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Transfer RNA (tRNA)-derived fragment (tRDF) is a novel
small non-coding RNA that presents in different types of can-
cer. The comprehensive understanding of tRDFs in non-small
cell lung cancer remains largely unknown. In this study, 1,550
patient samples of non-small cell lung cancer (NSCLC) were
included, and 52 tRDFs with four subtypes were identified.
Six tRDFs were picked as diagnostic signatures based on the
tRDFs expression patterns, and area under the curve (AUC)
in independent validations is up to 0.90. Two signatures were
validated successfully in plasma samples, and six signatures
confirmed the consistency of distinguished expression in
NSCLC cell lines. Ten tRDFs along with independent risk
scores can be used to predict survival outcomes by stages;
5a_tRF-Ile-AAT/GAT can be a prognosis biomarker for early
stage. Association analysis of tRDFs-signatures-correlated
mRNAs andmicroRNA (miRNA) were targeted to the cell cycle
and oocyte meiosis signaling pathways. Five tRDFs were as-
sessed to associate with PD-L1 immune checkpoint and corre-
lated with the genes that target in PD-L1 checkpoint signaling
pathway. Our study is the first to provide a comprehensive
analysis of tRDFs in lung cancer, including four subtypes of
tRDFs, investigating the diagnostic and prognostic values,
and demonstrated their biological function and transcriptional
role as well as potential immune therapeutic value.

INTRODUCTION
Non-coding RNAs, including long non-coding RNA and small non-
coding RNA, have been elucidated over the past few decades on the
complex mechanism and crucial roles in the development of can-
cers.1–3 Transfer RNA (tRNA), as one type of non-coding RNA, is
traditionally considered an adapter molecule in protein transition.4–6

In recent years, a new class of small non-coding RNA has been discov-
ered as tRNA-derived fragments (tRDFs) in next-generation
sequencing dataset, which was derived from tRNA precursor or
mature sequences.7–9 Instead of random degradation from tRNA,
the biogenesis of these fragments is the products that have precise
site cutting under specific tRNA modification and result in lengths
of 14–50 nt.10,11
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In general, based on the length and cleavage sites of tRNAs, tRDFs
frommature or primary tRNA can be classified into twomain groups,
including tRNA-derived tRNA halves (tiRNAs) and small RNA frag-
ments (tRFs).4 tiRNAs are also called tRNA-derived stress-induced
RNAs and are generated by the cleavage around the anticodon loop
of tRNA by angiogenin (ANG).4,12 Recent discoveries have classified
them into two subtypes: 5ʹ-tiRNAs and 3ʹ-tiRNAs.13,14 Depending on
the original location from tRNA, tRFs are placed into four major cat-
egories: internally derived tRFs (i-tRFs), mainly derived from the in-
ternal region of mature tRNA; 5ʹ-derived tRFs (5ʹ-tRFs), which are
cleaved from the 5ʹ end in the D-loop by Dicer;15,16 3ʹ-derived tRFs
(3ʹ-tRFs), which are cleaved from the 3ʹ end in the T-loop by Dicer,
ANG, or other members of the ribonuclease A superfamily; and 1ʹ-
tRFs, which are derived from 3ʹ trailer of primary tRNA and formed
from the maturation process of the tRNA precursor sequence by
RNase Z.4,17

Due to the development of sequencing technologies, increasing evi-
dence has shown that tRNA-derived fragments are involved in gene
regulation at transcriptional and post-transcriptional levels.4,18–20

They participate in various biological processes, including microRNA
(miRNA)-mediated silencing,21–23 mRNA stabilization,24 translation
regulation,25 epigenetic regulation,26 and cell differentiation.27 More-
over, tRDFs have been gradually discovered as aberrantly expressed in
major diseases, such as cancer,24,28–32 viral infectious disease,33–37 and
neurodegenerative disease,7,38–40 which is expected with novel bio-
markers on the identification of organ damage.41
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A first-time report on the relation of tRDFs with cancer by Lee et al.16

found the expression of tRF-1001 is tightly correlated with cell prolif-
eration, and it is expressed highly in a wide range of prostate cancer
cell lines. In recently published studies, more evidence has shown that
tRDFs are associated with cancer progression through cell prolifera-
tion and with a confirmed presence of high-abundant tRDFs in
different types of human cell lines, tissues, or extracellular body
fluids.42–46 Balatti et al.28 discovered four tRNA-derived small
RNAs (tsRNAs) that were generated from pre-tRNA 3ʹ end cleavage
and were downregulated in chronic lymphocytic leukemia (CLL) and
lung cancer. tRF-Leu-CAG was strongly expressed in non-small cell
lung cancer (NSCLC) tissues compared with normal tissues.47 5ʹ-
tRF-Gly-GCC was dramatically increased in plasma of colorectal can-
cer patients in comparison with the healthy control.48 Four tRFs ex-
pressed significantly higher levels in plasma exosomes of liver cancer.
Consistent evidence indicated the potential value as biomarker of
tRDFs in cancer diagnosis.49

Currently, the diversity of tRNA fragments has been reported in
many review articles as well as multiple online databases, such as
tRFdb and MINTbase.8,32,50,51 tRDFs are usually classified into
different subtypes based on its section and length; however, different
databases of tRDFs would result in different names based on the barc-
odes the authors created. In some ways, it is hard to find the feature of
each tRDF in common in terms of these assorted names, let alone if
combining multiple databases all together for a comprehensive anal-
ysis of tRDFs. In this study, we assembled four tRDF resources that
included four sections of tRNA fragments—upstream sequences,
5-tRF, 3-tRF, and downstream sequences (1ʹ-tRFs)—and consoli-
dated them into a unified form according to tRDF’s definition and
sources from tRNA.

Up until now, no tRDFs study has comprehensively investigated all
types of tRDFs expression profile and its biological function in
NSCLC. In the present study, we integrated four tRDFs data resources
by combining different sections of tRNA fragments all together and
examining the expression pattern of tRDFs in 1,550 samples from
The Cancer Genome Atlas (TCGA), Gene Expression Omnibus
(GEO), and plasma sequencing data, and we are the first to include
four types of tRNA-derived fragment into analysis, especially the up-
stream sequences. We successfully identified 58 tRDFs and distin-
guished 11 tRDFs with significantly higher expression in NSCLC pa-
tients than in healthy controls and did validation in cell lines. We also
highlighted groups of tRDFs associated with a prognosis value based
on different cancer stages and cancer subtypes. We then examined the
attributes of the mRNA and miRNA that correlated with tRDFs, and
potential target genes were identified. Finally, we investigated the de-
pendencies of tRDFs on the tumor microenvironment and hidden as-
sociation with immune checkpoint and target signaling pathways.

RESULTS
We mined all possible datasets from TCGA-lung adenocarcinoma
(LUAD) and GEO repositories; only four cohorts conducting miRNA
sequencing with pairwise samples were available in this study. GEO:
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GSE83527 contains 34 adenocarcinoma patients and 34 healthy con-
trols, GEO: GSE62182 included 94 adenocarcinoma patients and
paired healthy samples, and GEO: GSE110907 had 48 adenocarci-
noma patients and 48 healthy tissues. TCGA-LUAD cohort contained
519 patients and 47 solid healthy samples, and the TCGA-lung squa-
mous cell carcinoma (LUSC) cohort contained 478 patients and 44
healthy samples. Patients’ information was summarized in Table S1.

Based on the reference variety of tRNA-derived fragments, we gath-
ered all fragments from 5ʹ end, including “5P-tRNA” (upstream
sequences) and 5ʹ-tRF (D-loop), to be categorized as 5ʹ-tRDF, and
fragments from 3ʹ end, including 3ʹ-tRF (T-loop) and 3P-tRNA/1ʹ-
tRF (downstream sequences), to be categorized as 3ʹ-tRDF (Fig-
ure 1A). Due to the specialty name of each tRDF from different data-
bases potentially hiding some biological information, like its tRNA
section and length, we also unified all tRDFs into the mutual way
as “5P/3P/5-tRF/3tRF-tRNA”. Some specific tRDFs sequences from
5-tRF and 3-tRF that we collected from tRNAdb were identified to
overlap in multiple tRNA; for example, tRFdb-5010a as a 5a-tRF
could be found from tRNA-Ile-AAT-2-1/5–4/5–5/5–1/5–2/5–3/4–
1/7–1/7–2/1–1/6–1/8–1/12–1 and so on. Therefore, 5a_tRF-Ile-
AAT/GAT was used in short to present the fragment. Each tRNA
name corresponding to the numbered tRDFs can be found in
Tables S2 and S3.

