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Abstract

Cross-sectional correlations between two variables have limited implications for causality.

We examine here whether it is possible to make causal inferences from steady-state data in

a homeostatic system with three or more inter-correlated variables. Every putative pathway

between three variables makes a set of differential predictions that can be tested with steady

state data. For example, among 3 variables, A, B and C, the coefficient of determination, r2AC
is predicted by the product of r2AB and r2BC for some pathways, but not for others. Residuals

from a regression line are independent of residuals from another regression for some path-

ways, but positively or negatively correlated for certain other pathways. Different pathways

therefore have different prediction signatures, which can be used to accept or reject plausi-

ble pathways using appropriate null hypotheses. The type 2 error reduces with sample size

but the nature of this relationship is different for different predictions. We apply these princi-

ples to test the classical pathway leading to a hyperinsulinemic normoglycemic insulin-resis-

tant, or pre-diabetic, state using four different sets of epidemiological data. Currently, a set

of indices called HOMA-IR and HOMA-β are used to represent insulin resistance and glu-

cose-stimulated insulin response by β cells respectively. Our analysis shows that if we

assume the HOMA indices to be faithful indicators, the classical pathway must in turn be

rejected. In effect, among the populations sampled, the classical pathway and faithfulness

of the HOMA indices cannot be simultaneously true. The principles and example shows that

it is possible to infer causal pathways from cross sectional correlational data on three or

more correlated variables.

1. Introduction

1.1. Overview

In the field of biomedicine, the nature of causality, and the use of correlations as an evidence

for causality are much debated [1–4]. There have been many attempts to develop sound meth-

ods to address questions of causal inference from correlational data which include Hill criteria
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[5], path analysis [6–9] the use of instrumental variables [10], Granger causality [11], Rubin

causal model [12], or additive noise models [13]. Hill criteria are a set of common sense crite-

ria useful in avoiding misguided inferences. Path analysis generally assumes a direction of cau-

sality, usually directed acyclic paths, and while it is useful in determining the contributions of

different causal pathways to a process or a resultant variable, its application to pathways with

loops and cycles is difficult. Methods like Granger causality depend upon the assumption that

the cause always precedes effect and that the variables show some degree of chaos or turbu-

lence, so that there are notable events like sudden peaks in the variables that can be tracked

using longitudinal data. In evolved systems in which predictive adaptive responses are possible,

the assumption that cause always precedes effect is questionable. Another class of methods like

Propensity Score matching based on the Rubin causal model works well to estimate the effect

of a causal factor but does not take into account unobserved factors. The Rubin Causal Model

also incorporates the structural equations model as it includes non-parametric forms [14,15].

Models like additive noise can suggest the direction of the arrow of causality between two vari-

ables, but they require the assumption that either A causes B, or B causes A, without any con-

founding, looping or circularity [16,17].

More specifically, here we look at homeostatic systems which are extremely common in

fields such as physiology. Homeostatic systems pose a unique problem for causal inferences.

Causal inference can be based on time-series analysis with longitudinal data[18]. Longitudinal

data are of little use however, if the time taken to reach equilibrium is smaller than the observa-

tional window, or if the system is already in a steady-state. Most homeostatic systems have neg-

ative feedback or some loop structures, because of which methods assuming acyclic causal

paths or freedom from confounding are not applicable.

Although the use of correlations to infer causality is doubted, intervention experiments are

generally taken as a convincing evidence of causality. However, causality in steady-state can be

substantially different than causality in a perturbed-state and inferences from a perturbation

experiment may not be applicable to steady-state causality. This necessitates a set of tools to

infer causality in a steady state which is independent of perturbing interventions. We argue in

this paper that it is possible to infer causal relationships among three or more variables from

cross-sectional data in a homeostatic system in which the variables and their relationships are

stable in time.

1.2. Motivation

Our motivation and the need for this tool came from some debated causal pathways in the

pathophysiology of type 2 diabetes (T2D). According to the classical view, obesity-induced

insulin resistance is primary, and rise in insulin levels is a compensatory response to insulin

resistance, mediated by raised levels of glucose [19,20]. This is contested [21], with increasing

evidence suggesting that hyperinsulinemia precedes insulin resistance [22–26]. There is also

evidence of neuronal signals affecting insulin production on the one hand, and controlling glu-

cose production by the liver partly independent of insulin on the other. Therefore, the causal

relationship between insulin resistance, hyperinsulinemia and hyperglycemia needs to be re-

examined (reviewed by [21]).

Elucidation of the causal pathway for a pre-diabetic or diabetic state is critical at the clinical

level because the current approaches to medication are designed assuming one particular path-

way, and have largely failed to cure diabetes. If it is possible to determine causality reliably, it

can potentially change diabetes medicine. It has long been recognized that levels of glucose

and insulin are under homeostatic control, and that fasting is a steady state [27–30]. With sub-

stantial data available on fasting levels of glucose and insulin from different populations, along
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with many other variables, a tool for inferring causality from a set of inter-correlated steady-

state variables would help understand, and thereby better control, T2D.

Beyond the specific problem of causality in pre-diabetes, a set of methods that can help

infer causality from steady-state data will find a large number of applications, not only in phys-

iology and disease, but in many other areas of science. Although our investigations began with

the pathophysiology of diabetes, the emerging principles are generalizable and valuable for

inferential statistics in general.

1.3. Organization of the paper

Since the question addressed here and the approach suggested is complex we have organized

the paper in the following sections. Section 2 describes the underlying principle and basic

assumptions and spells out the nomenclature used in the rest of the paper. Section 3 details the

development of the theoretical framework that is the central element of this work. We discuss

first, possible alternative causal pathways between three inter-correlated variables, followed by

the distinction between causal and regression equations that will underlie the subsequent analy-

sis. In the interest of brevity, in the main text we restrict ourselves to reproducing only the final

analytical prediction for each pathway, classified into acyclic and cyclic pathways, adding a few

lines where pathway-specific predictions necessitate discussion. Complete proofs and deriva-

tions are instead relegated to the supplementary text. Section 4 discusses the testing of pathway

predictions against suitable null hypotheses, and Section 5 describes findings regarding the sen-

sitivity and robustness of the analytical predictions derived so far. Section 6 provides a general

description of potential applications of the above theoretical framework. Section 7 encompasses

a comprehensive demonstration of application of the framework to a real-life question in diabe-

tes research. We first discuss in some detail, the current view on causal factors in diabetic and

pre-diabetic states, before moving on to the dual feedback model that forms the main hypothe-

sis to be tested. We analyze the system according to the methods detailed in previous sections,

and present several novel observations along with their significance to diabetes research.

2. Methods

2.1. Overview

We show here that when three inter-correlated variables are considered together with two or

more causal arrows connecting them to make a causal pathway, each of the possible pathways

makes a set of differential predictions by which the pathways can be differentiated from each

other. Our approach to develop a method of inferring causality from cross sectional regression

correlation parameters comprises following steps:

Development of a theoretical framework-

i. We first list the perceived possible hypothetical causal pathways among three variables.

ii. For each pathway, we write a set of causal equations arising out of the hypothetical path-

ways. Steady-state solutions of these equations lead to a set of four general, and a few

pathway-specific predictions. Each pathway therefore has a unique combination of such

predictions or a prediction signature by which it can be differentiated from other

pathways.

Testing the pathways by simulations-

i. We test, using simulated data generated from assumed causal pathways, the conditions

under which the predictions can be used to accept or reject a pathway reliably.

Inferring causality from steady-state correlations
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ii. Based on these results, we suggest ways of handling multivariate data and infer causal

networks among them.

Demonstration of a specific example-

i. We apply this logic to the specific case of pre-diabetes to examine the pathway classically

thought to give rise to this condition.

2.2. Baseline assumptions and nomenclature

We consider three variables labelled A, B and C. Additional variables if needed to describe a

pathway will be labelled X, Y and so on. All causal relationships represented by a single arrow

are assumed to be linear, and all primary input variables are assumed to be normally distrib-

uted. In a given operation, the slopes of causal pathways are assumed to be constant; the errors

in causal pathways are assumed to be distributed normally, with means of zero and a constant

standard deviations, and no covariance with each other. We assume that the errors are caused

by variation in individual responses, and that a given individual’s response is consistent in

time sufficiently long to reach a steady state. Thus, the errors are randomized over the popula-

tion, but for a given individual, they are constant in time. We assume no measurement error

in the baseline models. Since all our predictions are related to correlation coefficients and

regression slopes, we will ignore the intercepts for the sake of simplicity in deriving many of

the predictions.

3. Development of a theoretical framework

3.1. The possible pathways

A variety of cyclic and acyclic pathways can exist in three variables. Fig 1 shows the simple pri-

mary pathways that are possible, and more can certainly be constructed by combinations of

the primary pathways. It is also possible to consider permutations of the three variables; for

example, the linear pathway among three variables can itself be written in six different ways.

Here, we restrict to the primary pathways assuming a fixed sequence of the three variables

denoted by A, B and C. The principles that we derive from this set of primary pathways can be

extended to more complex pathways.

3.2. Causal equations versus regression equations

Based on hypothesized pathways, we can write specific causal equations for each. The causal

equations are derived from the hypothesized pathway, while the regression equations can be

obtained from the given cross-sectional data using regression and correlation analysis. Our

causal equations are similar to the structural equations of [15]. However, they differ in their

interpretation and treatment. In structural equations, the left hand terms are effects and right

hand terms are causes, and the two cannot be algebraically transferred without changing causal

interpretations. In our approach, after finding equilibrium solutions, we can carry out alge-

braic operations freely in order to obtain testable predictions. The parameters of the regression

equation are not necessarily identical to those of the causal equations (Table 1). For example,

for a hypothesized pathway Y = mX + C, m is the causal slope, while the regression slope

would be underestimated if there is post-effect variability in X [31], and such a bias in the

slope is important in making and testing predictions. In the following section, we show that

the parameters of causal equations hold pathway-specific relationships with the parameters of

regression equations based on which, pathway-specific predictions about the regression corre-

lation parameters can be made.

