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Abstract

Nucleic acid amplification tests (NATs) are increasingly being used for diagnosis of respiratory virus infections. The most familiar
formats use DNA or RNA target amplification methods for enhanced sensitivity above culture and antigen-based procedures. Although
gel and plate-hybridisation methods are still utilised for analysis of amplified products, detection using “real-time” methods which do
not require handling of amplified products are favoured in many laboratories. Assays based on nucleic acid amplification and detection
can be designed against a broad range of respiratory viruses and have been particularly useful for detection of recently identified viruses
such as human metapneumovirus and coronaviruses NL63 and HKU1. However, the wide range of potential pathogens which can cause
similar respiratory symptomology and disease makes application of individual diagnostic assays based on detection of DNA and RNA both
complex and expensive. One way to resolve this potential problem is to undertake multiplexed nucleic acid amplification reactions with
analysis of amplified products by suspension microarray. The Respiratory Virus Panel (RVP) from Luminex Molecular Diagnostics is one
example of such an approach which could be made available to diagnostic and public health laboratories for broad spectrum respiratory
virus detection.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Respiratory virus; Diagnosis; Nucleic acid amplification; PCR; NASBA; Microarray; RVP

1. Abbreviations

NAT(s): Nucleic acid amplification test(s); IFV: influenza
virus; RSV: respiratory syncytial virus; PIV: parainfluenza
virus; hMPV: human metapneumovirus; hBoV: human bo-
cavirus; PCR: polymerase chain reaction; NASBA: nucleic
acid sequence based amplification; LAMP: loop-mediated
isothermal amplification; NP: nasopharyngeal.

2. Introduction

Appropriate management of patients with a respiratory
virus infection requires rapid identification of the etiologic
agent. NATs are emerging as the preferred (gold standard)
approach for diagnosis of respiratory infections, either as
an adjunct to other testing or as a replacement (Lee et al.,
2006). NATs are not easily compromised by sample quality
and timing of collection related to onset of symptoms. There
are also benefits in laboratory safety and turn-around time
if diagnostic testing can be undertaken without prior culture
of the unknown organism.
Diagnosis of respiratory infections is complex because

of the wide range of potential pathogens which can
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present with the same clinical symptoms, and NATs can
assist in this process. Picornaviruses (rhinoviruses and
enteroviruses) and coronaviruses 229E and OC43 have long
been recognized as a cause of respiratory symptoms but
they are not identified efficiently using standard virological
approaches undertaken in the majority of laboratories.
Detection of these important viruses is increasingly being
undertaken using NATs allowing full realization of the
likely role of these viruses in respiratory infection and
disease (Garbino et al., 2004; Jartti et al., 2004; Monto,
2004; Vallet et al., 2004; Arden et al., 2006; Esposito et al.,
2006; Jacques et al., 2006; Kusel et al., 2006; Lee et al.,
2006; Loens et al., 2006; Manoha et al., 2007).
In recent years many new respiratory virus pathogens

have been identified and it is important that tests for
these viruses are included in the respiratory virus testing
algorithm. This has proved most efficient by inclusion of
at least some NATs in the diagnostic testing repertoire
although antigen and culture methods are available for
some of these viruses (see the article by Ginocchio in
this supplement). Human metapneumovirus (hMPV) is
increasingly recognized as an important viral pathogen in
the young and elderly (Bosis et al., 2005; Sivaprakasam
et al., 2007; van den Hoogen, 2007). Human bocavirus
(hBoV), although often present with other co-pathogens,
has been associated with significant disease, particularly in
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the young (Arden et al., 2006; Arnold et al., 2006; Bastien
et al., 2006). The recently identified human coronaviruses
NL63 and HKU1 have also both been evaluated and clinical
relevance assessed using NATs (Chiu et al., 2005; Kaiser
et al., 2005; Woo et al., 2005; Esposito et al., 2006; Gerna
et al., 2006; Koetz et al., 2006; Lau et al., 2006; Han et al.,
2007; Kupfer et al., 2007).
Use of NATs allows assessment of the impact of a

wider array of potential pathogens on respiratory infections
than previously possible and target-specific (multiplex)
approaches have proved feasible for enhanced broad-
spectrum respiratory virus diagnosis. In this review an
overview of established methods and new procedures for
respiratory virus nucleic acid detection and diagnosis is
given.