Through the overview of tRDFs composition in each dataset, 5P (up-
stream sequences) dominated the five datasets (62.6% in GEO:
GSE83527, 63.3% in GEO: GSE62182, 71.3% in GEO: GSE110907,
67.4% in TCGA-LUAD, and 63.9% in TCGA-LUSC), while 3P was
merely one-third of the 5P (Figure 1B). In the distribution of different
subtypes of tRDFs from each tRNA, 5P and 3P tRNA that derived
from up- and downstream sequences were identified more than the
5ʹ- and 3ʹ-tRF from D-loop and T-loop. 5P tRNA can be frequently
found in Ala-, Asn-, Gly-, His-, and Trp-tRNA, while 3P can be found
more in Arg-, Ser-, and Thr-tRNA (Figure 1C).

After filtering out tRDFs with zero expression, we have 362 tRDFs
from five datasets. The average length for all types of tRDFs is 22
nt; the longest is 3P_tRNA-SeC-TCA-1-1 with a length of 47 nt
and the shortest tRDFs is 5a_tRF-Val-TAC, 5a_tRF_Ser-AGA/
TGA, and 5a_tRNA-Leu-TAA with the length of 14 nt. The prevalent
length of 5P is 20 nt, while the length of 3P averaged in 27 nt with out-
liers such as 3P_tRNA-Leu-TAA-3-1 (15 nt) and 3P_tRNA-Thr-
CGT-4-1 (40 nt) (Figure S1A; Table S4).

Expression pattern of two types of tRDFs in LUAD

The annotation results of tRDFs in each adenocarcinoma dataset
showed different compositions; 152 tRDFs were identified in com-
mon within three GEO adenocarcinoma cohorts and the TCGA-
LUAD cohort (Figure 1D). Figure S1B presents the length distribu-
tion of 152 tRDFs common in four datasets, in comparison with
the 362 tRDFs length distribution (Figures S1A and S1B) that pre-
sents that more 5P were removed but still dominated the most.
Clustering by t-distributed stochastic neighbor embedding (t-SNE)
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Figure 1. Expression pattern of two types of tRDFs in LUAD

(A) The structure of tRNA and each fragment derived from tRNA, including upstream sequence (orange), downstream sequence (green), 5ʹ-tRF (blue), and 3ʹ-tRF (purple). (B)
Composition of each type of tRDFs in each dataset is shown. (C) Composition of tRDFs from different tRNA sections in each subtype among all datasets is shown. (D) Venn

plot shows 152 tRDFs were identified as common in three GEO adenocarcinoma cohorts and TCGA-LUAD cohort. (E) Clustering analysis from t-SNE of overall cohorts is

shown. The cluster of GEO: GSE110907 was separated from the rest of cohorts shown in orange color and named as cluster A; cluster B is shown in blue. (F) Heatmap and

hierarchical clustering shows the landscape of each type of tRDF expression in each group; tRDFs were classified into four subtypes as 5P/upstream sequences, 5ʹ-tRF, 3ʹ-
tRF, and 3P/downstream sequences.

www.moleculartherapy.org
combined with Gaussian mixture models (GMMs) was applied to 152
tRDFs in 695 tumor samples from TCGA-LUAD cohort and three
GEO cohorts. Two clusters of tRDFs showed significantly different
expression profiles among four groups of cohorts (Figure 1E). Sam-
ples from GEO: GSE110907 were identified as one independent clus-
ter A, while the rest of GEO and TCGA-LUAD cohorts were classified
under cluster B. After filtering out low-expression tRDFs among four
cohorts, 58 common tRDFs remain (sequence information could be
found in Table S5).

The heatmap visualized the 58 tRDFs expression pattern of four sub-
classes of tRDFs among the four datasets in tumor samples only. The
unsupervised clustering showed the two different clustering modes
that separated the GEO: GSE110907 from the rest of the cohorts
successfully. 58 tRDFs contain 24 5P-tRNAs and 19 3P-tRNAs.
5a_tRF-Asp-GTC, 5a_tRF-Ile-AAT/GAT, 5c_tRF-Arg-CCG, 5b_
tRF-Tyr-GTA, 5P_tRNA-Gly-TCC-1-1, and 5P_tRNA-Gln-TGG-1-1
were significantly expressed tRDFs in 5ʹ-tRDFs. 3P_tRNA-Ser-GCT-
5-1, 3P_tRNA-Thr-CGT-4-1, 3P_tRNA-Ser-GCT-6-1, 3P_tRNA-
SeC-TCA-1-1, 3P_tRNA-Thr-AGT-1-1, 3P_tRNA-Arg-CCT-3-1,
3P_tRNA-Arg-TCG-2-1, 3P_tRNA-Thr-AGT-2-2, and 3a_tRF-Gln-
CTG were distinguished in 3ʹ-tRDFs. The landscape of 58 tRDFs
expression pattern is shown in Figure 1F.

Moreover, we investigated the certain tRDFs that were derived from
the same tRNA but were cleaved from different loops, 17 in total that
were presented in Figure S1C and were defined as paired tRDFs. The
Pearson correlation analysis showed less significant or low association
of each paired tRDF (Table S6). Heatmap as Figure S1D also proved
that no cluster of tRDFs derived from the same tRNA.
Molecular Therapy: Oncolytics Vol. 26 September 15 2022 209
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DE tRDFs present a diagnostic value associated with tumor and

normal samples differentiation

Based on clustering results, we investigated the differentially ex-
pressed (DE) tRDFs in cluster B to gain a comprehensive understand-
ing of the expression pattern of the tRDFs between tumor and normal
samples. Due to the different data platforms, GEO and TCGA were
separately calculated. We used Deseq2 and t test in two GEO datasets
(GEO: GSE83527 and GEO: GSE62812) and TCGA-LUAD cohort
based on both raw read counts and normalized expression profile
transcripts per million mapped reads (TPM), respectively. Both tu-
mor and normal samples were included, and the DE tRDFs were cho-
sen with the selection standard adjusted p value (Padj)/false discovery
rate (FDR) < 0.05 and |log2fold change| > 0.58.

In the GEO: GSE83527, 32 DE tRDFs were identified, including 18 5ʹ-
tRDFs and 14 3ʹ-tRDFs (Tables S1–S7). In the GEO: GSE628182, 16
DE tRDFs in total were found as significant DE tRDFs, including eight
5ʹ-tRDFs (5P_tRNA-Gly-TCC-1-1, 5P_tRNA-Asn-GTT-2-3, 5b_tRF-
Tyr-GTA, 5c_tRF-Arg-CCG-2-1, 5P_tRNA-Gly-TCC-3-1, 5P_tRNA-
Gln-TCC-1-1, 5a_tRF-Asp-GTC, and 5a_tRF-Ile-AAT/GAT) and
eight 3ʹ-tRDFs (3P_tRNA-Val-TAC-1-1, 3P_tRNA-SeC-TCA-1-1,
3P_tRNA-Thr-CGT-4-1, 3P_tRNA-Arg-TCT-4-1, 3P_tRNA-Ser-
GCT-6-1, 3a_tRF-Leu-TAG/AAG, 3P_tRNA-Arg-TCG-1-1, and
3b_tRF-Leu-CAA/CGA) (Table S7; Figures 2A and 2B).

Finally, 11 mutual tRDFs in two GEO datasets were identified,
including five upregulated tRDFs—3P_tRNA-Ser-GCT-6-1, 3P_
tRNA-Arg-TCG-1-1, 5a_tRF-Asp-GTC, 3P_tRNA-Arg-TCT-4-1,
and 5a_tRF-Ile-AAT/GAT—and six downregulated tRDFs—5b_tRF-
Tyr-GTA, 5P_tRNA-Gly-TCC-1-1, 5P_tRNA-Gly-TCC-3-1, 5P_
tRNA-Asn-GTT-2-3, 3P_tRNA-Val-TAC-1-1, and 3P_tRNA-SeC-
TCA-1-1 (Figures 2C and 2D). The log2 fold changes of two datasets
can be found in Figure S1E. We also included the genome tracks of
11 tRDFs in Figures S2 and S3. Besides DE tRDFs, three unchanged
tRDFs, 3P_tRNA-Arg-CCT-3-1, 3P_tRNA-Arg-TCG-2-1, and
5P_tRNA-SeC-TCA-1-1, were found overlapped in GEO and TCGA
datasets (Figure S4).