Inferring causality from steady-state correlations

PLOS ONE | https://doi.org/10.1371/journal.pone.0204755 October 11, 2018 4 / 34

https://doi.org/10.1371/journal.pone.0204755


For ensuring steady-state, we assume that a given variable has a rate of formation/increase

and a rate of degradation/decrease. If the rate of degradation is positively dependent, or the

rate of formation negatively dependent on the standing level, then the variable invariably

reaches a steady state determined by the set of input parameters. Such steady states are charac-

teristic of homeostatic systems, and this principle is central to our methods.

Fig 1. Possible primary causal pathways between three variables. More complex pathways can be visualized by combinations of the primary ones.

https://doi.org/10.1371/journal.pone.0204755.g001
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For example, in a linear pathway A! B! C, dBdt ¼ m0
1
A � d1B and dC

dt ¼ m0
2
B � d2C. At a

steady-state the net change in any variable is zero. Therefore, the steady-state levels of B and C
will be B ¼ m01

d1
A ¼ m1A and C ¼ m02

d2
B ¼ m2B respectively.

In simple cases, we need not explicitly include the rates of degradation in the equations but

directly use parameters, m1 and m2. For pathways involving loops and feedback, the relation-

ships between variables are more complex, and therefore necessitate the use of degradation

constants in the causal equations for ensuring steady-states.

Causal and regression parameters can be analytically related, and these relationships allow

the formation of regression-based predictions for each pathway based on the known relation-

ships between the corresponding causal parameters. Here, we put the two together and

describe four general predictions across all pathways and formulate a null hypothesis for each.

In addition, there are certain pathway specific predictions that will be discussed along with the

description of the corresponding pathway. The four general predictions are:

1. Whether r2
AC can be estimated from the product of r2

AB and r2
BC.

2. Whether slope Mca can be estimated from the product of the slopes Mba and Mcb.

3. Whether the residuals of the regression of B on A (Eba) are correlated with those of C on B
(Ecb): The errors or residuals in a regression are assumed to be random independent errors.

However, we will show below that if there are loops, convergent or confounding elements in a

pathway, Eba and Ecb do not remain independent. Based on the nature of dependence between

Eba and Ecb, presence of, and possible nature of the loops and convergence can be inferred.

4. a. Whether correction for A improves or reduces the correlation of B with C, i.e. whether

r2
EbaC

is greater or lesser than r2
BC.

b. Whether the extent to which r2
EbaC

is greater or lesser than r2
BC can be predicted by r2

AB.

Table 1. List of abbreviations used.

Abbreviation Term Remarks

A, B, C Test variables We have access from data

Á, �B, Ć Mean of A, B and C respectively We calculate from data

X, Y Unknown variables Which affect test variables. We do not have

access to these from data.

Mij Slopes of regression of i on j e.g. Mba is calculated as Mba ¼
covðB;AÞ
varðAÞ

Kij Intercept of regression of i on j e.g. Kba is calculated as Kba ¼
�B � MbaA

Eij Residuals of regression of i on j e.g. Eba is calculated as

Eba = B −MbaA − Kba
rij Correlation coefficient between i and j e.g. rij is calculated as

rij ¼
P

ei :ejffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e2i
ffiffiffi
e2j

pq

m1,m2,m3 Slopes in causal equations including the

degradation rates

We do not have access to these in data

e1,e2,e3 Error distribution in causal equations, assumed

to be normal with mean zero and standard

deviations sde1 etc.

These are post-effect errors of the causal

relationships which may get incorporated in pre-

effect errors of a subsequent effect

ea,eb,ec Net variability in A, B and C e.g. ea is calculated as ea = A − Á
k1,k2 Intercepts in causal equations

d1,d2 Degradation /destruction rate constants in

causal equations

Especially necessary in cyclic pathways

Parameters of causal equations are denoted by small letters and those of regression equations by capital letters.

https://doi.org/10.1371/journal.pone.0204755.t001
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3.3. Pathway-wise analytical predictions

We will now state how each of the pathways makes specific predictions. For detailed formal

proofs and derivations refer to S1 Text. Each putative pathway makes specific predictions

about the above and accordingly the causal relationships can be accepted or rejected. For

example, whether obesity leads to altered lipid profiles that ultimately lead hyperinsulinemia is

one possible pathway. In an alternative view hyperinsulinemia leads to obesity.

Pathways P1 to P5 represent acyclic pathways and P6 and P7 represents pathways with

loops. In pathways with loops, since there is a cyclic dependence between the variables we

begin with differential equations with variable-specific constant rates of disintegration that

assure steady states. This set of equations is then used to derive equilibrium solutions.

3.3.1. Linear pathway (P1). The causal equations for a linear pathway are:

A ¼ input ¼ �A þ ea

B ¼ m1Aþ e1 þ k1

C ¼ m2Bþ e2 þ k2

Where ea,e1,e2 are not correlated.

Regression parameters can be derived from the causal equations as follows. Since in regres-

sion of B on A, the slope = cov (A, B)/var A,

Mba ¼

P
eaebP
e2
a

¼

P
eaðm1ea þ e1ÞP

e2
a

¼
m1

P
e2
aP

e2
a

¼ m1

Mcb ¼

P
ecebP
e2
b
¼

P
ðm2eb þ e2ÞebP

e2
b

¼
m2

P
e2
bP

e2
b
¼ m2

Mca ¼

P
eceaP
e2
a

¼

P
ðm2m1ea þm2e1 þ e2ÞeaP

e2
a

¼
m2m1

P
e2
aP

e2
a

¼ m2m1

Eba ¼ eb � Mbaea ¼ m1ea þ e1 � m1ea ¼ e1

Ecb ¼ ec � Mcbeb ¼ m2eb þ e2 � m2eb ¼ e2

Eca ¼ ec � Mcaea ¼ m2eb þ e2 � m2m1ea ¼ m2e1 þ e2

For linear equations, there is little difference between the causal equations and regression

equations (Table 2). The regression equations therefore become

B ¼ MbaAþ Eba þ Kba ¼ m1Aþ e1 þ k1

C ¼ McaAþ Eca þ Kca ¼ m2Bþ e2 þ k2

C ¼ McaAþ Eca þ Kca ¼ m1m2Aþ ðm2e1 þ e2Þ þ ðm2k1 þ k2Þ

Prediction R1: Based on the equations above and Table 2, it can be shown that rAC − rABrBC =

0 (See S1 Text ‘Linear pathway: Prediction R1: Proof 1’ for formal proof).

Inferring causality from steady-state correlations
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Prediction R2: From Table 2, it is obvious that the slope Mca can be predicted from the

product McbMba; Mca −McbMba = m1m2 −m2m1 = 0.

Prediction R3: From Table 2, as there is no covariance between e1 and e2, r2
EbaEcb

¼ r2
e1e2
¼ 0

Prediction R4: For a linear pathway, it can be shown that

(a) rBC > rEbaC and further, (b)
r2BC � r

2
EbaC

r2BC
¼ r2

AB

3.3.2. Radiating pathway (P2). The causal equations for this model would be

A ¼ m1Bþ e1 þ k1

B ¼ input ¼ �B þ eb

C ¼ m2Bþ e2 þ k2

Note that the relationship between causal parameters and regression parameters is substantially

different in this pathway than the linear pathway (Table 3). For example, the causal slope is 1

m1
, but

there is an underestimation of the slope during regression which is predicted exactly by r2
AB.

However, this difference is not detectable from cross-sectional data alone. Therefore, the

standard four testable predictions of this pathway remain similar to the linear pathway. We

will describe later that differentiating between pathways P1 and P2 is possible using a different

strategy.

Prediction R1: From Table 3, it can be shown that r2
AC � r

2
ABr

2
BC ¼ 0.

Prediction R2: From Table 3; we see slope Mca can be predicted from the product McbMba

Prediction R3: From Table 3, covðe1; e2Þ ¼ 0;r2
EbaEcb

¼ r2
e1e2
¼ 0

Prediction R4: As formally shown in S1 Text (‘Radiating pathway: Prediction R4: Proof 2’),

rEbaC < rBC and
r2BC � r

2
EbaC

r2BC
¼ r2

AB

3.3.3. Convergent pathway (P3). The causal equations for this model would be

A ¼ input ¼ �A þ ea

B ¼ m1Aþm2C þ e1 þ k1

C ¼ input ¼ �C þ ec

where ea,e1 and ec are uncorrelated.

Table 3. Relationship between the causal and regression equations for radiating pathway.

Slopes Errors

Mba ¼
1

m1
r2
AB Eba ¼ eb 1 � r2

AB

� �
� 1

m1
r2
ABe1

Mcb = m2 Ecb = e2

Mca ¼
m2

m1
r2
AB Eca ¼ m2eb 1 � r2

AB

� �
�

m2

m1
r2
ABe1 þ e2

https://doi.org/10.1371/journal.pone.0204755.t003

Table 2. Relationship between the causal and regression equations for linear pathway.

Slopes Errors

Mba = m1 Eba = e1

Mcb = m2 Ecb = e2

Mca = m1m2 Eca = m2e1 + e2

https://doi.org/10.1371/journal.pone.0204755.t002
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Regression parameters derived from the causal equations are given in Table 4.

There are two pathway specific predictions for the convergent pathway, shared only by the

different cause pathway. Firstly, we expect no correlation between A and C from this pathway,

unless there are additional external pathways linking the two. The other unique feature of this

pathway is that both A and C have independent causal influence on B. As a result, the effect of

A adds to the error in the correlation between B and C and similarly, the effect of C contributes

to the error in the correlation between A and B. As a result, r2
AB þ r

2
BC cannot be greater than 1,

as shown below:

r2

AB þ r
2

BC ¼
m2

1

P
e2
aP

e2
b
þ
m2

2

P
e2
cP

e2
b
¼
m2

1

P
e2
a þm

2
2

P
e2
cP

e2
b

P
e2
b ¼ m2

1

P
e2
a þm

2
2

P
e2
c þ

P
e2

1
, so

r2

AB þ r
2

BC < 1

This prediction is so robust that if r2
AB þ r

2
BC > 1, the convergent pathway can be rejected

right away. Since we assume A and C to be independent input variables we assume no correla-

tion between them. However, if they are correlated due to some cause other than this pathway,

only then r2
AB þ r

2
BC can be greater than 1.

Prediction R1: Unlike pathways P1 and P2, for the convergent pathway, it can be seen that

r2
AC � r

2
AB:r

2
BC < 0.

Prediction R2: Since the expected slope Mca is zero, and both Mba and Mcb are non-zero,

their product is not a predictor of Mca.

jMcaj � jMcbMbaj < 0 as jMcaj ¼ 0

Prediction R3: The correlation rEbaEcb is predicted to have the same sign as Mcb.