3. Methods

A wide range of both target and signal amplification nucleic
acid amplification methods could be applied to respiratory
virus detection. Any target amplification method has the
advantage of sensitivity above signal amplification but the
latter may be simpler and less laborious for high specimen
throughput. This review focuses on methods where detailed
publications using either “in house” or commercially-
available assays for respiratory virus nucleic acid detection
are available.

3.1. Nucleic acid extraction and purification

Critical to down-stream nucleic acid detection methods
is the quality of extracted nucleic acid which needs to
be purified away from any inhibitors. In some cases
concentration of the sample can be undertaken during the
extraction procedure which enhances clinical sensitivity.
It is most convenient if the eluate contains purified
nucleic acid suitable for both DNA and RNA amplification
and detection methodologies. Although the majority of
respiratory virus targets have an RNA genome, notable
exceptions include ADVs and hBoV both of which are
important to include in a viral diagnostic screen. An extract
containing total nucleic acid can also be used for analysis
of bacteria which may present with similar symptoms
to viruses (e.g. Mycoplasma pneumoniae, Chlamydophila
pneumoniae).
For many laboratories, automation of the extraction,

concentration and nucleic acid purification is critical to
utility and application of diagnostic NATs and ensures high
quality, reproducible results. Individual laboratories tend to
evaluate extraction procedures as part of their NATs and
there are very few studies which systematically compare
extraction and nucleic acid preparation for respiratory
viruses. Ideally, a control should be included as a spike
into each specimen before extraction to confirm all steps
in the process were optimal. This could be a modified/
manufactured nucleic acid (Dingle et al., 2004) or could

make use of unrelated virus controls (Niesters, 2004).
Further enhancement of sample preparation will involve
higher specimen throughput and, ultimately, a direct link to
amplification and detection methods using robotics.

3.2. Primer and probe design

Primers and probes have been designed and validated for
amplification of a range of viral respiratory targets. The
main problem is lack of capacity (throughput of specimens)
and the laborious and expensive nature of approaches which
rely on undertaking many individual NATs on a single
sample.
Non-selective amplification procedures have been widely

reported as an alternative to target specific amplification.
In general, degenerate or conserved primers are useful
in amplifying or identifying sequence variants or new
members within a virus family but sequence-independent
(random) amplification needs to be utilized for unknown
targets and for virus discovery (Ambrose and Clewley,
2006). One disadvantage of using degenerate or random
primers in a broad spectrum amplification method is that the
amplification efficiency may be reduced once homologous
primers in a mix have been incorporated into products.
Design of complex multiplex amplification reactions

requires a good database of available sequences and suitable
software for multiple-sequence alignments. This may be
beyond the means of many diagnostic laboratories. Kit-
based solutions to broad-spectrum respiratory pathogen
diagnosis incorporate enhanced multiplex PCR approaches
and negate the need for individual laboratories to undertake
complex design and validation (e.g., Brunstein and Thomas,
2006; Lee et al., 2007; Li et al., 2007; Mahony et al.,
2007).

3.3. Polymerase chain reaction (PCR) amplification
method

PCR (or RT-PCR) is still the most common nucleic acid tar-
get amplification method used in the diagnostic laboratory.
This is partly because the procedure was widely publicised
before the alternative isothermal means of amplifying
targets. There have been many complex reactions and
diagnostic algorithms reported to try and represent the
wide-spectrum of potential pathogens causing respiratory
symptoms. Despite the well-recognised problems, there are
reports of large studies using “in house” procedures where
multiplexed primer combinations have proved successful for
PCR amplification (Coiras et al., 2004; Pehler-Harrington
et al., 2004; Syrmis et al., 2004; Gunson et al., 2005;
Weigl et al., 2007). One interesting adaptation of the PCR
amplification is to use a “touchdown” approach which
allows more flexibility in design of primer sets. The idea
is that assays are run concurrently with simultaneous
amplification and subsequent detection of 12 respiratory
virus targets (Coyle et al., 2004). This approach avoids the
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need for complex multiplexing but increases the number of
reactions necessary/sample.