To explore the relationship within these candidate tRDFs, we calcu-
lated pairwise correlations among the expression of 11 tRDFs in
GEO: GSE83527 and GEO: GSE62182 (Figure 2E). Notably, the
expression of two downregulated tRDFs (5P_tRNA-Gly-TCC-1-1
and 5P_tRNA-Asn-GTT-2-3) was remarkably correlated with the
rest of tRDFs (absolute value of correlation coefficients is between
Figure 2. Differentially expressed (DE) tRDFs in tumor and normal samples

(A and B) Heatmap shows the DE tRDFs in two GEO datasets; samples were pairwise

unsupervised clustering. (A) DE tRDFs in GEO: GSE83527 are shown; (B) DE tRDFs in GE

as common DE in GEO: GSE83527 and GSE62182 datasets; p value of each group is

among 11 DE tRDFs as determined by the Pearson correlation analysis. (F and G) AUC

TCGA-LUAD (AUC: 0.905) from random forest model. (H) Boxplot shows the expression

DE tRDFs. (I) AUCs show the diagnostic effect of six tRDFs signatures from five indepen

one tRDF would be removed from previous group in order as 5P_tRNA-Asn-GTT-2-3, 5

GAT, and 5P_tRNA-Gly-TCC-1-1 and finally ends as last two tRDFs.
0.18 and 0.47). We also noticed that the expression of 5ʹ-tRDFs was
not only correlated in the same category but also significantly corre-
lated with 3ʹ-tRDFs. 5P_tRNA-Gly-TCC-1-1 with 3P_tRNA-Val-
TAC-1-1 and 5P_tRNA-Asn-GTT-2-3 was positively correlated,
and the highest correlation coefficient between upregulated tRDFs
5a_tRF-Ile-AAT/GAT and 5a_tRF-Asp-GTC is 0.42. A negative cor-
relation was found between upregulated and downregulated tRDFs,
such as 5P_tRNA-Gly-TCC-1-1 and 3P_tRNA-Arg-TCG-1-1, with
a coefficient of �0.44.

In terms of the GMM-t-SNE cluster result, we decided to take advan-
tage of the machine learning technique, random forest, to investigate
the diagnostic value of the 11 tRDFs on distinguishing the tumor and
normal samples. Two GEO datasets (GEO: GSE83527 and GEO:
GSE62182) that contain pairwise data (N: 128; T: 128) were merged
and used as training datasets; we also included two independent vali-
dation groups from the TCGA-LUAD cohort (N: 46; T: 460) and
GEO: GSE110907 (N: 48; T: 48). Eleven DE tRDFs were used as vari-
ables to build this classification model, with an out-of-bag (OOB)
estimate of error rate at 8.09%. Independent validations on TCGA-
LUAD and GEO: GSE110907 achieved excellent area under the curve
(AUC) (GEO: GSE110907: 0.914; TCGA-LUAD: 0.905) (Figures 2F
and 2G), and all sensitivity, specificity, and accuracy were above
0.80 (Table S7). The results suggest the performance of 11 DE tRDFs
in the random forest model was significantly associated with adeno-
carcinoma and can be used for tumor and normal diagnostic
determination.

In addition, the calculation results of TCGA-LUAD identified 21 DE
tRDFs, including 12 5ʹ-tRDRs and 9 3ʹ-tRDFs (Tables S5–S7). When
comparing the candidates with GEO, six tRDFs (5P_tRNA-Gly-TCC-
1-1, 5a_tRF-Ile-AAT/GAT, 3P_tRNA-Arg-TCG-1-1, 3P_tRNA-
Arg-TCT-4-1, 5P_tRNA-Asn-GTT-2-3, and 5a_tRF-Asp-GTC) in
TCGA-LUAD were found overlapping with 11 DE tRDFs candidates
from the independent validation by random forest models, which was
referred to as a signature to be diagnostic biomarkers (Figure 2H).

We also tested the diagnostic ability of six tRDF signatures with the
same training and validation datasets in five combinations in
descending order from six signatures to two signatures (5a_tRF-Ile-
AAT/GAT and 5P_tRNA-Gly-TCC-1-1); the results exhibited excel-
lent diagnostic value of tRDFs that combined in groups as AUCs
more than 0.87, and sensitivity and specificity are all above 0.77.
The best performance of grouped tRDFs is the combination of
by tumor and normal. Up- and downregulation of DE tRDFs could be separated by

O: GSE62182 are shown. (C and D) Boxplot shows the 11 tRDFs that were identified

less than 0.05. (E) Correlogram shows positive (blue) and negative (red) correlation

s show the independent validation results of GEO: GSE1109067 (AUC: 0.914) and

level of six DE tRDFs in TCGA-LUAD cohort that were found in common from GEO

dent validations. Each validation contains different groups of tRDFs from signatures;

a_tRF-Asp-GTC, 3P_tRNA-Arg-TCG-1-1, 3P_tRNA-Arg-TCT-4-1, 5a_tRF-Ile-AAT/

Molecular Therapy: Oncolytics Vol. 26 September 15 2022 211
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Figure 3. Plasma sample validation in NSCLC patients and healthy donors

TPM expression of six tRDFs 3P_tRNA-Ser-GCT-6-1 (A), 3P_tRNA-Arg-TCG-1-1 (B), 3P_tRNA-SeC-TCA-1-1 (C), 3P_tRNA-Val-TAC-1-1 (D), 5P_tRNA-Asn-GTT-2-3 (E),

and 5b_tRF-Tyr-GTA (F) between tumor and healthy control. *p % 0.05 and **p % 0.01. ns, not significant.
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3P_tRNA-Arg-TCG-1-1, 3P_tRNA-Arg-TCT-4-1, 5a_tRF-Ile-AAT/
GAT, and 5P_tRNA-Gly-TCC-1-1, presenting AUC as 0.91 (Fig-
ure 2I). We then tested the diagnostic value of individual signatures;
however, the identification ability showed lower accuracy compared
with grouped tRDFs. 5a_tRF-Ile-AAT/GAT exhibited best perfor-
mance AUC is 0.786, while 5a_tRF-Asp-GTC has the worst accuracy
among all signature with 0.587 AUC (Figure S1F).

We also evaluated the DE tRDFs between normal and tumor samples
in TCGA-LUSC cohort; 35 DE tRDFs were identified, and six DE
tRDFs were found to exhibit the diagnostic features (Tables S6
and S7).

Identification and validation of tRDFs in lung cancer patient

plasma and NSCLC cell lines

To validate the diagnostic value of 11 tRDF candidates on LUAD pa-
tients, we collected blood samples from 50 patients and 60 healthy
controls and performed small RNA sequencing. After the same up-
stream and downstream analysis, six tRDFs can be identified. We
compared the tRDFs expression level between tumor and healthy
212 Molecular Therapy: Oncolytics Vol. 26 September 15 2022
samples. The results showed that two tRDFs, 3P_tRNA-Arg-TCG-
1-1 and 5P_tRNA-Asn-GTT-2-3, had significant differences between
two groups (Figures 3B and 3E).

No statistical differences can be identified among the rest of the four
tRDFs. However, the expression pattern of tRDF can still be evalu-
ated, as the trend of expression in two types of samples has the
same performance in GEO and TCGA-LUAD. In the group of upre-
gulated tRDFs, the 3P_tRNA-Ser-GCT-6-1 in tumor samples showed
higher expression than the normal sample. On the other hand, three
downregulated tRDFs (3P_tRNA-SeC-TCA-1-1, 3P_tRNA-Val-
TAC-1-1, and 5b_tRF-Tyr-GTA) are all highly expressed in normal
samples.

We also assessed 11 DE tRDFs expression in human lung cancer line
ABC-1 and in a normal lung cell line MRC-9. Stem-loop primer
design for tRDFs referred to the methods of Zhu et al.49 Analysis of
tRDFs expression by real-time quantitative polymerase chain reaction
(qPCR) showed eight of 11 tRDFs, including four upregulated tRDFs
and four downregulated tRDFs, were significantly different between
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Figure 4. Real-time qPCR validation in NSCLC cell lines and normal cell lines

Real-time qPCR analyses of 5b_tRF-Tyr-GTA (A), 5P_tRNA-Asn-GTT-2-3 (B), 3P_tRNA-Val-TAC-1-1 (C), 5P_tRNA-Gly-TCC-1-1 (D), 3P_tRNA-Arg_TCG-1-1 (E), 5a_tRF-

Asp-GTC (F), 5a_tRF-Ile-AAT/GAT (G), and 3P_tRNA-Arg-TCT-4-1 (H). **p % 0.01; ***p % 0.001; **** p % 0.0001.
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tumor and normal cell lines, which was consistent with the
bioinformatics analyses (Figure 4). In this result, six tRDF signatures
(5a_tRF-Ile-AAT/GAT, 5a_tRF-Asp-GTC, 3P_tRNA-Arg-TCG-1-,
3P_tRNA-Arg-TCT-4-1, 5P_tRNA-Gly-TCC-1-1, and 5P_tRNA-
Asn-GTT-2-3) were all identified and validated successfully.

