset of acetate overflow based on optimizing the use of finite sMSA. The presented 

analysis is designed to further support the sMSA theory by highlighting its potential significance 

as a mediator of major phenotypic strategies. sMSAc-FBA was used to calculate growth rate 

dependent P/O numbers for strains MG1655 and NCM3722 using the experimental consensus 

fluxes, SA:V ratios, and growth rate dependent membrane protein crowding (Fig. 4A, 4B, 

supplementary data S7). Theoretical P/O number vs. growth rate curves were fit empirically 

(analyses of different empirical fittings are presented in supplementary data S7). The inflection 

points were determined from the second derivative with respect to growth rate. Inflection 

points identified the growth rate where available sMSA exceeded the minimal requirements to 

satisfy the consensus fluxes. Inflection points at  = 0.5 h-1 and 0.72 h-1 for MG1655 and 

NCM3722, respectively, correlate well with the experimental values for overflow initiation, 0.4 ± 

0.1 h-1 and 0.75 ± 0.05 h-1 (supplementary data S1). At growth rates less than the inflection 

point, cells have sufficient sMSA to operate substrate transporters, ETC apparatus, and ATP 

synthase without requiring the overflow tradeoff (Fig. 4A, 4B). The P/O number inflection also 

coincides with the maximum experimental biomass yields, providing a basis for defining an 

optimal biomass phenotype (Fig. 4A, 4B, supplementary data S1). 

Finite surface area and membrane protein crowding precludes the constitutive expression of all 

substrate transporters. Cells dynamically regulate the membrane proteome as a function of 

environment (32, 56). At specific growth rates less than the P/O number inflection, predicted 

P/O numbers increased, deviating from experimental values (Fig. 4A, 4B). The consensus fluxes 

quantify energy-limited chemostat cultures (glucose-limited). While the cells have the 

theoretical capacity to express higher efficiency ETC components at low growth rates, the 

cultures instead use the surplus membrane capacity to increase expression of alternative, high 
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affinity transporters. These alternative substrates are not present in the medium, yet their 

transporters are likely expressed at the cost of sMSA as a hedge strategy to acquire new energy 

sources (32, 56). Areal density of ABC transporters for alternative sugars increased substantially 

at growth rates less than the P/O number inflection (Fig. 4C)(see also supplementary data S8) 

(32-35). Differences in the theoretically possible and actual P/O numbers permit calculation of 

an opportunity cost paid for the promise of an alternative energy source. At a growth rate of 0.1 

h-1, MG1655 forgoes the capacity to produce an additional ~4.5 mmol ATP (g cdw h-1) from the 

same glucose fluxes for the promise of an untapped energy source (Fig. 4D, supplementary data 

S6).  

Combining the E. coli consensus fluxes and the sMSA constraint creates a nonlinear relationship 

between growth rate and the potential for maintenance energy fluxes (Fig. 4D). E. coli K-12 

demonstrates a linear relationship between specific glucose consumption rates and growth rate 

even while shifting to an overflow metabolism (supplementary data S1). The nonlinear 

relationship predicted between qATP and growth rate is not surprising given the changes in 

phenotype with overflow metabolism and the growth rate dependent changes in SA:V and 

membrane protein crowding. We propose a maintenance energy definition that includes the 

cellular SA:V ratio and the membrane protein capacity (Fig. 4D, supplementary data S6). 

Defining a P/O number without defining the cell geometry or membrane protein capacity is not 

sufficient to identify a unique qATP (supplementary data S9).  

sMSAc-FBA predictions are robust to perturbations in enzyme parameters.   

Enzyme kcat numbers varied substantially between published studies (supplementary data S4) 

(57). The robustness of the presented results was analyzed by perturbing the MREi parameter 

which accounted for enzyme properties including kcat, degree of saturation, and surface area 

requirements (Box 1). The MREi parameter was randomly and independently perturbed within a 

range of ±0% to ±95% of the base value. Analysis considered E. coli MG1655 fluxes from batch 

growth on glucose salts medium (47), not the consensus data. Experimental fluxes were also 

perturbed randomly and independently within a standard deviation of the measured flux. Each 

scenario was analyzed with 100 simulations (Fig. 4E).  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.21.609071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.609071
http://creativecommons.org/licenses/by-nc/4.0/


 

 

13 

 

Capacity for qATP was robust to perturbations. Calculated qATP varied ≤ 10% for random 

perturbations of all MREi parameters up to ± 95% of the base value (Fig. 4E). sMSA theory is 

robust to the presented assumptions, likely based on the compensating nature of the redundant 

and parallel structures in metabolic networks (58). Given the robustness of the results, it is 

probable the parameters can be used in other systems with reasonable accuracy. 