Prediction R4: It can be shown that (a) rBC < rEbaC and further, (b)
r2EbaC

� r2BC
r2EbaC

¼ r2
AB.

Because this expression differs from R4 (b) of the earlier pathways, we can use a more gen-

eralized form for R4 (b) as
jr2BC � r

2
EbaC
j

maxðr2BC ;r
2
EbaC
Þ
¼ r2

AB

3.3.4. Common cause pathway (P4). he causal equations for this model would be

X ¼ input ¼ �X þ ex

A ¼ m1X þ e1 þ k1

B ¼ m2X þ e2 þ k2

C ¼ m3X þ e3 þ k3

where exe1e2e3 are not correlated.

It needs to be noted that e1e2e3 are important in defining this pathway. If e2 is negligible the

pathway approximates to the radiating pathway with B being the mediator between A and C.

Table 4. Relationship between the causal and regression equations for convergent pathway.

Slopes Errors

Mba = m1 Eba = e1 + m2ec
Mcb ¼

1

m2
r2
BC Ecb ¼ ec 1 � r2

BC

� �
� 1

m2
r2
BC m1ea þ e1ð Þ

Mca = 0 Eca = ec

https://doi.org/10.1371/journal.pone.0204755.t004
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Similarly, at small e1, A becomes the mediator and at small e3, C becomes the mediator in a

radiating pathway. For the way we have defined our predictions, e2 is the most important error

term in this pathway (Table 5).

One very special feature of this pathway is that qualitatively it is highly symmetric with

respect to all the three variables A, B and C. This means that any permutation of them does not

change the qualitative nature of any prediction. This can be used as a pathway specific predic-

tion and a distinct signature for this pathway.

Prediction R1: It can be shown that r2
AC > r2

AB:r
2
BC for this pathway.

Prediction R2: |Mca| −McbMba> 0

Prediction R3: The sign of the correlation rEbaEcb is decided by the signs of m1 and m2. When

both have the same signs rEbaEcb are negative and when they have opposing signs rEbaEcb is posi-

tive. In other words, the correlation multiplied by the sign of Mca is always negative.

Prediction R4: For this pathway (a) rEbaC < rBC and (b)
r2BC � r

2
EbaC

r2BC
r2
AB

3.3.5. Single different cause pathway (P5a). The causal equations for this model would

be

X ¼ input ¼ �X þ ex

A ¼ input ¼ �A þ ea

B ¼ m1Aþm2X þ e1 þ k1

C ¼ m3X þ e2 þ k2

where exeae1e2 are not correlated. Regression parameters derived are in Table 6.

Two specific predictions of this pathway shared only by the convergent pathway (P3) are

that r2
AC ¼ 0 and that r2

AB þ r
2
BC < 1.

Prediction R1: r2
AC � r

2
AB:r

2
BC < 0

Prediction R2: |Mca|<McbMba

Prediction R3: The correlation rEbaEcb is predicted to have the same sign as Mcb.

Prediction R4: (a) rBC > rEbaC and further (b
jr2BC � r

2
EbaC
j

maxðr2BC ;r
2
EbaC
Þ
¼ r2

AB is true.

Table 5. Relationship between the causal and regression equations for common cause pathway.

Slopes Errors

Mba ¼
m2

m1
r2
AX Eba ¼ m2ex 1 � r2

AX

� �
þ e2 � r2

AX
m2

m1
e1

Mcb ¼
m3

m2
r2
BX Ecb ¼ m3ex 1 � r2

BX

� �
þ e3 � r2

BX
m3

m2
e2

Mca ¼
m3

m1
r2
AX Eca ¼ m3ex 1 � r2

AX

� �
þ e3 � r2

AX
m3

m1
e1

https://doi.org/10.1371/journal.pone.0204755.t005

Table 6. Relationship between the causal and regression equations for single different cause pathway.

Slopes Errors

Mba = m1 Eba = m2ex + e1

Mcb ¼
m3

m2
r2
BX Ecb ¼ m3ex þ e2 � m3r2

BX
m1ea
m2
þ ex þ

e1
m2

� �

Mca = 0 Eca = m3ex + e2 −m1ea

https://doi.org/10.1371/journal.pone.0204755.t006
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3.3.6. Double different causes pathway (P5b). The causal equations for this model

would be

X ¼ input ¼ �X þ ex

Y ¼ input ¼ �Y þ ey

A ¼ m1X þ e1 þ k1

B ¼ m2X þm3Y þ e2 þ k2

C ¼ m3Y þ e3 þ k3

where exeye1e2e3 are not correlated. Regression parameters derived are in Table 7.

Two specific predictions of this pathway shared only by the convergent pathway (P3) are

that r2
AC ¼ 0 and that r2

AB þ r
2
BC < 1.

Prediction R1: r2
AC � r

2
ABr

2
BC < 0

Prediction R2: |Mca|<McbMba

Prediction R3: The correlation rEbaEcb is predicted to have the same sign as Mcb.

Prediction R4: (a) rBC > rEbaC and further (b)
jr2BC � r

2
EbaC
j

maxðr2BC ;r
2
EbaC
Þ
¼ r2

AB is true.

It can be seen that all predictions of pathways P5a and P5b are identical and henceforth we

will treat both of them in a single group as pathway P5.

3.3.7. Positive or negative feedback pathway (P6). The causal equations for this model

would be

A ¼ input

dB
dt
¼ m1A � d1Bþ e1 þmfC þ k1

dC
dt
¼ m2B � d2C þ e2 þ k2

where eae1e2 are not correlated, and d1 and d2 are positive. For a consistent definition of feed-

back, we assume m1 and m2 to always be positive, and that the sign of mf decides whether it is a

positive or negative feedback loop. Feedback loops depend crucially on the relative strength of

the forward versus backward causation. If the feedback term, i.e. the effect of C on B is weak, it

approximates to a linear pathway, and if the forward term i.e. effect of B on C is weak, it

approximates to a convergent pathway. Therefore, the predictions of linear or convergent

pathways can be expected if the forward or feedback links respectively are weak. Additionally,

however, the negative feedback pathway is associated with a problem of definition. If the feed-

back effect of C on B is stronger than the effect of B on C, the signs of the slope in the causal

Table 7. Relationship between the causal and regression equations for double different cause pathway.

Slopes Errors

Mba ¼
m2

m1
r2
AX Eba ¼ m2ex 1 � r2

AX

� �
þm3ey þ e2 �

m2

m1
r2
AXe1

Mcb ¼
m4

m3
r2
BY Ecb ¼ m4ey 1 � r2

BY

� �
þ e3 �

m4

m3
r2
BY m2ex þ e2ð Þ

Mca = 0 Eca = m4ey + e3

https://doi.org/10.1371/journal.pone.0204755.t007
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and regression equations could be opposite, implying that while m2 is positive, Mcb could

become negative. This happens when

Mcb ¼
m2

d2

þ

P
e1e2P
e2
b
< 0 i:e: mf

P
e2

2P
e2
b

1

ðd1d2 � m2mf Þ

�
�
�
�
�

�
�
�
�
�
>
m2

d2

This results in a paradoxical transformation of a causally negative feedback into an apparent

positive feedback since the sign of the slope and that of the feedback effect is the same. Further,

when the negative feedback is much stronger than the forward effect, the predictions of con-

vergent pathway are more applicable than the predictions of negative feedback pathway. At

equilibrium where both dB
dt and dC

dt ¼ 0, the equilibrium concentrations of B and C are given by

B ¼
m1d2

ðd1d2 � m2mf Þ
Aþ

d2e1 þmf e2

d1d2 � m2mf
þ
mf k2 þ k1d2

d1d2 � m2mf

C ¼
m2

d2

Bþ
e2

d2

þ
k2

d2

For simplification we take m0
1
¼

m1d2

ðd1d2 � m2mf Þ
; e0

1
¼

d2e1þmf e2
d1d2 � m2mf

and k0
1
¼

mf k2þk1d2

d1d2� m2mf

B ¼ m0
1
Aþ e0

1
þ k0

1

Similarly, m0
2
¼

m2

d2
; e0

2
¼

e2
d2

and k0
2
¼

k2

d2

C ¼ m0
2
Bþ e0

2
þ k0

2

It should be noted that e0
1
¼

d2e1þmf e2
d1d2 � m2mf

and e0
2
¼

e2
d2

share e2, and would therefore co-vary. The

sign of this covariance is decided by the sign of mf, i.e. whether the feedback is positive or

negative.

Regression parameters can be derived from the above as in Table 8.

Prediction R1: When the feedback is negative r2
AC > r2

ABr
2
BC

The reverse applies for positive feedbacks where r2
AC < r2

ABr
2
BC

Prediction R2: In negative feedback Mca>McbMba and in positive feedback |Mca|<

McbMba.

Prediction R3: The sign of this correlation will be decided by the sign of mf which is nega-

tive for negative feedback and positive for positive feedback.

Prediction R4: (a) It can be shown that for negative feedbacks rEbaC < ðrBCÞ. For positive

feedback the prediction is more conditional. The inequality rEbaC < ðrBCÞ will be true above a

threshold rBC. For smaller rBC it is difficult to make a definite prediction. (b) for negative feed-

back
r2BC � r

2
EbaC

r2BC
> r2

AB and for positive feedback
r2BC � r

2
EbaC

r2BC
< r2

AB is true above a threshold rBC.

Table 8. Relationship between the causal and regression equations for positive or negative feedback pathway.