We then conducted TOPO TA cloning to validate the accuracy of the
fragments that were amplified; 9 out of 11 (5a_tRF-Ile-AAT/GAT,
5a_tRF-Asp-GTC, 3P_tRNA-Ser-GCT-6-1, 3P_tRNA-Arg-TCG-1-
1, 3P_tRNA-Arg-TCT-4-1, 5b_tRF-Tyr-GTA, 5P_tRNA-Gly-TCC-
1-1, 5P_tRNA-Asn-GTT-2-3, and 3P_tRNA-Val-TAC-1-1) can be
found by Sanger sequencing as well as one non-changed tRDF
3P_tRNA-Arg-CCT-3-1 also identified (Figure S5). Primer informa-
tion can be found in Table S17.

The distinct prognostic pattern of tRDFs associated with cancer

stages

To investigate the prognostic patterns of tRDFs, 506 patients in
TCGA-LUAD and 470 patients in TCGA-LUSC were included in
our calculation, and 52 tRDFs were put into analysis after filtering
out low expression from TCGA cohorts. The clinical information of
each cohort was shown in Table S1. We characterized data according
to tumor stages by combining stages I and II into an early stage and
merging stages III and IV as a later stage.

In the TCGA-LUAD cohort, univariate Cox regression showed that
3P_tRNA-Arg-CCT-3-1, 5P_tRNA-Ala-TGC-3-1, and 3P_tRNA-
SeC-TCA-1-1 correlated with LUAD prognosis in all four stages
(Figures S6A–S6C), which exhibited statistically significant differ-
ences. High expression of 3P_tRNA-SeC-TCA-1-1 was associated
with longer survival time in LUAD patients, while shorter survival
times were found in high expression of 3P_tRNA-Arg-CCT-3-1
and 5P_tRNA-Ala-TGC-3-1 in LUAD patients.

5P_tRNA-Ala-TGC-3-1, 3P_tRNA-Ser-TGA-1-1, and 3b_tRF-Leu-
CCA/CGA were identified as significant tRDFs in early stages
(Figures S7A–S7C), while 5P_tRNA-SeC-TCA-1-1, 5P_tRNA-Phe-
GAA-1-5, 5P_tRNA-Arg-CCG-2-1, and 5c_tRF-Pro-AGG/TGG
were the four tRDFs dramatically correlated with patient prognosis
in later stages (Figures S7F–S7I).

In the TCGA-LUSC cohort, 5P_tRNA-Asn-GTT-2-3, 3b_tRF-Leu-
CCA/CGA, 3P_tRNA-Ser-GCT-6-1, 3a_tRF-Ala-CGC/TGC, and
3P_tRNA-Arg-CCG-1-3 were found significantly correlated with
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patient survival across four stages (Figures S8A–S8E). In early
stages, 5P_tRNA-Asn-GTT-2-3, 5P_tRNA-Gly-TCC-3-1, 3b_tRF-
Leu-CCA/CGA, 3P_tRNA-Arg-CCG-1-3, 3P_tRNA-Ser-GCT-6-1,
and 3a_tRF-Ala-CGC/TGCwere found to affect the survival prognosis
(Figures S9A–S9F). 5P_tRNA-Asn-GTT-1-1 and 5P_tRNA-SeC-
TCA-1-1 are two significant tRDFs in later stages (Figures S9I and S9J).

The risk score model was constructed based on DE tRDFs to quantify
the prognosis prediction effect in each group. To evaluate the clinical
relevance of risk score, we divided the score into high- and low-risk
group by a cutoff value that was decided by the Survminer package.
Patients with low risk scores demonstrated a prominent survival
benefit. To examine whether the risk score could serve as an indepen-
dent prognostic factor, we performed multivariate Cox regression
analysis, including patient age, smoking status, sex, and pathologic_t.
We found that risk score was a robust and independent prognostic
biomarker for predicting and evaluating patient clinical survival in
NSCLC (Figures S6D, S6E, S7D, S7E, S7J, S7K, S8F, S9G, S9H, S9K,
and S9L). Consistent with these findings, the multivariate Cox regres-
sion analysis showed that the low-risk score group had a better overall
clinical outcome than the high-risk score group. These results imply
that the risk score reflects the tRDF expression patterns and predicts
the prognosis of NSCLC patients. All information about univariate
Cox regression models can be found in Table S8.

Except for the survival analysis based on 52 tRDFs by stages and sub-
types, we also did the analysis based on tRDFs signatures with specific
endpoints.We categorized the survival time into severalmonth periods,
such as 6 months, 12 months, 24 months, 36 months, 48 months, and
60months. 5a_tRF-Ile-AAT/GAT showed a comprehensive prognostic
association on the endpoint of 48months amongpatients fromall stages
and early stages (Figures 5A and 5C). Moreover, low expression of
5a_tRF-Ile-AAT/GAT had a significantly better prognostic value with
survival time ending at 36 months and 24 months among early-stages
patients (Figures 5D and 5E). High expression of 3P_tRNA-Arg-
TCT-4-1 was identified to associate with unfavorable survival outcome
within 12 months among all-stage patients as well as 12 and 6 months
from early-stages patients (Figures 5B, 5G, and 5H). Among advanced-
stages patients, 5a_tRF-Asp-GTC was associated with 48 months and
6 months survival time (Figures S10A and S10D). 5P_tRNA-Asn-
GTT-2-3 and 3P_tRNA-Arg-TCG-1-1 had prognostic link with pa-
tients within 36 months and 12 months (Figures S10B and S10C).

tRDFs involved in transcriptional and post-transcriptional

regulation

To further investigate tRDFs in transcriptional and post-transcrip-
tional events, we computed positive and negative tRDF-miRNA Pear-
Figure 5. Prognostic value of tRDF signatures

(A and B) Kaplan-Meier curves show 48 months and 12 months survival between high

from the TCGA-LUAD cohort; all stages are included. The group of TCGA-LUAD samp

considered statistically significant. (C–H) Kaplan-Meier curve shows prognostic relation f

48 months (C), 36 months (D), 24 months (E), 5a_tRF-Asp-GTC (F), and 3P_tRNA-Arg-T

was considered statistically significant.
son correlation coefficient using TCGA-LUAD tumor data and
expression of 52 tRDFs received after removing near-zero variables;
the sequence information of 52 tRDFs can be found in Table S9.
We then separated 52 tRDFs into 5ʹ-tRDFs and 3ʹ-tRDFs for
correlation analysis with the selection standard as |Pearson correla-
tion| R 0.2 and p < 0.05.

Our results showed 69 miRNAs correlated with 5ʹ-tRDFs, including
63 miRNAs that were positively correlated with 15 5ʹ-tRDFs and 23
miRNAs that were negatively correlated with six 5ʹ-tRDFs. has-let-
7a-5p had the most correlation with 5ʹ-tRDFs, and has-miR-30c-5P
had the greatest link with 3ʹ-tRDFs. 5a_tRF-Asp-GTC had the most
correlation with miRNAs among 5ʹ-tRDFs. It also showed the most
significant coefficient as 0.51 with hsa-miR-145-5p, and it was nega-
tively correlated with hsa-let-7a-5p. 5b_tRF-Tyr-GTA exhibited the
second highest correlation and negatively correlated with hsa-miR-
26b-3p and hsa-miR-199b-5p. Eighty-eight miRNAs were positively
correlated with 17 3ʹ-tRDFs, and 30 miRNAs were negatively corre-
lated with six 3ʹ-tRDFs. 3P_tRNA-Arg-CCG-1-3 and 3P_tRNA-
Thr-AGT-1-1 had the most positive correlation and negative correla-
tion in 3ʹ-tRDFs, respectively (Table S10; Figures S11A and S11B).