Additional robustness analyses examined the effect of perturbing one MREi parameter at a time 

to assess the effect on qATP. These analyses considered five membrane-associated enzymes 

which accounted for ~87% of the utilized surface area during batch growth (ATP synthase, 

glucose transporter (PtsG), ammonium transporter (AmtB), NADH dehydrogenase (Nuo), and 

cytochrome oxidase (Cyo) (supplementary data S9)). Each enzyme MREi was perturbed up or 

down 35% to increase or decrease the sMSA requirements, respectively. ATP synthase 

accounted for 45% of the surface area utilized by central metabolism enzymes and was most 

sensitive to MREi perturbations. Increasing the ATP synthase MREi parameter 35% while holding 

all other MREi  parameters constant, decreased the potential for qATP fluxes by ~26%, whereas 

decreasing the MREi parameter 35% increased the potential for qATP fluxes by ~8%. Perturbing 

the MREi parameter for the other four enzymes individually, either up or down 35%, did not 

change the capacity for qATP fluxes more than ±5% (supplementary data S9).  

DISCUSSION 

The rules of cell design remain elusive despite decades of research. For example, the design 

rules that link cell geometry and membrane protein capacity with central metabolism have not 

been defined previously on a quantitative basis. Bacteria display exquisite control over cellular 

geometry and membrane properties which are proposed here to be biologically significant as 

these properties are major mediators of possible phenotypes (1, 3, 15). E. coli cell length and 

diameter increase with growth rate, reducing the SA:V ratio (Fig. 1D)(2, 16). However, as shown, 

the reduction in SA:V is offset by an increase in the capacity of the membrane to host proteins 

(Fig 1E, supplementary data S3). This property is hypothesized to be critical to competitive 

phenotypes; if membrane protein content were not essential to fitness, this capacity would 

likely remain independent of, or decrease with increasing growth rate (15). This membrane 

property was integrated into a new, molecular-level theory which combines metabolism, cell 
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geometry, and membrane protein crowding. sMSA theory predicted maximum growth rates, 

acetate overflow metabolism, electron transport chain efficiency, and maintenance energy 

fluxes without accounting for cytosolic proteome investment or a cytosolic molecular crowding 

(6, 14, 42). Much effort has documented the importance of volume-associated proteome 

investment and molecular crowding on phenotype (6, 14, 16). Volume-based processes are 

certainly central to phenotype (5, 6, 9), but we hypothesize that both surface area- and volume-

associated processes are critical and concurrently influence phenotype (1). Surface area 

requirements for membrane enzymes do not correlate well with volume proxies like enzyme 

mass (Fig. 1C, supplementary data S1); membrane surface area requirements are proposed to 

be distinct biophysical properties which impose unique constraints (14, 42). Tight regulation of 

cellular geometry and therefore SA:V ratio would arguably be futile if surface area-associated 

substrate transport and volume-associated protein synthesis were not also tightly regulated. If a 

single geometric aspect were limiting, evolution could select for changes in either cell length or 

cell diameter to overcome the surface area or volume limitation, respectively. A potential 

strategy to overcome the limits of geometry is to evolve membranes with higher protein hosting 

capacities. Mitochondria are eukaryotic organelles specialized in ATP generation (16). While the 

geometries of mitochondria are similar to bacteria, their membranes can host proteins at areal 

densities approximately two-fold higher than an E. coli membrane (24 ± 5.6 % vs. 40-50%) (4, 16, 

59)(reviewed in supplementary data S4). The role of cell geometries in different bacterial 

species, e.g. bacilli vs. cocci, or the membrane protein capacities of Gram-negative vs. Gram-

positive membrane architectures are open questions that can be addressed using sMSAc-FBA 

(16).   