Slopes Errors

Mba ¼ m1 ¼
m1d2

ðd1d2 � m2mf Þ Eba ¼ e1 ¼
d2e1þmf e2
d1d2 � m2mf

Mcb ¼ m2 þ

P
e1e2P
e2b
¼

m2

d2
þ

P
e1e2P
e2b Ecb ¼ e2 �

P
e1e2P
e2b
eb ¼

e2
d2
�

cov
d2 e1þmf e2
d1d2 � m2mf

� �
e2
d2

� �

P
e2b

eb

Mca ¼ m2m1 ¼
m2

d2

m1d2

ðd1d2 � m2mf Þ
Eca ¼ m2e1 þ e2 ¼

m2

d2

d2e1þmf e2
d1d2 � m2mf

þ
e2
d2

https://doi.org/10.1371/journal.pone.0204755.t008
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3.3.8. Positive or negative feed-forward pathway (P7). The causal equations for this

model would be

A ¼ input ¼ �A þ ea

A ¼ m1X þ e1 þ k1

dB
dt
¼ m1A � d1Bþ e1 þ k1

dC
dt
¼ m2Bþm3A � d2C þ e2 þ k2

where eae1e2 are not correlated. At equilibrium

B ¼ m1

d1
Aþ e1

d1
þ

k1

d1
¼ m1Aþ e1 þ k1 taking m1 ¼

m1

d1
; e1 ¼

e1
d1

and, k1 ¼
k1

d1

C ¼
m1m2 þ d1mf

d1d2

Aþ
m2

d1d2

e1 þ
1

d2

e2

� �

C ¼
m1m2 þmfd1

d2m1

B �
mf

m1d2

e1 þ
e2

d2

þ
k2

d2

We will take m2 ¼
m1m2þmf d1

d2m1
e2 ¼

� mf
m1d2

e1 þ
e2
d2

Note that since e1 decides both e1 and e2, the covariance between e1 and e2 will be
� mf
m1d2

e1,

which will be positive when mf is negative i.e. for negative feed-forward, and negative when mf

positive i.e. positive feed-forward is.

For simplifying the definition of feed-forward, we assume m1 and m2 to be positive and the

sign of mf decides whether the feed-forward is positive or negative; a negative feed-forward

pathway is once again associated with a problem of definition. If the feed-forward effect of A
on C is stronger than that through B, and if their signs are opposite, the signs of slope in the

causal and regression equations could be opposites. That is, if mfd1 >m1m2 then Mcb can be

negative although the causal relationship between B and C is positive. This results in a para-

doxical transformation of a causally negative feed-forward pathway into an effectively positive

feed-forward pathway as the product MbaMcb and Mca both have the same sign.

Note that while all the expressions are the same as in feedback pathways (Table 9), the dif-

ferences lie in the meanings of
P

e0
1
e0

2
; m0

2
etc.

Prediction R1: For positive feed-forward r2
AC > r2

ABr
2
BC, and for negative feed-forward

r2
AC < r2

ABr
2
BC, but under conditions in which the result mimics positive feedback, r2

AC > r2
ABr

2
BC:

This is the condition when a causally negative feed-forward transforms into an apparent posi-

tive feed-forward.

Table 9. Relationship between the causal and regression equations for positive or negative feed-forward pathway.

Slopes Errors

Mba ¼ m1 ¼
m1

d1
Eba ¼ e1 ¼

e1
d1

Mcb ¼ m2 þ

P
e1e2P
e2b
¼

m1m2þmf d1

d2m1
þ

P
e1e2P
e2b

Ecb ¼ e2 �

P
e1e2P
e2b
eb ¼

� mf
m1d2

e1 þ
e2
d2
�

P
e1e2P
e2b
eb

Mca ¼ m2m1 ¼
m1m2þmf d1

d2m1
:
m1

d1
Eca ¼ m2e1 þ e2 ¼

m1m2þmf d1

d2m1
:
e1
d1
þ
� mf
m1d2

e1 þ
e2
d2

https://doi.org/10.1371/journal.pone.0204755.t009
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Prediction R2: When mf is positive, McbMba<Mca. In the case of negative feed-forward

McbMba>Mca but under conditions in which a negative feed-forward transforms into a posi-

tive feed-forward, McbMba<m1m2 = Mca.

Prediction R3: For positive feed-forward, we expect a negative correlation, and for negative

feed-forward, a positive correlation. Therefore, for positive feed-forward, the correlation rEbaEcb
will have the opposite sign of that of Mcb. For a negative feed-forward pathway, under condi-

tions when it transforms into an effective positive feed-forward correlation, rEbaEcb will have the

opposite sign of that of Mcb.

Prediction R4: (a) In the case of positive feed-forward rEbaC < rBC and in the case of negative

feed-forward prediction is conditional. Under the conditions when a causally negative feed-

forward becomes apparently positive feed-forward, the prediction of positive feed-forward is

true. When a negative feed-forward is effective rEbaC < rBC will be true above a threshold rAB.

(b) For positive feed-forward
r2BC � r

2
EbaC

r2BC
> r2

AB: For negative feed-forward a universal predic-

tion cannot be made. When the effect is that of a positive feedback the prediction of positive

feedback is true, otherwise
r2BC � r

2
EbaC

r2BC
< r2

AB.

4. Testing against the null hypotheses

Testing in data needs to be different for equality and inequality predictions. The prediction

can serve as the null model wherever equality is predicted but needs to be treated as an alterna-

tive hypothesis wherever inequality is predicted. For pathways that predict equality, a two-

tailed probability is used, and for pathways predicting one-way inequality, a one tailed test is

used. Numerical simulations were run using the causal pathway equations for each of the path-

ways P1 to P7 to generate data, assuming the errors to be distributed normally around a mean

zero. In the results of simulations reported below, the convention consistently followed

through Figs 2 and 3 is that if H0 is true, it is indicated by green, while H1 being true is indi-

cated by red and H2 being true by yellow.

R1: H0: r2
AC ¼ r2

ABr
2
BC, H1: r2

AC < r2
AB:r

2
BC and H2: r2

AC > r2
ABr

2
BC. Since every correlation coeffi-

cient is associated with a confidence interval, to test the null hypothesis, we check that the con-

fidence interval of r2
AC � r

2
ABr

2
BC includes zero.

R2: H0: Mca = McbMba (green), H1: Mca<McbMba (red) and H2: Mca>McbMba (yellow).

R3: Since the signs of causal slopes m1 and m2 are allowed to be positive or negative in the

models, the correlation coefficients are multiplied by the sign of the slope Mcb.

Fig 2. Analytical signatures for each pathway. Summarizing the analytical signature for each pathway in a color code where green represents acceptance of

the null hypotheses H0, and red and yellow represent the acceptance of H1 and H2 respectively. Asterisks indicate conditional prediction e.g.�r2
BC above a

threshold, ��r2
AB above a threshold.

https://doi.org/10.1371/journal.pone.0204755.g002
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H0: r2
EbaEcb

:signðMcbÞ ¼ 0 (green), H1: r2
EbaEcb

:signðMcbÞ < 0 (red) and H2: r2
EbaEcb

:signðMcbÞ > 0

(yellow).

R4a: H0: r2
BC ¼ r2

EbaC
(green), H1: r2

BC < r2
EbaC

(red) and H2: r2
BC > r2

EbaC
(yellow).

R4b: H0:
r2BC � r

2
EbaC

�
�

�
�

maxðr2BC ;r
2
EbaC
Þ
¼ r2

AB;H1:
r2BC � r

2
EbaC

�
�

�
�

maxðr2BC ;r
2
EbaC
Þ
< r2

AB, H2:
r2BC � r

2
EbaC

�
�

�
�

maxðr2BC ;r
2
EbaC
Þ
> r2

AB. Since the prediction is

about whether
r2BC � r

2
EbaC

�
�

�
�

maxðr2BC ;r
2
EbaC
Þ
is predicted by r2

AB, in the simulations results reported below we

show a scatter plot between the two where good predictions lie along the diagonal and failure

of prediction strays away from it.

The results match very well with the predictions in Fig 2. For converging and different

cause pathways, a pathway specific prediction is that the sum of the two correlation coefficients

never exceeds unity. This is also evident in the simulation results.

For feedback and feed-forward pathways predictions from R1 to R4a, the X axis is rBC and

Y is
m2sde1
mf sde2

which reflects the relative strength of the feedback or feed-forward term as compared

to the forward relation between B and C. The feed effect is strong when the ratio is close to

zero and weak moving away from it. For negative feedback and feed-forward the Y axis goes

from -1 to 0 and for positive feedback and feed-forward from 0 to 1. With negative feedback

and feed-forward, there is an apparent conversion to positive feedback and feed-forward

respectively under a set of conditions. When this happens rBC becomes negative and the pre-

dictions of positive feedback and feed-forward respectively apply. It can also be seen that when

the ratio is close to zero, predictions of converging pathway hold true.

Fig 3. Simulation results of all pathways against all predictions. For all acyclic pathways and predictions from R1 to R4a, the result of every simulation run is

plotted as a point with r2
AB and r2

BC on X and Y axes respectively. Green represents null hypothesis true, red for H1 and yellow for H2.

https://doi.org/10.1371/journal.pone.0204755.g003
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Predictions from R4b for all pathways are shown as scatter plots with
r2BC � r

2
EbaC

�
�

�
�

maxðr2BC ;r
2
EbaC
Þ
and r2

AB

When they are predicted equal, most points lie along the diagonal. Wherever inequality is pre-

dicted, they are on one side of the diagonal.

Rejection due to overfitting inequality: For all inequality predictions, overfitting is possible.

For example, if we expect that r2
AC > r2

ABr
2
BC, it is also possible that r2

AC is too large than what can

be predicted by the pathway under consideration. It is possible to test this either analytically

using equations derived for the corresponding predictions (see S1 Text), or using simulations

only if the parameters of the causal equations are known. If parameter estimates for the path-

ways are known from independent empirical sources, it should be possible to test over-fitting

inequality. We will illustrate this with real life data later in the section ‘Testing specific path-

ways and questions: The case of pre-diabetes’.

5. Sensitivity and robustness of predictions

We used simulations to test the sensitivity and reliability of the analytical predictions. The sim-

ulations were run using the causal pathway equations for each of the pathways P1 to P7 to gen-

erate data, assuming the errors to be distributed normally around a mean zero. Up to 10000

simulations are run, with each run using randomly drawn parameters and error standard devi-

ations from a given range (see S1 Text ‘Simulations used for testing the sensitivity and robust-

ness of the predictions’ for details). The error standard deviation ranges were selected such

that the coefficients of determination were well spread between zero and one. The generated

data were then used to test the predictions of the corresponding pathway. Simulations used in

this section are not based on real life data and are mainly employed to test the reliability of the

predictions over a range of regression correlation coefficients.