Next, we performed the correlation analysis between miRNA and
tRDF signatures (5P_tRNA-Gly-TCC-1-1, 5a_tRF-Ile-AAT/GAT,
3P_tRNA-Arg-TCG-1-1, 3P_tRNA-Arg-TCT-4-1, 5P_tRNA-Asn-
GTT-2-3, and 5a_tRF-Asp-GTC). We had tRDF-miRNA pairs with
the same selection standard, finding 60 miRNAs correlated with six
target tRDFs. Fifty-nine out of sixty miRNAs were positively corre-
lated with six target tRDFs, while 8 out of 60 miRNAs were negatively
correlated. 5a_tRF-Asp-GTC dominated the most correlations with
miRNAs (Figure S11C).

The miRNA-targeted genes were significantly correlated with phos-
phatidylinositol 3-kinase (PI3K)-Akt, mitogen-activated protein ki-
nase (MAPK), endocytosis, Ras, and other signaling pathways (Fig-
ure S11D). Fifty-seven out of sixty miRNA target genes were
enriched in PI3K-Akt, 56 out of 60miRNA target genes were enriched
inMAPK and endocytosis, and 55 out of 60 miRNA target genes were
enriched in Ras signaling pathway.

The molecular function from Gene Ontology (GO) enrichment indi-
cated miRNA target genes were mostly shown in small protein serine
and threonine kinase activity, guanosine triphosphatase (GTPase)
binding, Ras GTPase binding, and transcription coregulator activity
(Figure S11E). The biological processed enrichment showed a high
gene ratio in axonogenesis and cell morphogenesis and positive regu-
lation of neurogenesis (Figure S11F).
(red) and low expression (blue) in 5a_tRF-Ile-AAT/GAT and 3P_tRNA-Arg-TCT-4-1

les is shown at the bottom of the chart. p < 0.05 in the two-sided log rank test was

rom early-stages patients in three signatures. 5a_tRF-Ile-AAT/GAT related survival in

CT-4-1 (G and H) in 12 months and 6months. p < 0.05 in the two-sided log rank test
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Functional analysis of tRDFs

To investigate the implicational biological function of tRDFs in
LUAD, we examined the correlation between tRDFs and mRNA
based on the TPM expression profile in the TCGA-LUAD cohort. Af-
ter filtering out low counts exclusive in TCGA-LUAD, 52 tRDFs
remain. tRDF-mRNA pairs were selected with |Pearson correlation|
R 0.2 and FDR < 0.05. 3ʹ-tRDF showed more frequent correlations
than 5ʹ-tRDFs in a comparison of 6,219 genes versus 1,607 genes.

3P_tRNA-Thr-AGT-1-1 and 3a_tRF-Thr-TGT are two 3ʹ-tRDFs that
correlated genes the most as 1,259 and 1,385 genes, respectively.
3P_tRNA-Arg-TCT-4-1 and 3P_tRNA-Ser-GCT-6-1, two of the six
tRDFs signatures, were the second most downstream sequences
that linked with over 600 genes. Among downstream sequences,
3P_tRNA-Arg-ACG-2-3 performed remarkable correlation with
several genes, such as OR10G1P (R = 0.700), RAPGEF4-AS1 (R =
0.697), and C3P1(R = 0.620). 3a_tRF-Leu-TAG/AAG was identified
as the most positive correlation with FAM50B (R = 0.700),
MIR4503 (R = 0.626), and SLC10A6 (R = 0.467) among all 3ʹ-tRFs
(Table S11).

5P_tRNA-Thr-CGT-4-1 and 5c_tRF-Pro-AGG/TGG were identified
to be correlated with most genes among tRDFs in 5P and 5-tRF.
5P_tRNA-Thr-CGT-4-1 also showed highly positive correlation
with genes like TNMD (R = 0.580), OR5BN2P (R = 0.569), and
RNU7-164P (R = 0.569). 5c_tRF-Pro-AGG/TGG has significant asso-
ciation with histone coding genes, such as H3C12 (R = 0.423),H3C13
(R = 0.410), and H4C13 (R = 0.378) (Table S11).

We calculated the fold changes of 5,815 genes that were identified to
be correlated with tRDFs in TCGA-LUAD cohort, including 497 tu-
mor samples and 56 healthy samples. Our selection standard of DE
genes was FDR < 0.05 and abs log2 fold change > 1. Among all genes
that correlated with tRDFs, 1,806 genes were statistically significan-
tincluding 1560 upregulated genes, and 246 downregulated genes
(Figure 6A).

We performed gene set enrichment analysis (GSEA) and found that
tRDF-correlated genes are mainly enriched in regulation of gene
silencing, regulation of post-transcriptional gene silencing, and nega-
tive regulation of gene expression in epigenetic. Protein-macromole-
cule adaptor activity, oxygen carrier activity, and globin binding are
several probable molecular functions of correlated genes. And these
genes were mostly identified in mitochondrial protein complex,
nuclear nucleosome, hemoglobin complex, and the other cellular
component (Figures S12A–S12C).

After comparing the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis results from tRDFs-correated miRNA
target genes, 13 signaling pathways were found in common from
the enriched genes that correlated with tRDFs, and proteoglycans
in cancer, endocytosis, T cell receptor signaling pathway, and tran-
scriptional mis-regulation in cancer and cell cycle are the top five
pathways (Figure 6B). To further assess the functional role of tRDF
216 Molecular Therapy: Oncolytics Vol. 26 September 15 2022
signatures (5P_tRNA-Gly-TCC-1-1, 5a_tRF-Ile-AAT/GAT, 3P_
tRNA-Arg-TCG-1-1, 3P_tRNA-Arg-TCT-4-1, 5P_tRNA-Asn-GTT-
2-3, and 5a_tRF-Asp-GTC), we expanded the selection criteria as |
Pearson correlation| R 0.15. After filtering out the genes that were
not DE, correlation results in six tRDF signatures exhibited that up-
regulated tRDFs being associated with abundant positive correlations
involving 630 DE genes (Figure S12D), an obvious comparison of
connection from two downregulated tRDFs that merely correlated
with 50 genes (Figure S12E); finally, 657 genes in total correlated
with six tRDF signatures (Table S12). In terms of GO enrichment
analysis of correlated genes, upregulated tRDF signatures were mostly
found in the biological processes, such as mitotic nuclear division,
chromosome segregation, and nuclear division. Downregulated
tRDF signatures were identified to be correlated in positive regulation
of endothelial and epithelial cell migration and synaptic vesicle recy-
cling (Figures S12F and S12G).

To determine the genetic alterations among these correlated genes, we
assessed the prevalence of somatic mutations among 657 genes. Out
of 464 LUAD samples, 344 (74.14%) had mutations of genes that
correlated with six tRDF signatures (Figure 6C). Out of 303 genes
were identified with mutations, ASPM has the highest rate (15%), fol-
lowed byMYH8 andMAGEC1 (Table S13). KEGG enrichment anal-
ysis of 303 genes are significantly enriched in the cell cycle, oocyte
meiosis, progesterone-mediated oocyte maturation, DNA replication,
p53 signaling pathway, and cellular senescence (Figure 6D). Thirty-
one genes with mutations were found among six signaling pathways
(Figure 6E). These genes are correlating with 3P_tRNA-Arg-TCT-4-
1, 3P_tRNA-Arg-TCG-1-1, and 5a_tRF-Ile-AAT/GAT. Copy num-
ber variation (CNV) results were based on 25 genes with topmutation
frequency. CDKN2A with highest mutation frequency also showed
higher CNV loss and was identified in cell cycle, p53, and cellular
senescence signaling pathway, which correlated with 3P_tRNA-
Arg-TCT-4-1. TTK is the second gene with higher mutation fre-
quency that correlated with 3P_tRNA-Arg-TCT-4-1 and 5a_tRF-
Ile-AAT/GAT in cell cycle (Table S14; Figure S12H).

tRDFs expression pattern associated with immune infiltration

and tumor microenvironment

Currently, no studies have conducted association between tRDFs
and TME-infiltrating immune cells; therefore, we used CIBSORT
methods to further understand the functional role of tRDFs in
TME-infiltrating immune cells. Thirty-five tRDFs were associated
with tumor immune microenvironment (TIME) cell infiltration,
with correlation coefficient over 0.1 or less than �0.1. For example,
5P_tRNA-Thr-CGT-4-1 correlated with dendritic cells activated
(R = 0.29), 3b_tRF-Leu-CCA/CGA correlated with T cells follicular
helper (R = 0.24), and 5b_tRF-Tyr-GTA (R = 0.20) linked with
T cells CD4 memory activated. T cells CD4 memory activated had
the most link with tRDFs (Table S15).