3.4. Isothermal nucleic acid amplification methods

Nucleic acid sequence based amplification (NASBA) is
an isothermal target amplification procedure which utilizes
three enzyme activities (RT, RNaseH and T7 RNA poly-
merase) in order to amplify sense or anti-sense target RNA.
The method has been applied successfully to respiratory
virus detection and diagnosis of associated infection and
disease (Fox et al., 2002; Hibbitts and Fox, 2002; Moore
et al., 2004; Landry et al., 2005; Lee et al., 2006; Loens
et al., 2006; Moore et al., 2006; Dare et al., 2007).
Loop-mediated isothermal amplification (LAMP) was

originally developed for rapid amplification of DNA targets
but can be combined successfully with a reverse transcrip-
tion step for RNA respiratory viruses (e.g., Nagamine et al.,
2002; Hong et al., 2004). The method utilises 4−6 target
specific regions in a strand displacement synthesis resulting
in a very rapid isothermal amplification of target.

3.5. Detection and analysis of amplified products

Examples of amplified product analysis include gel-based
detection [often of semi-nested or nested PCR (Coiras et al.,
2004; Coyle et al., 2004) or LAMP (Hong et al., 2004)
products], automated fluorescent capillary electrophoresis
(Erdman et al., 2003) or separate hybridisation of products
to target specific probes (Coiras et al., 2005). Nested PCR
was first introduced to enhance sensitivity and specificity
of PCR. However, even experienced laboratories have had
problems with amplicon contamination using these methods
(Apfalter et al., 2005). Many diagnostic laboratories prefer
a method with separate probe-based hybridization detection
for analysis of amplified products or they use “real-
time” assays, as described below. Separate hybridization
methods for analysis of amplified products ensure good
control of specificity for analysis of amplified products and
have heralded the way for array based methodologies (see
below).
Use of novel labels incorporated into amplified products

may facilitate analysis and allow detection of a broader
range of viruses in a single assay. One reported method-
ology targets 20 respiratory viruses using multiplex PCR
incorporating MassTag labels in the forward and reverse
primers (Briese et al., 2005).

3.6. Real-time amplification and detection of products

The principle behind real-time assays is that amplification
of the nucleic acid target is combined with detection in a
single reaction. There is no need for manipulation of am-
plified products, which minimises problems with amplicon
carry-over and potential false positive reactions. For many
real-time assays, detection of amplified products utilises
a target-specific probe. Various formats and chemistries

are available for labelling of these probes in order to
discriminate between those free in solution from those
bound to target. Where multiple target-specific primer sets
are used in amplification (ensuring specificity) “in tube”
detection of amplified products may utilise intercalating
dyes, turbidity measurements or other generic nucleic acid
detection procedures. Discussion of practical applications
for real-time PCR is provided in a recent review (Gunson
et al., 2006).
Choice of real-time amplification and detection format

depends on the laboratory throughput, level of expertise
available and number of targets to be tested. Fluorescent-
reporting real-time assays are limited by the spectral overlap
of labels and, in general, multiplex real-time NATs are
limited to 5 separate target detections. Thus, in tube
amplification of target combined with a specificity check by
probe hybridization (real-time assays) is extremely useful
and convenient if one or a few possible causes of a
respiratory illness are to be considered. Unfortunately, this
approach is not very flexible if there is a need to enhance
capacity and broaden the detection.