5.1. Prediction sensitivity depends on sample size

Figs 2 and 3 show that simulations generally follow the analytical predictions quite well, but

with certain limitations. Many of the predictions, particularly when H1 and H2 are expected to

be true, work well above threshold values of r2. When either r2
AB or r2

BC or both are small, the

null hypothesis fails to get rejected. This threshold of sensitivity can be reduced by increasing

sample size (n) (Fig 4). For example, in the case of prediction 1 for the convergent pathway,

simulations showed that type 2 error reduced in a threshold relationship with the product of

r2
AB and r2

BC and the point of inflection reduced exponentially with sample size (Fig 4B).

Although qualitatively it can be said without doubt that statistical power would increase with

sample size, the effect of sample size on statistical power appears to be different for different

pathway-prediction combinations (Fig 4). In the case of cyclic pathways, many predictions are

conditional as described above, and that is clearly reflected in the simulations. The agreement

between predictions and simulation results is weaker for a few specific pathway-prediction

combinations, in the sense that they work in a narrow range of conditions. This was seen in

case of P5 (different cause) prediction from R4b, and P7 (negative feed-forward) prediction

from R2 (Fig 4). This implies that we need to be conservative in rejecting pathways in such

pathway-prediction combinations, particularly when the correlation coefficients are small.

Further, wherever the predictions are themselves the null models, its rejection will naturally

become conservative at low correlations. However, for inequality predictions, where the null

hypothesis is equality, failure of rejecting the null hypothesis should not be taken as rejection

of the prediction when correlations are weak. When we take such a conservative approach,

rejection of a prediction can be confidently taken to mean rejection of a pathway whereas fail-

ure to reject has limited implications particularly when the correlations are weaker.
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5.2. Robustness of predictions

It can be seen from Table 10 that each pathway makes a set of predictions by which some path-

ways can be differentiated from others. However, some have an identical set of predictions among

Fig 4. Effect of n on the reliability of prediction. A: Simulation results at n=100 and n=500 in three pathway-prediction

combinations: Colour codes similar to Fig 3. Note that when correlation coefficients are small the null hypothesis fails to get

rejected leading to type 2 error. The parameter area over which the simulation results match the prediction increases with n.

B. For prediction 1 of convergent pathway type 2 error shows a threshold relationship with the product of r2
AB or r2

BC and the

point of inflection of the threshold relationship decreases exponentially with sample size.

https://doi.org/10.1371/journal.pone.0204755.g004
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the general predictions described so far. Table 10 shows that there are 6 different signatures

among 9 primary pathways. Some of the predictions are conditional, and therefore, it may not

always be possible to differentiate between pathways. For example, some predictions do not work

for very small r2 values. Feedback is not distinguishable from linear pathways unless the feedback

arrow is sufficiently strong. Such limitations are common to all statistical tools, and they need to

be used and interpreted in light of the appropriate context and conditions.

5.3. Sensitivity analysis

The predictions derived and tabulated above are based on the typical assumptions of main-

stream statistics that the input variables are distributed normally and that all causal links are

linear. However, it is important to ask how critical these assumptions are for the predictions to

work. In experimental biology, the input variable is often designed to have uniform intervals

and is not normally distributed. A moderate deviation from linearity is also common in physi-

ological and other biological systems. If the predictions are too sensitive to these assumptions,

they may prove to be of limited use in real-life. We used Monte-Carlo simulations to assess

whether the predictions work under moderate deviations from these assumptions. When the

input variables were selected randomly from a uniform rather than a Gaussian distribution, all

predictions worked with nearly the same differentiating ability (data not shown). Similarly,

when non-parametric Spearman ranked correlations were used instead of Pearson’s correla-

tions, the correlation related predictions (from R1 and R4) worked similarly (data not shown).

This demonstrates that the tools are not too sensitive to the assumptions of normality of input

variable, linearity of relationships, and parametric or non-parametric nature of correlations.

Table 10. Summary of predictions of all pathways considered.

Prediction/

Rule!

Pathway #

R1 R2 R3 R4 a R4 b Pathway specific prediction

P1 linear r2AC − r2
AB.r2BC = 0 |Mca|= |Mba.Mcb| rEba,Ecb= 0 rEbc,C/rBC < 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ
¼ r2

AB

P2 radiating r2AC − r2
AB.r2BC = 0 |Mca|= |Mba.Mcb| rEba,Ecb= 0 rEbc,C /rBC < 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ
¼ r2

AB

P3 convergent r2AC − r2
AB.r2BC< 0 |Mca|< |Mba.Mcb| rEba,Ecb> 0 rEbc,C /rBC > 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ
¼ r2

AB

rAC=0,

r2AB+r2BC<1

P4 common cause r2AC − r2
AB.r2BC> 0 |Mca|> |Mba.Mcb| rEba,Ecb< 0 rEbc,C /rBC < 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ

>¼ r2
AB

Symmetry around A,B,C

P5 different cause r2AC − r2
AB.r2BC< 0 |Mca|< |Mba.Mcb| rEba,Ecb> 0 rEbc,C /rBC > 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ
¼ r2

AB

rAC=0

r2AB+r2BC<1

P6 feedback

Negative

r2AC − r2
AB.r2BC> 0 |Mca|> |Mba.Mcb| rEba,Ecb< 0 rEbc,C /rBC < 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ

>¼ r2
AB

P6 feedback positive r2AC − r2
AB.r2BC< 0 |Mca|< |Mba.Mcb| rEba,Ecb> 0 rEbc,C /rBC < 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ

>¼< r2
AB

P7 feed-forward negative r2AC − r2
AB.r2BC< 0 |Mca|< |Mba.Mcb| rEba,Ecb> 0 rEbc,C /rBC < 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ

<¼ r2
AB

P7 feed-forward positive r2AC − r2
AB.r2BC> 0 |Mca|> |Mba.Mcb| rEba,Ecb< 0 rEbc,C /rBC < 1 r2EbaC

� r2BC
�
�

�
�

maxðr2EbaC
;r2BCÞ

>¼ r2
AB

Note that there are 6 distinct signatures among 9 pathways. Pathways with identical predictions are shaded with the same color. There is some redundancy between the

predictions. For example, the results of R1, R2 and R3 are tightly correlated. We feel that the redundancy serves to validate and reinforce the predictions. Also, when

there are complex pathways arising through combinations of primary pathways, different predictions show differential departures from the primary pathway

predictions. Therefore, all predictions are useful in spite of some redundancy.

https://doi.org/10.1371/journal.pone.0204755.t010
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6. Applications of the method

6.1. Accepting or rejecting pathways using real-life data

Two approaches are possible by which the predictions of a pathway can be tested using real-

life data.

(i) Based on confidence intervals of correlations and regression slopes: The null hypoth-

eses for every prediction can be tested using calculation of confidence intervals of regression

correlation parameters. Simulations have shown that except when the underlying correlation

coefficients are too low, this approach can be reliably used to test the predictions. The sensitiv-

ity of predictions depends upon the sample size as well as the position in the parameter space

(Fig 3). It is likely therefore that at smaller sample sizes, or at lower r2
AB or r2

BC; pathways that

predict H1 or H2 may fail to get support even if true. On the other hand, at lower r2
AB or r2

BC if a

pathway predicts H0 to be true and the null hypothesis gets rejected, the rejection can be highly

reliable. (ii) Monte-Carlo simulation approach: An alternative approach, which will be more

conservative in rejecting pathways, is the Monte-Carlo approach. Assuming a specific pathway

to be true, it is possible to back calculate the causal equation parameters from the regression

correlation parameters obtained in the data (Tables 2 to 9). For pathways such as negative or

positive feedback, it is not possible to estimate all causal parameters from regression parame-

ters. In such cases, if empirical estimates of one or a few causal parameters can be obtained, the

remaining causal parameters can be worked back. Using the estimated parameters of causal

equations, Monte-Carlo simulations can be run to obtain the probabilities of getting the

observed results. This approach can be particularly useful when the correlations obtained in

the data are weak, and a conservative inference is preferred.

6.2. Distinguishing between pathways with identical signatures

From the predictions summarized in Table 10, it can be seen that some pathways share predic-

tion signatures. For example, the linear pathway cannot be distinguished from radiating or

convergent, is indistinguishable from different cause. There are three possible ways of resolv-

ing between pathways with similar signatures:

i. Swapping variables: In the generalized predictions, common cause pathway and negative

feedback pathway have the same predictions. However, the predictions of the common

cause pathway are symmetric around A, B and C, and flipping the positions of the three var-

iables does not alter the predictions, which is not the case with negative feedback pathway.

ii. Involving a fourth variable whose causal relationship with at least one of the triad is already

known, or

iii. Involving more variables to cross validate pathways.

We will discuss (ii) and (iii) in a different context below.

6.3. Inferring causality between two variables

It is extremely difficult to infer causal relationship between two correlated variables. Although

some solutions have been suggested, their applicability is limited [15, 16]. However, it is possi-

ble to infer the causal relationship between two variables if we have data on a third variable

that is correlated with one or both of them with known causality. For example, in men, testos-

terone levels and muscle strength are correlated, but the direction of the causal arrow might be

uncertain since testosterone can increase muscle mass, while [32] exercise can also induce a

testosterone response [33,34]. The causal relationship can be revealed in cross-sectional data if
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we use chronological age as a third variable. Neither testosterone nor muscle mass decides the

chronological age, but age may affect one or both the variables. If age shows significant correla-

tion with one or both the variables, the predictions from different possible pathways can be

tested using the set of predictions as described. By testing these predictions, it should be possi-

ble to determine the causal relationship between muscle mass and testosterone.

6.4. Inferring causal pathways with three variables

To infer causal pathways within three intercorrelated variables, three alternative approaches

are possible. The first approach is to test and resolve between preconceived hypothetical path-

ways. It is likely that prior knowledge or some insights into mechanisms allow us to start with

a few plausible alternative pathways. It is possible to perceive more complex pathways by com-

binations of the primary pathways that we considered in this paper. For example, a pathway

may contain both feedback and feed-forward elements. Such complex or combinational path-

ways can be used to make a set of predictions by the analytical approach described above and

testing these predictions can resolve between pathways. If we do not have such preconceived

pathways, it would be necessary to consider all possible combinations of pathways between the

three variables and make differential predictions from each of them. In such cases, we must

also consider permutations of the variables. At the end, it may not be possible to ascertain a

single unique causal pathway since the prediction signatures of some of them may be identical.