Differences in TIME cell infiltration between two types of tRDFs were
also analyzed; 14 immune cells were found in common between two
types of tRDFs. We noticed 5ʹ-tRDFs were strongly positively
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Figure 6. tRDFs-correlated genes enrichment analysis

(A) Volcano plot showed 5,782 genes that correlated with 52 tRDFs; FDR < 0.05 and log2 fold change > 1 on the two sides were considered as statistically significant. (B)

Thirteen KEGG pathways from GSEA that were identified common in the signaling pathways that miRNA target genes enriched in are shown. (C) The mutation frequency of

top 25 genes from 653 DE-correlated candidate genes in 464 LUAD patients from the TCGA cohort; each column represents individual patients. The number on the right

indicates the mutation frequency in each correlated gene. The right bar shows the proportion of each variant type, and the stacked bar graph below exhibited the fraction of

conversions in each patient. (D) The six signaling pathways enriched from 657 genes that were correlated with six tRDF signatures are shown. (E) The network presents 31

gene targets in six signaling pathways with mutation frequency that correlated with three tRDF signatures.
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correlated with T cells CD8 and T cells CD4 memory activated. Both
5ʹ-tRDFs and 3ʹ-tRDFs had a positive link with dendritic cells resting
(Figure 7A). Three 5ʹ-tRDFs had negative association with neutro-
phils, while 3P_tRNA-Arg-CCG-1-3 had positive correlation. Four
3ʹ-tRDFs were positively correlated with macrophages M0. In
order to explore any prognostic value of tRDFs that combined with
immune infiltration, we conducted survival analysis based on prog-
nostic related tRDFs we analyzed by all stages, early stages, and
advanced stages from TCGA-LUAD cohorts (3P_tRNA-Arg-CCT-
3-1, 3P_tRNA-SeC-TCA-1-1, 5P_tRNA-Ala-TGC-3-1, 3b_tRF-
Leu-CCA/CGA, 3P_tRNA-Ser-TGA-1-1, 5P_tRNA-Phe-GAA-1-5,
5c_tRF-Pro-AGG/TGG, and 5P_tRNA-Arg-CCG-2-1). Thirteen
types of immune cells were found to be correlated with all tRDFs
except 5c_tRF-Pro-AGG/TGG (Figure S13A). Survival analysis was
based on all-stage patients among 13 immune cells, and only the
plasma cell that correlated with 3P_tRNA-Arg-CCT-3-1 (R = �0.1)
was identified to be significantly related to overall survival
(Figure 7B).

We also characterized the functional role of tRDFs that highly corre-
lated with immune-infiltration-related genes. We identified 100 im-
mune-related genes from LM22 that were correlated with 30 tRDFs
(Figure S13B). The enrichment analysis results presented that these
genes were enriched in biological processes, particularly those related
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Figure 7. Immune infiltration and tumor microenvironment correlated with tRDFs

(A) Bar plot shows the correlation between tRDFs and TIME cell infiltration evaluated by Pearson correlation. The length of column indicates the correlation; immune cells were

selected from the mutual correlation with 5ʹ-tRDFs and 3ʹ-tRDFs. (B) Kaplan-Meier curves show overall survival of plasma cells that correlated with prognostic tRDFs. Red

(legend continued on next page)
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to B cell proliferation, activating cell surface receptor signaling
pathway, and activating signal transduction (Figure S13C). Immune
receptor activity, cytokine activity, and signaling receptor activator
activity are specific immune-related genes that enriched in molecular
function (Figure S13D).

According to the results of KEGG pathway enrichment, there are 20
tRDF-correlated genes identified to be enriched in signaling path-
ways, such as cytokine-cytokine receptor interaction, chemokine
signaling pathway, and T cell receptor signaling pathway (Figure 7C).
Only one tRDF signature was detected among 20 tRDFs: 3P_tRNA-
Arg-TCT-4-1 is identified as targeting in cytokine-cytokine receptor
interaction, viral protein interaction with cytokine-cytokine receptor,
and chemokine signaling pathway. Besides the signature, we also
noticed three tRDFs, tRNA-Ala-TGC-3-1, tRNA-Arg-CCG-2-1,
and 3b_tRF-Leu-CCA/CGA, that demonstrated association with
prognosis were enriched in some immune-related signaling path-
ways. For example, tRNA-Ala-TGC-3-1, identified as correlated
with all-stage and early-stage patient survival outcome in LUAD co-
horts, was correlated in T cell receptor signaling pathway, which may
indicate some links of tRDFs prognosis with possible immune
therapy.

We finally conducted correlation analysis based on four immune
checkpoints: CD274 (PD-L1), CD80, CD86, and CTLA4. The corre-
lation with 10 tRDFs was identified (Figure 7D). 5P_tRNA-Gln-TTG-
1-1 had the most negative correlation with three checkpoints,
including CTLA4, CD80, and CD86. 5a_tRF-Cys-GCA, 3P_tRNA-
Ser-GCT-6-1, 3P_tRNA-Thr-CGT-4-1, 3P_tRNA-Arg-TCT-4-1,
and 5P_tRNA-Trp-CCA-3-3 were five tRDFs that correlated with
CD274.

Figure S13E showed the correlation network of tRDFs and correlated
gene in the signaling pathway of PD-L1 expression and PD-1 check-
point pathways in cancer that was enriched by GSEA. Three tRDFs,
including 3P_tRNA-Ser-GCT-6-1, 3P_tRNA-Thr-CGT-4-1, and
3P_tRNA-Arg-TCT-4-1, were correlated with genes that target in
this pathway (R = 0.200), which were also commonly associated
with PD-L1 checkpoint.

DISCUSSION
tRDFs are generally named in terms of the cleavage positions on the
pre- and mature tRNAs and can be roughly classified into four cate-
gories. We have tRNA fragments from both D-loop and T-loop as
well as up- and downstream sequences and classified them based
on sequence location from 5ʹ or 3ʹ. In terms of some publications,
tRNA fragments derived from D-loop can be further classified into
three subtypes based on their incision loci and lengths—tRDF-5a
color indicates the high abundance of plasma cells, and blue color indicates the low a

signaling pathways in TCGA-LUAD cohort, including primary immunodeficiency, viral p

interaction, hematopoietic cell lineage, T cell receptor signaling pathway, and the othe

immune checkpoint CD274 (PD-L1), CTLA4, CD80, and CD86.
(14–16 nt), tRDFs-5b (22–24 nt), and tRDFs-5c (28–30 nt)7,52,53—
but there has been no identification about the fragment from up-
stream sequences, and we are the first to include type of fragment
into a comprehensive landscape of NSCLC study.

Due to the abundant types of 5P tRNA and prominent expression
level, it is necessary to emphasize the importance of this study. We
are also the first to bring all tRNA-derived fragments together in
coupled names, eight pairs of tRDF we identified to share the same
biogenesis. For example, tRFdb-5010a and ts-67 are 5a-tRF and
downstream sequences named in two tRDFs databases; however,
they are both derived from tRNA 5a-tRF-Ile-AAT-2-1 but different
sections. Unified names like 5a-tRF-Ile-AAT and 3P_tRNA-Ile-
AAT-2-1 made it much more convenient to identify each tRDF,
not only about its section but also length. Unfortunately, no strong
correlation was detected between these pairs, which indicates the
cleavage by different enzymes resulted into independent biological
processes.8

In this study, 11 tRDFs were screened out from two GEO datasets,
and two independent validations confirmed the capacity of 11 tRDFs
to be used as a diagnostic biomarker in terms of high accuracy and
AUC. In the comparison of DE tRDFs we obtained from a different
data platform, six tRDFs named as signatures were found in overlap
with 11 tRDFs from TCGA-LUAD; the disparities may be due to the
bias from study design, sample, sequencing, and different platforms.
Also, the independent validation of tRDF signatures showed high
accuracy in diagnosis prediction, but not as well as individual tRDF
prediction, which indicates the necessity of combination of tRDF sig-
natures in terms of better diagnosis results.