The presented analyses only consider growth on minimal salts medium which limits maximum 

growth rates. Growth on rich media enables faster growth (2). Extending the current theory to 

rich media would require measuring the uptake of numerous substrates. Surface area 

constraints likely prohibit the simultaneous use of all available substrates (32, 56). Instead, an 

animalcule will sequentially catabolize preferred substrates based on catabolite repression 

schemes (8, 60). Theories governing preferred substrates for co-metabolism are still being 

developed (61, 62), and it will be interesting to assess the extent to which surface area 

constraints inform these theories. 
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We note that ~7 - 11% of the MG1655 inner membrane surface area is occupied by central 

metabolism enzymes based on four proteomics studies and assume NCM3722 has a similar 

capacity (Fig. 2D, 2E, supplementary data S3)(32-35). Central metabolism accounts for 

approximately one third of membrane-associated proteins; thus, these proteomics-based values 

are consistent with literature review estimates of 24 ± 5.6% of the inner membrane surface area 

being occupied by total protein (19, 32, 63, 64)(Fig. 1F)(supplementary material S4). The 

experimentally measured protein crowding is higher than sMSAc-FBA predictions (≤7% for both 

MG1655 and NCM3722, Fig. 3A, 3B, 3C, 3D). sMSAc-FBA predictions assume an idealized 

scenario including 1) all enzymes are saturated for substrate including ETC components and O2 

cytochromes, 2) cells produce optimal levels of each enzyme with no overproduction, 3) all 

protein complexes are perfectly assembled with exact subunit ratios, 4) all enzymes are 

flawlessly embedded in the membrane, 5) no allosteric regulation of enzyme activity occurs 

based on membrane curvature (3, 38), and 6) the enzyme kcat numbers increase two-fold for 

every 10°C increase in temperature (Q10 = 2) (49). The curated proteomics data provide a basis 

for estimating deviations from this idealized scenario. Using a protein offset (, Box 1) of ~3% 

quantitatively aligns the sMSAc-FBA simulations with the experimental proteomics data without 

altering any presented interpretations or conclusions. The presented study implicitly includes a 

perturbation analysis of  For example, perturbing  for batch growth can be analyzed by 

examining results for fMSA values larger or smaller than 0.07 (Fig. 3B, 3C).  

A quantitative, systems-level understanding of phenotype is still elusive for model organisms 

including E. coli. Biological optimality principles are of keen interest as they illuminate the 

(pseudo) rules of life and are readily implemented using systems biology methods. The 

presented study demonstrates that the commonly observed submaximal P/O numbers are likely 

not suboptimal strategies. Instead, they represent an optimal tradeoff between surface area 

requirements for substrate transporters and ETC components. Other commonly observed 

submaximal, yet likely optimized, phenotypes include overflow metabolisms occurring at both 

high (6, 65) and low growth rates (50), use of the Entner-Doudoroff (ED) glycolysis rather than 

Embden-Meyer-Parnas (EMP) glycolysis (58), and use of a partial citric acid cycle under nutrient 

limitation (66). Numerous in silico studies have replicated the overflow and ED vs. EMP glycolysis 

phenotypes using a variety of criteria (6, 12, 13, 18, 42, 58, 67). It is probable that many of these 
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criteria are concurrently relevant to cell geometry (14, 42). All the criteria explicitly or implicitly 

define tradeoffs between resource sufficiency and resource scarcity and can be viewed through 

a lens of cellular economics. The relative value of a limiting resource is higher than for resources 

present in excess. Therefore, fitness is increased when use of the limiting resource is optimized 

(39, 58). The presented sMSA theory quantifies a metabolic resource defined by cell geometry 

and membrane protein crowding and elucidates cell design rules which impact selection of 

competitive phenotypes. 

MATERIALS AND METHODS 

Enzyme parameters 

Computational parameters including enzyme kcat (a.k.a. turnover) numbers, enzyme surface 

area, cellular water content, and cell density for E. coli were estimated using literature reviews. 

Parameter values and references are provided in supplementary data S4. kcat numbers were 

temperature corrected to 37°C using a Q10 number of 2 (49). Analyses assumed all membrane-

associated enzymes were saturated (i = 1) during batch growth, as typical concentrations of 

medium components during batch growth are ~2 orders of magnitude greater than the average 

KM values of E. coli enzymes, ~0.1 mM. During chemostat growth, the saturation parameter (i) 

for glucose transport (PtsG) was adjusted based on the dilution rate.   