Nevertheless, it would still be possible to reject some pathways based on their prediction signa-

ture. In addition, if available, we can involve a fourth variable correlated to one or more of the

three, if there is some pre-existing knowledge about its causal relationship.

6.5. Inferring causal networks with more than three variables

In complex systems, often there are large causal networks. In such networks, combinations of

3 membered motifs can be identified. Out of the possible pathways among three variables

some can be rejected using analysis of the three variables. Bringing in a fourth one can provide

additional insights which can be used for cross checking or validating our first set of infer-

ences. In complex causal networks, there can be many such cross check and validation possi-

bilities. For large networks algorithms requiring massive computational power may be needed

that may pin down one or a few network structures from the large number of possible ones

using combinations of three-member motifs and cross validation facility among the motifs.

7. Testing specific pathways and questions: The case of pre-

diabetes

Apart from some common pathways described above, it is possible that real life problems have

some added complications due to which, the standard solution of testing a fixed set of predic-

tions may not be sufficient. However, one can apply similar foundational principles to handle

such pathway-specific questions. We will illustrate this using a classical hypothesis that

attempts to explain a human physiological state designated as an insulin resistant, hyperinsuli-

nemic, normoglycemic, pre-diabetic state. In this state, the plasma levels of fasting insulin (FI)

are raised although fasting glucose (FG) remains normal. The classical interpretation of this

state (Fig 5A) is that a rise in insulin resistance, presumably as a result of obesity, is primary.

Insulin resistance interferes with insulin-induced glucose uptake by muscle and other insulin-

dependent tissues. The reduced uptake raises plasma glucose levels. The raised plasma glucose

induces extra insulin secretion so that plasma insulin levels go up. The extra insulin compen-

sates for insulin resistance and normalizes glucose level. As a result, the fasting steady state of

an insulin-resistant individual is characterized by raised FI and normal FG. At steady state,
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insulin resistance is measured by the index, HOMA-IR (defined as
Insulin IUð Þ:Glucose mg

dLð Þ
405

), and the β

cell response to glucose, by the index, HOMA β (defined as
360:InsulinðIUÞ
Glucose mg

dLð Þ� 63
). Both the indices are

based on the assumption of a steady state. Indices based on ratios are tricky in that they can

result into many spurious correlations. These correlations are not useful to make any func-

tional inference about the system. However, we show below that since different causal path-

ways can give rise to different correlations, such correlations can be used to infer causal

pathways.

A logical flaw in this interpretation is that, after the glucose levels return to normal, there is

no reason why FI should remain high. Insulin has a short half-life of about 6 minutes [30,35]

Fig 5. Possible pathways between insulin resistance, FG and FI. a) A simplified single feedback pathway that approximates

the negative feedback pathway P6. b) A null model assuming FG and FI to be independent and HOMA-IR a derived construct.

c) An improvised null model with an external causal factor influencing FG and FI. d) The classically perceived pathway with

dual feedback from glucose and insulin.

https://doi.org/10.1371/journal.pone.0204755.g005
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and therefore a steady state level can be achieved quite fast; 12 hour fasting should be sufficient

to achieve such a steady state. Therefore, a steady state in which FI is raised but FG remains

normal is not well explained by the classical theory. In spite of this flaw, the main stream think-

ing in this field has held on to this interpretation for over four decades, and the indices

HOMA-IR and HOMA- β continue to be commonly used in epidemiological research. Chal-

lenges to this causal interpretation come from the arguments and evidence that rise in FI pre-

cedes insulin resistance [22–26,36]. Therefore, there is a need to reexamine the classical causal

pathway. We will test this pathway based on our interpretations of the interrelationships of the

regression-correlation parameters.

The pathway in question is more complex than the basic set of pathways P1 to P7. For regu-

lation of glucose production by the liver and glucose uptake by tissues, there is a dual negative

feedback. One feedback is exerted by glucose itself, which enhances tissue uptake and sup-

presses liver glucose production. The other feedback operates through insulin, which facilitates

glucose uptake by insulin-dependent tissues and suppresses liver glucose production. If we

ignore the direct glucose feedback and assume that feedback regulation operates only through

insulin, then there is a single negative feedback. Thus the pathway can be simplified to the neg-

ative feedback pathway P6. If we incorporate dual feedback, as the equations show below, the

relationship between insulin resistance and FG is not strictly linear. We could therefore use

the standard set of predictions of a negative feedback model, assuming a single feedback. Alter-

natively, we can use the dual feedback model, and apply simulations to make and test predic-

tions, since empirical estimates for most of the parameters are available from experiments (see

S2 Text).

However, the main problem in testing these pathways is that we have no direct measure of

insulin resistance. HOMA-IR and HOMA-β are believed to measure insulin resistance and β
cell response respectively, but they are derived from the other two variables, which makes the

problem tricky and circular. We approach the problem using more than one set of assump-

tions. (i) First, we test the dual feedback pathway (Fig 5D) assuming HOMA-IR and HOMA-β
to faithfully represent insulin resistance and β cell response respectively. (ii) Then, we examine

the constraints laid down by deriving these two parameters from the other two variables. (iii)

In comparison, we use a null model (Fig 5B) in which the classical pathway is not true, there is

no relationship between FG and FI, and HOMA-IR and HOMA-β are artificial constructs

derived from the two measured variables and may not reflect any real phenomenon. We also

test the typical convergent model, in which FG and FI determine HOMA-IR. (iv)Using some

oversimplification, ignoring non-linearity of the model and assuming that HOMA-IR and

HOMA-β are faithful indicators, we test the classical predictions of the negative feedback path-

way (Fig 5A) as described earlier. We use epidemiological data on FG and FI measurements in

four populations to test the classical causal pathway using our approach.

As a general note, we would like to add that the HOMA indices being ratio measures could

be confounding factor. It is known that ratio indices can behave unpredictably in different

parameter ranges, and can therefore generate spurious correlations. In our view, this strength-

ens the case for using the underlying causal relationships between the variables to interpret

these correlations in the appropriate context.

7.1. Data sources

We used four data sets of sample studies by two research groups. All the four sets contain indi-

viduals with and without overt type 2 diabetes. Since we are addressing the prediabetic state

here we have taken the non-diabetic subset of n individuals from the four samples. (i) Coro-

nary Risk of Insulin Sensitivity in Indian Subjects (CRISIS) Study, Pune, India [37] (n=558).

Inferring causality from steady-state correlations

PLOS ONE | https://doi.org/10.1371/journal.pone.0204755 October 11, 2018 22 / 34

https://doi.org/10.1371/journal.pone.0204755


(ii) Pune Maternal Nutrition Study (PMNS), Pune, India [38] (n=299). (iii and iv) Newcastle

Heart Project (NHP), England, [39] which has data on populations of two different ethnic ori-

gins namely European white (n=595) and south Asian (n=413). (iv) Pune Maternal Nutrition

Study (PMNS), Pune, India [38] (n=299). We received the data from the two principal investi-

gators of the studies. Data sources (i) and (ii) were received from Prof. Chittaranjan Yajnik

and data sources (iii) and (iv) were received from Prof. Raj Bhopal. All data have been anon-

ymized, and all the predictions have been tested independently in all the four data sets.

7.2. The dual feedback model (Fig 5D)

We assume that the standing plasma glucose level is a result of baseline rate of glucose produc-

tion by the liver; suppression of this production as well as muscle glucose pickup which is pro-

portional to the standing glucose level (direct glucose feedback); the insulin mediated

suppression as well as uptake (insulin mediated feedback) and individual variability. The

standing insulin levels are a result of glucose stimulated insulin secretion on the one hand and

insulin degradation on the other. Thus, the causal equations can be written as

dG
dt
¼ L � K1:G � ISENS:K2:I þ e1

dI
dt
¼ K3:G � d:I þ e2

Where G and I are plasma levels of glucose and insulin respectively, and FG and FI are the

fasting steady state levels of the same. K1 denotes the rate constant for negative feedback of glu-

cose on liver glucose production and tissue glucose uptake; K2 denotes the rate constant for

insulin-mediated feedback which is proportional to ISENS, the insulin sensitivity of tissues; K3
is the rate constant for glucose-induced insulin release; and d, the rate of insulin degradation.

At steady state, we get

FG ¼
d:ðLþ e1Þ � ISENS:K2:e2

K1:d þ ISENS:K2:K3

FI ¼
K3:FGþ e2

d

It can be seen that the steady state glucose level is a function of insulin resistance (IR) which

is a reciprocal of insulin sensitivity. Using the reciprocal, we can write

FG ¼
IR:d:ðLþ e1Þ � K2:e2

IR:K1:d þ K2:K3

Thus the relationship between FG and IR is non-linear and follows a saturation curve.

7.3. Testing the model

Testing the pathways by the four different approaches described above:

7.3.1. Approach 1. Assuming classical pathway and faithful indices: The following predic-

tions of the classical pathway depicted in Fig 5D and modeled above are testable.

i. HOMA-IR, FG and FI should be positively correlated to each other. This prediction is true

in all the four data sets except that the correlations between FG and FI are weak in all the

four data sets. In terms of the variance explained (range 2.6 to 4.9%) FG and FI are poorly
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related (Table 11). The glucose homeostasis model expects a positive correlation between

FG and FI. It is important to realize this since in the classical thinking, a prediabetic state is

characterized by increased insulin but normal glucose levels. If the compensatory insulin

response is mediated through glucose, it is impossible to have a raised FI without a propor-

tionate rise in FG. In the pathway predictions, a positive correlation between FG and FI is

expected independent of the feedback loop. However the classical thinking tries to explain a

hyperinsulinemic normoglycemic state achieved through this pathway. The poor correlation

between FG and FI, and a large coefficient of variation in FI compared to FG indicates that

a normoglycemic hyperinsulinemic state may indeed be achieved, but whether the classical

pathway offers a sound explanation for this state is the question. In an insulin resistant state,

the level of FI can increase by about 10-fold the normal. However, the difference between

the lower and upper limit of glucose in a pre-diabetic state is less than 1.5-fold. To achieve a

tenfold increase in the effect resulting from a 1.5 fold increase in the causal variable, the

slope needs to be of the order of 7 to 8. However in the data, the regression slope ranges

between 0.05 and 0.2 (Table 12). Therefore the variance in FI is unlikely to be caused by var-

iance in glucose following insulin resistance. Therefore, we need to conclude that most of

the variation in FI appears to be random error independent of insulin resistance.