Sequencing results of plasma validated the potential diagnostic value
of 11 tRDF candidates and two tRDFs (3P_tRNA-Arg-TCG-1-1 and
5P_tRNA-Asn-GTT-2-3) that were shown statistically different be-
tween normal and tumor samples. The reasoning may stem from
quality disparities of blood samples compared with tissue samples
from TCGA and GEO. However, the trending of fold changes in
the rest of tRDFs proved the consistency with expression pattern
we found in our analysis. Currently, most samples in study came
from human tissue in which tRDFs can be much easier detected.
Increasing numbers of abnormal tRDF expressions have been discov-
ered in bodily fluids in cancers,46,54 and clinical attention of non-inva-
sive, biofluid-based markers for cancer is emerging. The limitation of
clinical and pathological methods makes it essential to find accurate
diagnosis for early-stage patients.8 Also, sample type variety can
strengthen and solidify the conclusion, and combination of plasma
and tissue can contribute to better understanding of tRDFs in cancer
research.
bundance of plasma cells. (C) Network shows the tRDF-targeted immune-related

rotein interaction with cytokine and cytokine receptor, cytokine-cytokine receptor

r signaling pathway. IgA, immunoglobulin A. (D) The correlation between tRDF with
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We also identified the 11 tRDFs candidates in NSCLC cell lines
through real-time qPCR validation combined with TOPO TA cloning
experiment. The real-time qPCR results confirmed the consistency of
the diagnosis value of tRDFs we got from bioinformatic analysis. Four
upregulated and two downregulated tRDF signatures were found to
be significantly expressed between NSCLC cell lines and normal
cell lines. In order to validate the fragments we amplified through
qPCR, we used the TOPO TA cloning to assist the Sanger sequencing
of tRDFs due to the short length of tRDFs. Finally, 9 out of 11 ampli-
fied tRDFs can be detected by Sanger sequencing as well as one un-
changed tRDF. The validation experiment provided solid and robust
evidence of the existence and accuracy of the tRDFs we analyzed
through bioinformatics analyses.

Survival-related tRDFs play an indispensable role in clinical outcome
prediction in NSCLC, and the 5-year survival rates of early-stage
NSCLC showed demonstrably better outcomes than advanced stage.
Here, we revealed a systematic survival analysis by focusing on stages
as well as subtypes. Different groups of tRDFs were identified and
validated as independent factors related with survival time, suggesting
the tRDFs are associated with development of cancers. 3P_tRNA-
SeC-TCA-1-1 shown with diagnostic value is also identified as an in-
dependent prognostic biomarker when predicting patient’s clinical
outcome of all stages and advanced stages in LUAD cohort. In com-
parison of LUAD cohort, LUSC cohort showed different prognostic
patterns with different significant tRDFs associated with stages. We
also included a survival analysis based on the certain endpoints of
follow-up time in 6–60 months; 5a_tRF-Ile-AAT/GAT exhibited
excellent prognostic value in both early stages and all stages.
3P_tRNA-Arg-TCT-4-1 was identified to be sensitive in early
following days, which was within 1 year.

We identified the correlated miRNA and the target genes enriched in
signaling pathways, such as PI3K-Akt, MAPK, endocytosis, and Ras.
In comparison with the correlation analysis between tRDFs-mRNA
and tRDFs-miRNA, endocytosis signaling pathway is enriched in
both association analyses. hsa-miR-145-5p has been reported many
times as a suppressor that targets various tumor-specific genes and
proteins in different cancers and was found strongly correlated with
one of our signatures, 5a_tRF-Asp-GTC. Moreover, significant tRDFs
were identified as affecting axonogenesis, cell morphogenesis, and
positive regulation of neurogenesis by mediating the differential
expression of miRNA. Nerves were not considered an important fac-
tor for tumor progression while emerging evidence of underlying
axonogenesis was simulated by the release of neurotrophic growth
factors from cancer cells.55,56 In aggressive tumors, axonogenesis is
identified as a characteristic showing that nerve-growth-factor-
induced cholinergic innervation may potentially simulate colorectal
cancer. For example, cholinergic signaling can induce nerve growth
factor (NGF) secretion to drive tumor axonogenesis in gastric can-
cer.56 As for the significantly activated biological processes enriched
in tRDF-correlated miRNAs, the link between the aggressive tumor
and neurogenetic gene expression can be further clarified in future
studies.
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Our study identified differences in functional enrichment of 52
tRDFs and six signature tRDFs. Both GSEA and GO enrichment
suggested that tRDF-correlated mRNAs were identified to affect
cell cycle, oocyte meiosis, and other signaling pathways.
3P_tRNA-Arg-TCT-4-1 performed with the most correlation tRDFs
in cell-cycle-signaling pathway both among 52 tRDFs and tRDF sig-
natures. Biological function, such as RNA silencing, translation
regulation, and epigenetic regulation, has been addressed many
times in publications. Cell cycle and oocyte meiosis are two path-
ways that could be identified from mRNA/miRNA/tRDF signatures.
5a_tRF-Ile-AAT/GAT was identified as having high expression in
tumor tissue and was one of the tRDFs in signatures. The study
from Sun et al.57 has proven the abundance of 5a_tRF-Ile-AAT/
GAT in vitro in lung cancer and can regulate the cell cycle. The
oocyte meiosis associated with tRDFs may result in some embryo-
specific defects.

In addition, we found in both correlation analyses with miRNA and
mRNA that 3ʹ-tRDFs were more strongly correlated with miRNA or
mRNA than 5ʹ-tRDFs. There are 13 signaling pathways in common
from miRNA and mRNA KEGG results, such as cell cycle and tran-
scriptional mis-regulation of cancer, which indicated the potential
regulation roles of tRDFs that participate in tumorigenesis. Mutation
analysis based on each correlated gene also revealed several potential
tRDF targets in six signaling pathways. We identified 31 genes with
mutations that correlated with the six tRDF signatures; CDKN2A
with mutation, which is the most correlated gene with tRDF signature
3P_tRNA-Arg-TCT-4-1, has been already most identified in LUAD
among all types of cancers.58 It can be involved in the inactivation
mechanism in NSCLC;59 another publication revealed the loss of
function of CDKN2A also negatively impacts clinical outcome in
advanced NSCLC treated with immune checkpoint blockade.60 The
further mechanisms in which CDKN2A participated that are corre-
lated with tRDFs need to be investigated.

Immune regulation of tRDFs has been an emerging target in recent
years, and tRDFs can be found both in hematopoietic and lymphoid
tissue as well as the blood circulation system.61 Previous studies found
that a rapid increase of tRDFs during the acute inflammation stage
probably involves immune responses.62 Given the current knowledge
regarding tRDFs and tumor-infiltrating immune cells, we established
a framework to identify potential tRDFs infiltrating immune cells in
TIMEs, which provide a new perspective on cancer immunity. Based
on the integrative analysis of non-coding transcriptome and immu-
nogenomics profile, both types of tRDF were found to be strongly
correlated with the infiltrating levels of 14 immune cell types. Enrich-
ment analysis results showed 30 tRDFs that correlated with immune-
related genes and also correlated with T cell CD4 memory activated,
resting, CD8, etc.; combined with T-cell-receptor-signaling-pathway-
enriched result, tRDFs do perform as a potential role in immune
modulation. Several tRDFs were also assessed as potential immune
checkpoint targets to help the immune therapy. Overall, we identified
the impact of tRDF expression on immune-related biological pro-
cesses and signaling pathway in the TIME and provided a potential
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target and therapeutic value for immune treatment by tRDF-medi-
ated cancer immunity in NSCLC.

We also have some limitations in this study. Even though we included
five datasets, only TCGA-LUAD/LUSC contain follow-up time, so we
just did the prognosis analysis based on these two cohorts. Also, we
merely analyzed the mRNA expression from TCGA-LUAD, as no
more mRNA expression profiles available associated with small
RNA sequencing (RNA-seq) from GEO. We also did not include
5ʹ-tiRNA and 3ʹ-tiRNA due to the length differences from the other
four subtypes.

Conclusion

Our systematically integrated analysis of four types of tRDFs revealed
novel expression patterns in NSCLC, as well as their diagnostic value
for cancer patients. We also comprehensively investigated their rela-
tionship with prognosis by stages and subtypes, and several tRDFs
candidates have been identified and had a risk score established as in-
dependent risk factor to predict survival outcome. Functional analysis
also exhibited tRDF-target genes and signaling pathways that show
how the biological role tRDFs regulate in lung cancer. tRDFs were
also found to participate in transcriptional and post-transcriptional
events that related to cancerous pathways. tRDFs also take a role in
immune infiltration and affect TIME. This work highlights the crucial
clinical implications of tRDFs and helps provide new perspectives on
therapeutic strategies for NSCLC patients.

MATERIALS AND METHODS
Data collection and upstream analysis

Public gene expression data and complete clinical annotation from
the same sequencing platform were retrieved in the TCGA database
and GEO. mRNA expression (FPKM), isoacceptor (read per million
mapped reads [RPM]) expression, and clinical data, including tumor
stage, pathologic stage, histology subtype, sex, age, smoking history,
treatment, and follow-up days, were obtained from the TCGA
database, which can be used for further analysis. The fastq raw
data from small RNA-seq, including three GEO non-small cell
adenocarcinoma cancer cohorts (GEO: GSE83527, GSE62182, and
GSE110907) and the TCGA-LUAD/LUSC cohort were downloaded
by fastq-dump. The data information is summarized in Table S1.