Metabolic model  

The E. coli metabolic model was based on published models (39, 40). Every model reaction was 

balanced for atoms and electrons. The biomass reaction was constructed using theory 

developed by Neidhardt et al., as described previously (39, 68). The biomass macromolecular 

composition on a dry mass basis was 78% protein, 10% RNA, 6% DNA, and 6% lipid and 

polysaccharide (68), the elemental composition was C1H1.96O0.52N0.28P0.03, and the degree of 

reduction was 4.24 oxidizable electrons per carbon mole of biomass (NH3 basis). The biomass 

ATP demand for monomer synthesis and macromolecule polymerization was 36.9 mol ATP per 

kg dry biomass (39). The biomass reaction did not account for any maintenance energy 

requirements as those fluxes were calculated separately. The maximum potential for 

maintenance energy fluxes (qATP) was calculated from experimental data by constraining 
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exchange fluxes to consensus data and maximizing flux through the ATP hydrolysis reaction 

(reaction identifier: ATPm). Thus, the calculated maintenance energy fluxes account for both 

growth- and nongrowth-associated ATP. The same E. coli model was used for both E. coli strain 

MG1655 and NCM3722 simulations while applying strain appropriate SA:V ratios and consensus 

data (supplementary data S1, S2, S5). Unless otherwise noted, enzyme saturation (i), enzyme 

over capacity factor (i), and allosteric regulation based on membrane properties (i) were set 

to 1. 

The metabolic model is provided in supplementary data S5. All metabolic simulations used 

COBRA Toolbox (41) with Gurobi as the solver.   

Data Availability: All MATLAB code, models, and supplementary data can be found at 

github.com/rosspcarlson/carlson2024_sMSAcFBA.  
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Supplementary Data S1: Literature survey of extracellular flux data for E. coli K-12 strains 
MG1655 and NCM3722 including consensus data sets. Comparison of enzyme volume and 
membrane surface area requirements for 22 central metabolism enzymes. 

Supplementary Data S2: Literature values for cell geometry as a function of growth rate for E. 

coli K-12 strains MG1655 and NCM3722.   

Supplementary Data S3: E. coli K 12 membrane proteomics data from three independent 

studies collated by Belliveau et al. 2021.  

Supplementary Data S4: Literature review of enzyme and biophysical parameters used in study. 

Supplementary Data S5: In silico, stoichiometric model and associated data files. 

Supplementary Data S6: Summary of simulation output for E. coli K 12 strains MG1655 and 

NCM3722. 

Supplementary Data S7: Summary of experimental and in silico P/O number calculations. 

Supplementary Data S8: Experimental proteomics data quantifying areal density of high affinity 

ABC transporters. 

Supplementary Data S9: Analysis of maintenance energy fluxes as a function of growth rate, 
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enzyme MRE parameters. 

Supplementary Data S10: Summary of MATLAB code used for each figure in study. 
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Figure 1. E. coli membrane and enzyme properties. A) The inner membrane enables critical 

cellular functions including substrate transport and oxidative phosphorylation. Membrane 

surface area is finite. B) The physical dimensions of membrane-associated enzymes influence 

both two- and three-dimensional molecular crowding. ATP synthase image modified from Wiki 
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commons. C) Membrane surface area requirements and enzyme volume for 22 central 

metabolism enzymes do not correlate well. Data available in supplementary data S1 and S4. D) 

Experimental surface area to volume (SA:V) ratios for E. coli K-12 strains MG1655 and NCM3722 

as a function of specific growth rate. E. coli geometry data from (2). E) The capacity of the E. coli 

MG1655 inner membrane to host proteins, expressed here as nm2 occupied by central 

metabolism enzymes per cell volume (m-3) for comparison with Figure 1D, increases with 

specific growth rate offsetting the decrease in SA:V. Data from E. coli cultures grown on glucose 

salts medium. Proteomics data from (32-35). Enzyme properties and calculations can be found 

in the supplementary data S3 and S4. Analysis was limited to cultures grown on glucose minimal 

data. Calculations were not possible for complex medium because the consumption rates of the 

numerous substrates were unknown.  
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Figure 2. Predictive growth rate – biomass yield phenotype space for E. coli strain MG1655 

constrained by membrane surface area and membrane protein crowding. A) Maintenance 

energy flux (mmol ATP (g cdw h)-1) shown by the color gradient (protein crowding, fMSA = 0.07). 