ii. By the steady state equations, the slope of the regression of FI on FG should be K3/d. Empir-

ical estimates for both K3 and d are available (see S2 Text) and therefore this prediction can

be tested. The empirical estimates are K3 = 0.08 microIU.mg/min and d = 0.15/min respec-

tively, and thereby the expected slope is 0.533. In all the four data sets, the slopes are signifi-

cantly smaller than the ones predicted from the empirical estimates (0.05 to 0.2). Thus,

apart from a mismatch between the slope required to cause the observed variation in FI and

actual slopes, the slopes expected from the empirical estimates of parameters and those

obtained in regression also do not match. The latter mismatch by itself may not be suffi-

cient to reject the pathway since a large measurement error in the X variable, i.e. FG can

lead to underestimation of regression slope, but this explanation implies that a substantial

part of variation in glucose is independent of insulin resistance, and is akin to random

error with respect to the hypothetical causal pathway.

iii. HOMA-β in our assumption represents K3. However K3 is a constant in our model, and

although it may have some variability in the population, it is uncorrelated with the three var-

iables of concern. Therefore, HOMA-β should show no significant correlation with FG, FI

and HOMA-IR. However, in all the four data sets HOMA-β is significantly positively corre-

lated with FI, but negatively correlated with FG and positively correlated with HOMA-IR.

iv. In a negative feedback pathway r2
AC > r2

AB:r
2
BC. Qualitatively this inequality is true for

HOMA-IR, FG and FI in the data. However, simulations show that there is overfitting of

the inequality. r2
AC in all the four sets of data are substantially higher than the distribution

obtained in the simulations (Fig 6). The correlation between FI and HOMA-IR is far

greater than that predicted by the simulations, leading to an overfitting rejection.

Table 11. Fasting glucose and fasting insulin in the four datasets.

Data source FG mean (s.d.) FI mean (s.d.)

CRISIS (n=558) 94 (18.70) 7.58 (1.82)

KEMPMNS (n=299) 86.35 (11.21) 11.84 (10.82)

NHP-SA (n=413) 98.86 (7.37) 11.11 (9.26)

NHP-EU (n=595) 99.90 (6.40) 8.41 (5.29)

https://doi.org/10.1371/journal.pone.0204755.t011
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Thus if we assume the two HOMA indices to faithfully represent insulin resistance and beta

cell response respectively, then classical pathway needs to be rejected owing to mismatches

with many of its predictions.

The distribution generated by simulations matches well with the real life correlations for

true IR-FG (grey bars and arrows), FG-FI (red bars and arrows), and the product of the two

(purple bars and arrows). The correlation between true IR and FI is greater than the product

as predicted by the pathway (green bars, we do not have empirical estimates of these correla-

tions) but the correlation between HOMA-IR and FI (blue bars and arrows) is substantially

greater than the predicted leading to an overfitting rejection. This indicates that either

HOMA-IR as currently calculated is substantially different from true insulin resistance or the

pathway get rejected based on this prediction.

7.3.2. Approach 2. Effects of deriving HOMA-IR and HOMA-β from FG and FI: Since

HOMA-IR and HOMA-β are not independently measured but derived from FG and FI mea-

surements, some correlations will follow from the derivations themselves. The overfitting

anomaly observed above can be explained as an artifact coming out of the calculation of

HOMA-IR. However, some other anomalies remain unexplained. Here we are assuming that

the classical pathway is true and therefore, FI is a linear function of FG. If FI is represented as

m.FG + e, HOMA-IR will be correlated to FG2. Similarly, HOMA-β should be represented as

m.FG/(FG – 63)+e. Under normal physiological range, FG> 63 and therefore HOMA-β is a

decreasing function of FG. As a result both FI and HOMA-IR should be negatively correlated

to HOMA-β. Simulations of the pathway results in a negative correlation between HOMA-IR

and HOMA-β as long as the errors are small to moderate. These expectations do not match

the empirical data, in which FI and HOMA-IR have significant positive correlations with

HOMA-β. Thus, accepting the classical pathway with some allowance for artifacts coming out

of the derived variables is not sufficient to explain the empirical correlations.

7.3.3. Approach 3. Testing the predictions of the null model: If FG and FI are indepen-

dent of each other and have some variance around a mean, HOMA-IR is expected to be posi-

tively correlated with both since it is a product of the two. FI should be positively correlated

with HOMA-β, but FG should be negatively correlated with HOMA-β. In the HOMA-IR-

HOMA-β relationship, FI is in the numerator of both. FG is in the numerator of HOMA-IR

but in the denominator of HOMA-β. Nevertheless, since the coefficient of variation of FI is

substantially greater than that of FG, FI is expected to dominate the relationship and result in a

positive correlation between HOMA-IR and HOMA- β. All these predictions are observed in

the data (Table 12). The mismatch of the null model with the data is that it assumes FG and FI

to be independent and uncorrelated. In all the four sets of data, there is a significant but weak

Table 12. Correlations between FG, FI, HOMA-IR and HOMA beta in the four data sets; r is the Pearson’s correlation coefficient, M is the slope of the correspond-

ing regression, and ρ is the Spearman’s rank correlation.

FG:FI FG:HOMA IR FG:HOMA beta FI:HOMA IR FI:HOMA beta HOMA IR:HOMA

beta

r(M) ρ r ρ r ρ r ρ R ρ r ρ
CRISIS (n=558) 0.217

(0.055)

0.284 0.525 0.465 -0.209 -0.403 0.931 0.975 0.232 0.698 0.312 0.543

KEM PMNS(n=299) 0.198

(0.191)

0.241 0.317 0.352 -0.219 -0.259 0.985 0.990 0.532 0.811 0.633 0.746

NHP-SA (n=413) 0.163

(0.206)

0.282 0.236 0.464 -0.198 -0.145 0.995 0.990 0.763 0.875 0.833 0.810

NHP-EU (n=595) 0.223

(0.185)

0.261 0.309 0.464 -0.064 -0.055 0.994 0.993 0.891 0.933 0.904 0.886

https://doi.org/10.1371/journal.pone.0204755.t012
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Fig 6. Frequency distribution of correlation coefficients in simulations of the classical pathway leading to prediabetic state: Bars

represent the distribution of Pearson’s correlations obtained in 10000 runs of simulations. The arrows indicate Pearson’s correlations

in the four sets of empirical data.

https://doi.org/10.1371/journal.pone.0204755.g006
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correlation between the two. The r2 ranges from 0.026 to 0.049, and thus not more than 5% of

variance is explained by the relationship.

If we consider FG and FI to be independent and HOMA-IR and HOMA-β derived from

them, they constitute a convergent pathway that can be tested by the pathway predictions. It

can be seen that predictions from R1, R2 and R3 of the convergent pathway are accepted.

However, prediction from R4 and the pathway-specific prediction are rejected (Tables 12 and

13). These rejections can be explained by the positive correlation between FG and FI. We have

seen in the analysis of pathway P3 that if A and C are positively correlated then r2
AB þ r

2
BC can

be greater than 1. The rejection of the null model suggests that there is a relationship between

FG and FI, but does not indicate whether it comes from the classical pathway or through any

other source as in Fig 5C.

7.3.4. Approach 4. If we ignore the non-linearity of the model and assume HOMA-IR

and HOMA-β to faithfully represent insulin resistance and beta cell response, we may use the

4 predictions of the standard negative feedback pathway. It is seen that predictions from R1,

R2 and R3 are accepted but the outcome of prediction from R4 is complex (Table 14). After

correcting for the effect of HOMA-IR, the FG-FI correlation should be weakened and that dif-

ference would be predicted by the correlation between HOMA-IR and FG. However instead of

weakening, the FG-FI correlation becomes negative. Because of the strong positive correlation

between HOMA-IR and FI, correcting for HOMA-IR subtracts from every value of FG, a

quantity proportionate to FI, leading to a negative correlation between the corrected FG and

FI. Additionally, simulations of the pathway show that if true insulin resistance is assumed to

be correlated to FG by the same order as HOMA-IR, the correlation of true insulin resistance

Table 13. Testing the four predictions for the null model, which is a convergent pathway (Fig 5B),; A=Glucose, B=HOMA IR, C=Insulin.

Prediction R1

r2AC <r2AB.r
2

BC

CI of r2
AC CI of r2AB.r2BC Accepted/Rejected

Lower Upper Lower Upper

CRISIS 0.013 0.081 0.180 0.300 Accepted

KEM PMNS -0.004 0.082 0.035 0.162 Not rejected

NHP-SA -0.004 0.057 0.013 0.098 Not rejected

NHP-EU 0.016 0.084 0.050 0.139 Not rejected

Prediction R2

Mca<Mba.Mcb

CI of Mca CI of Mba.Mcb Accepted/Rejected

Lower Upper Lower Upper

CRISIS -0.053 0.163 0.104 0.146 Accepted

KEM PMNS -0.185 0.568 0.195 0.413 Accepted

NHP-SA -0.199 0.611 0.1761 0.418 Accepted

NHP-EU -0.178 0.548 0.190 0.320 Accepted

Prediction R3

rEbaEcb>0

CI of rEbaEcb Accepted/Rejected

Lower Upper

CRISIS 0.390 0.521 Accepted

PMNS 0.118 0.333 Accepted

NHP-SA 0.081 0.268 Accepted

NHP-EU 0.178 0.328 Accepted

Prediction 4a

rEbaC>rBC

CI rEbaC CI rBC Accepted/Rejected

Lower Upper Lower Upper

CRISIS 0.953 0.965 0.918 0.941 Accepted

KEM PMNS 0.966 0.978 0.982 0.988 Rejected

NHP-SA 0.980961 0.987 0.994 0.995 Rejected

NHP-EU 0.968 0.977 0.993 0.995 Rejected

https://doi.org/10.1371/journal.pone.0204755.t013
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with FI is far less than that between HOMA-IR and FI (a result similar to Fig 6 and therefore

not separately shown). Thus, there is an overfitting rejection of prediction from R1 as well.

Rejection of this pathway based on two predictions is due to the unrealistically strong correla-

tion between HOMA-IR and FI, which comes from the calculation of HOMA-IR itself.