All data were processed by trim galore and fastp for adapters trim-
ming. Customized annotation tRDF GTF files were referred from
trfexplorer (https://trfexplorer.cloud/)51 and complied with the refer-
ence human genome hg38. This contains over 1,500 tRDFs, and all
tRFs can be classified into four subtypes: upstream sequences, 5ʹ-
tRF, 3ʹ-tRF, and downstream sequence/1ʹ-tRF. The tRDFs come
from GtRNAdb (http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsap
i38/Hsapi38-gene-list.html),63 tRFdb (http://genome.bioch.virginia.
edu/trfdb/index.php),50 and precursor fragment from 3ʹ of tRNA.31

We used Tophat2 to take control of the annotation file to label tRDFs
on hg38 and used bowtie2 to perform the alignment. HTSeq was used
to get the read counts quantification of tRDFs, and raw counts were
normalized into two different normalization methods: TPM and
RPM. FPKM was transformed into TPM. All these procedures were
done in the Linux environment.

Removing batch effect and cohort clustering

The “ComBat” algorithm of sva package and “limma” package were
used to correct the batch effect caused by non-biotechnological
bias.64,65 t-SNE was used to perform dimensionality reduction and
embedding the data into a low-dimensional space. Standard clus-
tering algorithm k-means from Gaussian mixture models was used
on TPM data from four cohorts on this embedding to get clusters.
Different clusters were set into training and validation group for
further analysis. tRDFs were filtered out through identification of
near zero variance predictors (nearZeroVar) in R package “carat.”

DE tRDFs identification and machine-learning selection

To identify sample-type-related DE tRDFs, the read counts and TPM
data were calculated by the Deseq266 and “limma” packages to
analyze the DE tRDFs between normal and tumor samples. DE tRDFs
were chosen by FDR < 0.05 and |log2fold change| > 0.58. Machine
learning methods by random forest were used as a diagnostic model
in training and independent validation group with various feature se-
lections, including “tumor,” “normal,” “mean decrease Gini,” “mean
decrease accuracy,” and “node size.” Receiver operating characteristic
(ROC) analysis was performed to determine AUC from the indepen-
dent validation group.

Survival analysis

Follow-up time in TCGA LUAD/LUSC cohorts ranged from days to
death and days to last follow-up. Tumor stage, pathologic stage, his-
tology subtype, sex, age, smoking history, treatment, and vital status
were included. TPM normalized data were used for analysis. After
removing tRDFs with low expression, we applied univariate Cox
regression analysis to identify the tRDFs that significantly correlated
with patient survival and considered p < 0.05 as statistical signifi-
cance. We also divided patients into three different groups based
on tumor stages: all stages, early stages (stage I and stage II), and later
stages (stage III and stage IV). Kaplan-Meier curve and log rank test
were used to determine the significance of the difference.

The construction of scoring system was based on the prognostic value
of each tRDF signature score, as we applied risk score calculation
based on univariate Cox model Progscore = (beta � Exp). We then
combined age, smoking, sex, pathologic_t, and risk score as variables
to perform multivariate Cox regression model analysis. All statistical
analysis was two sided, and a p < 0.05 was considered as statistically
significant.

Correlations and functional enrichment

We computed positive and negative tRDF-mRNA and tRDF-isoac-
ceptors Pearson correlation coefficient and Pearson correlation coef-
ficient using only tumor datasets in TCGA for TCGA-LUAD cohort.
Pearson correlation > |0.2| or Pearson correlation > |0.15| and
FDR < 0.05 were selection standards. Correlated genes log2 fold
changes were calculated. The GSEA and DOSE and clusterProfiler
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R package were used for enrichment analysis and functional annota-
tion of highly correlated mRNAs and miRNAs.67–69 “org.hs.eg.db”
was used as annotation to carry out enrichment analysis of GO and
KEGG in gene set. Mutation frequency was obtained from R package
maftools. Network visualizations were performed by Cytoscape.

Calculation of TIME cell invasion abundance

We used CIBERSORT algorithm (https://cibersort.stanford.edu/) to
quantify the relative abundance of 22 types of immune cells in
TCGA-LUAD tRDF-mRNA correlation coefficient results with the
following parameters: the input mixture matrix is our gene expression
matrix, the input of gene signature reference for 22 immune cell types
fromNewman et al.,70 1,000 times for permutation test, and RNA-seq
data with quantile normalization. Pearson correlations were used to
compute tRDFs with TIME cell invasion abundance results, Pearson
correlation coefficient > |0.1|, and p < 0.05 as selection standard. We
screened out all the immune cells that correlated with tRDFs, which
showed prognostic value among all stages and conducted survival
analysis. All downstream analyses were performed in R studio 4.0.0.

Plasma sample collection

Plasma was obtained from the Rush University and the Lung Cancer
Biospecimen Resource Network (LCBRN). All blood samples were
collected using EDTA-blood tubes. Plasma was purified by centri-
fuging at 1,500g for 15 min. Adenocarcinoma subjects were grouped
into five pools to make all pools statistically identical. Each pool
involved 10 white subjects with early-stage cancers ranging from 1a
to 2a, including two males and eight females. The average age of sub-
jects in each group was 70.2 years old, and the average tumor size was
19.4 mm. Kruskal-Wallis test did not show any statistical differences
between pools. We prepared five pooled plasma samples for LUAD
and six pooled plasma samples for healthy controls. This study
involved in human blood samples was approved by the Institutional
Review Boards (IRBs) of University of Hawaii at Manoa, protocol
number 2018–00636.

RNA extraction from plasma

We used miRNeasy Serum/Plasma Kit (QIAGEN) for RNA extrac-
tion from plasma following the manufacturer’s protocol. Plasma
was mixed with acid-phenol/guanidine-based lysis buffer to denature
protein complexes. After adding chloroform, total RNAs were puri-
fied by centrifuging. The aqueous-phase-contained total RNAs were
applied to the RNeasy MinElute spin column to wash away phenol
and other contaminants. High-quality RNAs were then eluted by
RNase-free water. We took 50 mL plasma from each subject, resulting
in 500 mL from 10 subjects per pool. Due to the capacity of the kit, we
treated 250 mL plasma from one pool at a time and combined two
products at the step of MinElute spin column. After eluting with
14 mL RNase-free water, we added 1 mL of RNase inhibitor.

Small RNA-seq

Library prep and small RNA-seq were performed by the Genomics
and Bioinformatics Shared Resources (GBSR) at the University of Ha-
waii Cancer Center. QIAseq miRNA Library Kit and QIAseq miRNA
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NGS 12 Index IL from QIAGEN were used for making the library,
and NextSeq 500 from Illumina was used for sequencing to obtain
10M reads/sample. Raw data were processed by the upstream analysis
pipeline, and raw counts were normalized into TPM. DE tRDFs were
computed by DEseq2 and Limma t test.

Cell culture

ABC-1 andMRC9 cell lines were cultured in Dulbecco’s modified Ea-
gle’s medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin-streptomycin at 37�C in 5% CO2 incubator.

RNA extraction from cell lines

We used miRNeasy Serum/Plasma Kit (QIAGEN) for RNA extrac-
tion from cell lines following the manufacturer’s protocol.

Reverse transcription and real-time qPCR

Total RNAs was subjected to cDNA synthesis by TAKARA Prime-
Script RT Reagent Kit (Perfect Real Time), and qPCR was processed
with Quanta bio PerfeCta SYBR Green FastMix. miR-16 was chosen
as internal control for tRDFs quantification in cell lines.49 The relative
expression levels were calculated via the 2-DDCt method. The
primers for RT and qPCR are listed in Table S17.

TOPO TA cloning and Sanger sequencing

cDNA products were amplified by Accuris Taq, and PCR products
were purified by Zymoresearch PCR purification kit. The ligation re-
action of PCR products was performed with pGEM-T easy vectors
and 2� Rapid Ligation Buffer. JM109 competent cells were used for
transformation to the ligation reaction. Transformation culture was
incubated onto duplicate LB/ampicillin/IPTG/X-Gal plates, and
white colonies were selected. Bacterial colonies were screened with
PCR, and target bands were detected by agarose gel electrophoresis.
Sanger sequencing was performed by University of Hawaii at Manoa
ASGPB.
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The small RNA-seq or mRNA sequencing data are available on GEO:
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