3.7. Nucleic acid amplification combined with microarray
detection

Attempts to build diagnostic capacity for real-time assays
by introducing multiple primer and probe sets (multiplex
primer and probe approaches) have not been entirely
successful as there is a tendency for a reduction in
amplification efficiency when a complex master mix is
utilized. One way to increase the diagnostic capacity is
to separate the nucleic acid amplification away from the
hybridization and detection reaction. Using this approach
it is easier to increase the number of targets without
compromising the diagnostic efficiency. The move away
from a real-time assay could be seen as a step backwards
in technology if it were not for the advantage of multiple
pathogen detection in a single assay. Thus, in some of
the latest diagnostic assays, the convenience of individual
real-time assays is replaced by the enhanced capacity of
separate amplification and detection to allow testing based
on clinical presentation rather than a pre-conceived idea
about the viral cause. For such an approach to be useful
in a diagnostic setting enhancements to both nucleic acid
amplification procedures and hybridization methods and
formats have been necessary.
Microarrays have the potential to resolve complex

amplified product mixtures. The array (or chip) substrate
may be nylon, membrane, glass, silicon or polystyrene
microbeads. They may have variable density (numbers of
specific probes and thus targets to be queried), and probe
design and hybridization conditions can be adjusted to allow
some mismatch of sequences. Detection of products on
a solid-phase microarray can make use of conventional
hybridization, flow-through or re-sequencing procedures.
All these solid-phase array formats have been utilized for
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respiratory virus detection and analysis (Kessler et al., 2004;
Coiras et al., 2005; Wang et al., 2006; Lin et al., 2007).
Suspension microarrays employ a liquid phase bead

conjugated array technology known as Luminex® xMapTM

for detection of amplified products. Such suspension mi-
croarrays exhibit rapid hybridisation kinetics, flexibility in
assay design and format and low cost (Dunbar, 2006). New
beads (and probes) can be added or others replaced without
having to reformat and print new arrays (a disadvantage for
solid-phase arrays). Some key respiratory targets are already
part of early release commercial assays utilizing multiplex
amplification with detection using the Luminex® system.
In one format, multiplex PCR products are detected and
discriminated using template-specific probes conjugated to
different microspheres (Brunstein and Thomas, 2006; Li
et al., 2007). In an alternative strategy, a multiplex PCR is
used in a first step followed by primer directed (and target
specific) strand extension and labeling. Each target-specific
primer used in this labeling reaction incorporates a unique
capture sequence. It is these capture sequences which are
used for detection of amplified products in a universal
suspension microarray (Lee et al., 2007; Mahony et al.,
2007). The RVP assay (Luminex Molecular Diagnostics) is
described in further detail in other sections of this review
supplement.

4. Results

4.1. Comparison of NATs with antigen and culture
detection of respiratory viruses

A summary of main advantages and references to NAT
enhancements for detection and analysis of respiratory
viruses is given in Table 1. The majority of reported
studies using NATs utilize individual or small multiplex
assays targeting important respiratory virus targets such as
influenza virus (IFV) A and B, parainfluenza viruses (PIVs),
adenoviruses (ADVs) and respiratory syncytial virus (RSV).
Many feasibility studies have confirmed that NATs improve
detection of potential pathogens from lower respiratory tract
specimens as well as from respiratory swabs even where
alternative methods such as DFA and culture are available
(Hibbitts and Fox, 2002; Moore et al., 2004; Lee et al.,
2006). In the case of respiratory adenoviruses detection
by DFA is known to be particularly poor (as illustrated
in Coyle et al., 2004). Although culture is quite sensitive
for detection of ADVs the shorter turn-around time for
diagnosis by NAT ensures appropriate early management
and employment of infection prevention and control proce-
dures for vulnerable (e.g. immunocompromised) individuals
as well as differentiation between designated serotypes
for epidemiological study (Pehler-Harrington et al., 2004;
Vabret et al., 2004).
Many laboratories retain use of DFA methods for rapid

analysis of respiratory samples and, in particular, for triage
and cohorting of vulnerable hospitalized patients. The yield