We need to examine now to what extent HOMA-IR faithfully represents the true insulin

resistance because if it does, the classical pathway certainly gets rejected. This can be examined

in the simulations since the true insulin resistance is an input variable and HOMA-IR can be

calculated as an outcome of the simulations. We see that HOMA-IR is correlated well with

true insulin resistance when both e1 and e2 are close to zero (Fig 7). As the errors increase, the

correlation becomes weaker. In the data, we do not have access to e1 and e2 but since the FG-FI

correlation also becomes weaker with e2, we can look at how HOMA-IR represents true insulin

resistance at different levels of FG-FI correlation. It can be seen that as FG-FI correlation

becomes weak, HOMA-IR correlation with the true insulin resistance also becomes weak (Fig

7), but this relationship is affected by e1. When e1 is close to zero, i.e. almost all the variation in

FG is explained by variation in true insulin resistance, even at low FG-FI correlation,

HOMA-IR represents true insulin resistance fairly well, their correlation ranging between 0.58

and 0.7. On the other hand if we assume e1 to be large i.e. most of the variation in FG is due to

random error or effects independent of insulin action, HOMA-IR is poorly correlated with

true insulin resistance, the correlation coefficient declining to 0.2. Thus if we assume that the

variance in FG is mainly caused by insulin resistance, then we have to reject the classical path-

way leading to hyperinsulinemia. Alternatively, it is likely that the classical pathway is true but

HOMA-IR does not represent true insulin resistance and that most of the variation in FG is

not caused by insulin resistance. The substantially lower than expected slope of the FG-FI

Table 14. Testing the four predictions for a simplified form of the classical negative feedback pathway (Fig 5A); (A= HOMA IR, B=glucose, C=insulin).

Prediction R1

r2AC >r2AB.r2BC

CI r2AC CI of r2AB.r2BC Accepted/Rejected

Lower Upper Lower Upper

CRISIS 0.845 0.886 0.003 0.300 Accepted

KEM PMNS 0.9652 0.978 -0.001 0.161 Accepted

NHP-SA 0.988 0.99 -4.8695E-05 0.006 Accepted

NHP-EU 0.986 0.990 0.001 0.012 Accepted

Prediction R2

Mca>Mba.Mcb

CI Mca CI of Mba.Mcb Accepted/Rejected

Lower Upper Lower Upper

CRISIS -3.242 9.967 0.222 0.641 Accepted

KEM PMNS 0.083 0.299 0.080 0.587 Rejected

NHP-SA 0.085 0.326 0.038 0.334 Accepted

NHP-EU -3.766 11.581 0.132 0.457 Accepted

Prediction R3

rEbaEcb<0

Lower rEbaEcb Upper rEbaEcb Accepted/Rejected

CRISIS -0.574 -0.452 Accepted

PMNS -0.414 -0.210 Accepted

NHP-SA -0.325 -0.142 Accepted

NHP-EU -0.379 -0.234 Accepted

Prediction R4a

rEbaC<rBC

CI rEbaC CI rBC Accepted/Rejected

Lower Upper Lower Upper

CRISIS -0.392 -0.243 0.136 0.294 Rejected

PMNS -0.231 -0.008 0.087 0.305 Rejected

NHP-SA -0.168 0.023 0.068 0.256 Rejected

NHP-EU -0.167 -0.008 0.145 0.298 Rejected

https://doi.org/10.1371/journal.pone.0204755.t014
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regression suggests large random errors in FG making the second interpretation more likely.

In any case the classical pathway and the faithfulness of HOMA indices cannot be simulta-

neously true, and we have to reject at least one of them.

Results of the four alternative approaches to analyze the classical pathway and the null

model converge on the inference that the null model is rejected on the basis of a weak but sig-

nificant correlation between FG and FI. But the weak correlation in FG and FI is not ade-

quately explained by the classical pathway owing to multiple mismatches and rejection of

many of its predictions. The pathway rejection may be partially saved by saying that

HOMA-IR and HOMA- β are not good indicators of insulin resistance and beta cell response

and that we do not have access to true insulin resistance to test the predictions. However the

FG-FI regression slope also has a large mismatch with expectations derived from the variance

in FI as well as from empirical estimates of K3 and d. Therefore, it seems more likely that FG

and FI are related by causes other than the classical pathway, and HOMA-IR and HOMA- β
are derived artificial constructs that do not represent any real life phenomena.

There are a number of real life interpretations of the pathway in Fig 5C. Autonomic inputs

from the nervous system are known to affect both insulin secretion and liver glucose produc-

tion, which might be represented by the common cause arrows of Fig 5C. Alternatively, a

small error in data collection can also result in the observed FG-FI correlation. The fasting

sampling is done by instructing the subjects to have no food or drink after the last evening

meal. However, if even a small proportion of subjects happen to consume bed tea an hour or

two before sampling, their glucose as well as insulin levels could be slightly elevated simulta-

neously. This can result in a weak positive correlation between FG and FI in the data. Since the

fasting state is based on the honesty of the subjects and there is no independent monitoring,

this source of error cannot be ignored. Thus, there are more than one possible reasons for

external factors causing a weak correlation between FG and FI, and the correlation is not suffi-

cient to support the classical pathway in the presence of multiple other mismatches.

Fig 7. The reliability of HOMA-IR as an index of true insulin resistance. The pathway simulations were carried out

at a standard deviation of e1=1 (blue dots) and 10 (red dots). The FG-FI correlation weakens with increase in e2 which

also affects the correlation between true IR and HOMA-IR. It can be seen that HOMA-IR is a reliable indicator of

insulin resistance when e1 is small, but at large e1 it is a poor indicator as suggested by a weak correlation with true

insulin resistance.

https://doi.org/10.1371/journal.pone.0204755.g007
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It should be noted that the correlational patterns in the four data sets used are remarkably

similar although they come from populations differing in location, ethnicity and culture. It

would be important to see whether the same correlational patterns are observed in other popu-

lations as well, but we can be confident in rejecting the classical pathway at least in the popula-

tions sampled.

7.4. What can type 2 diabetes research gain from our analysis

Putting the results together, it can safely be concluded that HOMA-IR and HOMA-β appear to

be artificial constructs and reflect very marginally, if at all, the true insulin resistance and β cell

response in a steady state. Before our approach for testing a causal pathway was available, there

was no way to test whether HOMA-IR and HOMA-β truly represent the intended states of the

system. Because of this limitation, insulin resistance was a circular argument. The inability of

insulin to regulate glucose was assumed to be because of insulin resistance, but insulin resis-

tance was measured as the inability of insulin to regulate glucose. This circularity had made

the hypothesis of insulin resistance and compensatory hyperinsulinemia non-falsifiable. Our

approach to pathway predictions breaks the circularity, and makes it possible to test whether

the insulin resistance and glucose-mediated compensatory hyperinsulinemia hypothesis is

supported by epidemiological data. At least in the populations tested, many serious anomalies

in the classical pathway leading to a hyperinsulinemic, normoglycemic, insulin resistance pre-

diabetic state are exposed. Conservatively we can argue that since HOMA-IR and HOMA-β
do not represent insulin resistance and β cell response faithfully, and we do not have alterna-

tive measures for them, it may not be possible to clearly reject the classical pathway, but the

data clearly show that even if true, the classical pathway has a very limited role in deciding FG,

FI and their inter-relationship. Both the steady state levels have a large component of error or

effects independent of the pathway under consideration. Although our analysis is restricted to

the prediabetic state at present, establishing causality in the prediabetic state has implications

for the over diabetic state. According to classical thinking, a failure of compensatory insulin

response leads to diabetic hyperglycemia. Since our analysis questions the compensatory insu-

lin response itself, the pathway leading to hyperglycemia is also in question. Even a highly con-

servative inference would demand rethinking of the causal process leading to diabetes.

It should be noted that although the HOMA indices may not reflect what they are intended

to reflect, they do not cease to be useful. They may still reflect on the population variability in

the glucose and insulin responses and many attempts to analyze this variability and classify

diabetes have used the HOMA indices insightfully [40,41]. Therefore although the interpreta-

tions might change, the HOMA indices may still serve a useful purpose.

Doubts about the classical pathway are raised independently by experiments using insulin

receptor knockouts or insulin suppression. Muscle-specific insulin receptor knockouts show

altered glucose tolerance curves but normal fasting insulin [42]. Insulin suppression experi-

ments do not result in elevated fasting glucose [43–45]. Inactivation of insulin degrading

enzyme raises steady state insulin levels but does not decrease glucose levels [46,47]. These

experiments have already challenged the classical pathway. Thus, there are multiple reasons to

doubt the classical pathway. On the other hand, a number of factors other than the mutual

effects of FG and FI are known to affect insulin response as well as glucose homeostasis [48–

54], but these factors have not been integrated into the mainstream glucose homeostasis mod-

els. We do not intend here to test all possible alternative pathways deciding FG and FI. But our

study lays down a set of methods by which this can be done, once the pathway hypotheses are

clearly spelt out and the causal variables are measured. An important contribution of our

methods is that physiological causal pathways can be evaluated based on epidemiological data,
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which is potentially a very important tool in understanding complex disorders. Experimental

biology reveals what can happen in a system, but what does happen at the population level is

better revealed by epidemiological data. Therefore, discerning causal signatures of pathophysi-

ological pathways in epidemiological data is likely to be an important breakthrough.

8. Conclusions

Making causal inferences from cross sectional correlational data is a long-standing problem. A

correlation between two variables does not give reliable information about causal relations.

However, we demonstrate here, in the context of steady state homeostatic systems, using math-

ematical proofs as well as simulations from causal pathways that, in a set of three or more cor-

related variables, it is possible to test causal hypotheses based on the interrelationships of

regression-correlation parameters. This is potentially a highly valuable tool in making causal

inferences from cross sectional data in several fields.

Using this set of principles, we tested the classical causal assumption behind the hyperinsu-

linemic, normoglycemic, insulin resistant or pre-diabetic state. The analysis showed that this

causal pathway and the measures of insulin resistance and insulin response were not supported

by epidemiological data. Thus, the objections raised recently to the classical causal pathway are

validated and alternative causal pathways that already have substantial experimental evidence

need to be integrated in the mainstream clinical thinking.
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