Black contour lines are maintenance energy isoclines. Maintenance energy flux accounts for ATP 

in excess of ATP used for macromolecule polymerization. B) Color gradient represents the P/O 

number which quantifies the efficiency of oxidative phosphorylation. C) Color gradient 

quantifies the areal density of glucose transporter PtsG (complexes m-2). D) Color gradient 

quantifies areal density of the electron transport chain component Nuo (complexes m-2). E) 

Color gradient quantifies areal density of the electron transport chain component Ndh II 

(complexes m-2). F) Color gradient quantifies overflow metabolism qacetate (mmol acetate (g cdw 

h)-1). Color gradient scales, simulation data, and additional phenotypic representations can be 

found in supplementary data S6. 
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Figure 3. Maximum specific growth rate is constrained by membrane surface area and protein 

crowding. A) Experimental fluxes from E. coli K-12 strains MG1655 (6 data sets, blue points (47)) 

and NCM3722 (2 data sets, red points (48)) correlate best to a narrow range of occupied 

membrane area (5-7%) calculated using simulations enforcing a finite membrane surface area 

and membrane protein crowding. B) The maximum specific growth rate for E. coli strain 

MG1655 and C) E. coli strain NCM3722 on glucose salts medium correlates with a Pareto 

tradeoff between growth rate and maintenance energy flux potential. Shaded area quantifies 

experimental maximum growth rates and standard deviations. A series of simulations were 
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performed enforcing different membrane protein crowding (fMSA = 0.04-0.08, or 4-8% of 

occupied membrane area). Error bars represent standard deviation of 100 simulations; see text 

for details. D) E. coli K-12 strains MG1655 and NCM3722 maximize the areal density of ATP 

synthase (complexes m-2) near the maximum specific growth rate. Error bars represent 

standard deviation of 100 simulations; see text for details. E) Predicted areal density of ATP 

synthase (complexes m-2) for strain MG1655 compared to experimental data from three 

proteomics studies (32-35). F) E. coli MG1655 rate-yield space with predicted ATP synthase areal 

density (complexes m-2) quantified by the color gradient. Black lines are maintenance energy 

isoclines (see Fig. 2A). Black point denotes experimental E. coli strain MG1655 maximum specific 

growth rate and biomass yield during batch growth on glucose salts medium. 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.21.609071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.609071
http://creativecommons.org/licenses/by-nc/4.0/


 

 

29 

 

 

Figure 4. Membrane surface area and protein hosting capacity predicts the onset of acetate 

overflow metabolism. Predicted E. coli MG1655 P/O numbers (solid blue points) (A) and E. coli 

NCM3722 P/O numbers (solid red points) (B) plotted with experimentally determined P/O 

numbers as a function of growth rate. Predicted P/O numbers have an inflection point denoting 

the change in scarcity of the membrane surface area. Overflow metabolism occurs at severe 

surface area scarcity, right of inflection point. The P/O number inflection corresponds with 

higher experimental biomass yields on glucose. Biomass yield maximum highlighted with (*). 

Error bars represent standard deviation of 100 simulations using strain-specific consensus 
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fluxes. Experimental proteomics data for MG1655 from (32-35). Experimental proteomics data 

for NCM3722 from (44). C) E. coli MG1655 experimental areal density of high affinity ABC 

substrate transporters (complexes m-2) as a function of growth rate. Data from (33). See also 

supplementary data S8. D) E. coli MG1655 potential for maintenance energy generation (qATP) as 

a function of growth rate considering glucose-limited consensus fluxes. The simulation data 

applied P/O = 1.04 for results to the left of the P/O number inflection point to reflect 

experimental proteome trends (supplementary data S6). E) Perturbation analysis of enzyme 

parameters and their effect on the potential for maintenance energy (qATP) production. 

Experimental fluxes from batch growth of E. coli MG1655 on glucose salts media with fMSA = 

0.07. Enzyme parameters were independently perturbed between ± 0 and 95% (abscissa) while 

experimental fluxes were simultaneously and independently perturbed between ± one standard 

deviation. Each point is the mean of 100 simulations, and error bars represent one standard 

deviation. F) Quantitative representation of surface area fractions relevant to E. coli K-12 

MG1655 at low (0.1 h-1, 21% of area, left) and high (0.7 h-1, 33% of area, right) specific growth 

rates. Areas are based on analyses in main text. Green circles represent central metabolism 

enzymes while gray circles represent other membrane-associated proteins.  
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