for DFA can be good during seasonal peaks of RSV and IFV,
especially when appropriately taken nasopharyngeal (NP)
samples are available from children (who tend to shed large
amounts of virus compared with adults). Diagnostic yield
of DFA for non-NP sample types and for targets other than
IFVA, IFVB, PIV or RSV is much less. Table 2 gives results
for analysis of DFA negative NP samples using sensitive
real-time NATS for IFVA, IFVB, PIV1−4 and RSV (NAT
methodology as previously published, Lee et al., 2006). The
enhanced sensitivity of such NATs above DFA for these
critical targets is clearly demonstrated, despite the fact that
only NP samples are included in the analysis. The enhanced
pick up of PIV by NATs is particularly obvious. Although
this is due partly to the lack of DFA testing reagents for
PIV4 (which is known to cause some respiratory infections)
the vast majority of DFA negative PIV NAT positives are
PIV1−3. The DFA test is most useful for IFVA and RSV
but, even for these targets, a significant number of positives
are missed if this procedure alone is used for decisions on
patient management and infection prevention and control.
While antigen and culture-based procedures have di-

agnostic utility for detection of IFVA, IFVB, PIV1−3,
RSV and ADVs, other viruses will be missed if NATs
are not included in the diagnostic algorithm. As shown
in Table 1, NATs have well-established advantages for
enhanced detection of picornaviruses (enteroviruses and
rhinoviruses), coronaviruses 229E and OC43 and PIV4.
These viruses have long been acknowledged as important
causes of respiratory infection and disease but are not
identified easily by antigen or culture procedures.

4.2. Detection of novel respiratory viruses using NATs

Practical application of a multiplex PCR amplification with
novel MassTag labels led to identification of previously
unidentified rhinoviruses as a cause of non-specific respi-
ratory illness (Lamson et al., 2006). Analysis of recently-
identified coronaviruses using NATs has confirmed that,
although NL63 seems to be found most commonly (Chiu
et al., 2005; Kaiser et al., 2005; Esposito et al., 2006; Gerna
et al., 2006; Koetz et al., 2006; Han et al., 2007) HKU1
has also been associated with severe disease in some cases
(Woo et al., 2005; Lau et al., 2006; Kupfer et al., 2007).
Epidemiological study of hBoV requires use of NATs, and
this virus is now recognized as a cause of acute respiratory
virus infection, either alone or with a co-pathogen, in young
children (Arden et al., 2006; Arnold et al., 2006; Bastien
et al., 2006; Ma et al., 2006).

4.3. Respiratory virus co-infections identified by NATs

The use of NATs has led to identification of more respi-
ratory virus co-infections than were previously recognised
using less-sensitive antigen and culture methods. If indi-
vidual NATs are utilized, multiple infections are identified
frequently but use of real-time multiplex reactions may
lead to competition between amplification and detection
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Table 2
Analysis of DFA negative NP samples by NATs

Virus target Number DFA(+)/
number of DFA investigations
(% DFA(+))

Number NAT(+)/ number of DFA(−)
investigations
(% of DFA(−) that are NAT(+))

Number NAT(+) DFA(−)/ number of
DFA investigations
(% of all DFA investigations that are
NAT(+) DFA(−))

IFVA 819/13,946
(5.9)

161/13,127
(1.2)

161/13,946
(1.2)

IFVB 244/13,861
(1.8)

270/13,617
(2.0)

270/13,861
(1.9)

PIV 366/12,420
(2.9)

784/12,054
(6.5)

784/12,420
(5.9)

RSV 1994/15,063
(13.2)

281/13,069
(2.2)

281/15,063
(1.9)

All targets tested by DFA 3423/55,290
(6.2)

1496/51,867
(2.9)

1496/55,290
(2.7)

Samples were all nasopharyngeal samples (swabs and aspirates) collected and tested 1st January 2005 through 31st July 2006.
DFA(+): DFA positive; DFA(−): DFA negative; NAT(+): NAT positive; NAT(−): NAT negative; IFV: influenza virus; PIV: parainfluenza virus;
RSV: respiratory syncytial virus; NP: nasopharyngeal.

targets and a resultant underestimation of co-infection rate.
In some cases, co-infections have been linked with more
severe illness [e.g. for coronaviruses (Gerna et al., 2006)
and for the paramyxoviruses RSV and hMPV (Semple
et al., 2005)] but the hypothesis that severe symptoms occur
because of the additive effect of multiple virus infections is
controversial and warrants further study.

4.4. Problems associated with current NATs

Despite the demonstrated enhanced sensitivity of NATs
there have been delays in the diagnostic implementation
of such assays. The reasons for this include the technical
complexity, the cost and the lack of proper validation/
standardization of assays. Particular problems have been
noted when proficiency studies for use of NATs in
diagnostic laboratories have been undertaken, showing that
false positives and false negatives may be reported (Apfalter
et al., 2005; Templeton et al., 2006).

4.5. Application of array-based procedures to detection
and analysis of respiratory viruses

One study utilizing solid-phase microarray hybridization of
randomly amplified PCR products from respiratory cultures
and clinical samples demonstrated comparable results to al-
ternative culture or individual PCR methods (Palacios et al.,
2007). The potential use of flow-through array procedures
for detection and typing of influenza A in a single reaction
has also been suggested (Kessler et al., 2004). Application
of re-sequencing arrays to clinical studies demonstrated
correct sequence and strain identification using an array
targeting 57 genes for 26 respiratory pathogens (Lin et al.,
2007). The particular application of re-sequencing arrays to
tracking of influenza genetic variation confirmed utility of
this approach to inform vaccine development (Wang et al.,
2006). One disadvantage of using re-sequencing arrays for

molecular epidemiological studies, however is the need for
re-design of components of the array regularly to reflect
RNA virus sequence variation.
Evaluation of suspension microarray approaches for

retrospective analysis of respiratory specimens confirmed
good sensitivity and specificity compared with antigen and
culture based procedures (described in more detail in other
articles of this review supplement).

5. Discussion

NATs have the advantage of enhanced sensitivity compared
with many antigen and culture-based assays and short turn-
around times (especially compared with traditional culture).
If a sample contains a possible level 3 pathogen there are
also safety and logistical advantages to using NATs above
culture since the sample can be inactivated prior to analysis
and then tested in a level 2 environment.
However, the broad range of pathogens which can cause

similar respiratory symptomology makes it difficult to
apply individual (monoplex) or small multiplex NATs to
comprehensive respiratory diagnosis. Such an approach
can be cost prohibitive and may not even be possible if
specimen quantity is limited. As more clinically-relevant
respiratory pathogens are identified, a technological change
in how NATs are performed is necessary to meet the ever
expanding diagnostic need. Such technology enhancement
and validation will be required before diagnostics based on
NATs can be considered as practical in an outbreak situation
where the causative agent may not be known.
As respiratory virus amplification and detection proce-

dures that utilize microarrays are developed and evaluated
outside of the research laboratory they will become more
accessible to diagnostic laboratories. Further development
and evaluation of the methods in prospective diagnostic
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studies is necessary, and sensitivity, specificity and other
assay parameters will need to be compared with alternative
formats for these types of assays (particularly individual
NATs for all targets). More targets will also need to be
incorporated and validated as novel viruses (and other
pathogens) are identified and based on needs for pandemic
preparedness.
Once evaluations of suspension microarray NATs have

been completed, their utility for high- and low-throughput
diagnostic laboratories and the cost implications of applying
this technology will be defined. It is likely that technologies
based on the currently available commercial assays or other
similar methods in development will become widely utilized
for respiratory virus diagnosis.
Approval and regulation of assays by appropriate agen-

cies with concurrent availability of suitable quality control
and proficiency panel materials will establish amplification
methods combined with array-based detection as the next
“gold standard” for respiratory virus diagnosis.

6. Conclusion

Nucleic acid amplification tests, in modified format,
making use of enhanced amplification and array-based
hybridization, have the potential to impact on diagnosis
and identification of novel viruses. Care must be taken,
however, to consider quality control issues and to learn
from the problems noted with use of non-standardized
individual NATs. Ideally, the next range of respiratory virus
diagnostics should utilize validated (FDA, Health Canada
and CE mark) assays provided by commercial companies.
Availability of suitable proficiency panels for respiratory
viruses will be critical to ensure standardization and quality
control of new diagnostic procedures.
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