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Background: Chronic kidney disease (CKD) is a growing public health concern, and available treatments are 
insufficient in limiting disease progression. New strategies, including regenerative cell-based therapies, have 
emerged as therapeutic alternatives. Results from several groups, including our own, have reported evidence of a 
supportive role for mesenchymal stromal cells (MSCs) in functional recovery and prevention of tissue damage in 
murine models of CKD. Prompted by these data, an open pilot study was conducted to assess the safety and efficacy 
of a single injection of autologous adipose tissue-derived MSCs (AT-MSCs) for treatment of CKD. 
Methods: AT-MSCs were infused intravenously into six CKD patients at a dose of 1 million cells/kg. Patients were 
stabilized and followed for one year prior to MSC infusion and one year following infusion. 
Results: No patients presented with adverse effects. Statistically significant improvement in urinary protein excretion 
was observed in AT-MSCs transplanted patients, from a median of 0.75 g/day (range, 0.15-9.57) at baseline to 0.54 
g/day (range, 0.01-2.66) at month 12 (P = 0.046). The glomerular filtration rate was not significantly decreased 
post-infusion of AT-MSCs.
Conclusion: Findings from this pilot study demonstrate that intravenous infusion of autologous expanded AT-MSCs 
into CKD patients was not associated with adverse effects and could benefit patients already undergoing standard 
medical treatment.
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Introduction

Chronic kidney disease (CKD) is characterized by a 
progressive and permanent loss of kidney function. CKD 
represents a major public health problem due to its grow-
ing incidence and prevalence, the high cost of renal sub-
stitutive therapies and a marked increase of morbidity 
and mortality [1,2]. Available pharmacologic agents do 
not halt disease progression and have significant risks [3], 
thus prompting the search for new therapeutic strategies 
[4]. Mesenchymal stromal cells (MSCs) are multipotent 
stromal cells that reside within the vascular network of 
vascularized organs and have broad tissue-supporting 
roles throughout the body [5]. The ability of MSCs to 
preserve renal structure and function in experimental 
acute renal injury [6] and also in CKD has been dem-
onstrated in rodent models of diabetic nephropathy [7], 
partial nephrectomy [8], and allograft nephropathy [9]. 
Beneficial effects of MSCs have included restriction of the 
inflammatory response [6], decreases in proteinuria, and 
preservation of the tubular and interstitial architecture 
[7]. Of note, whole bone marrow (BM) transplant does 
not appear to exert similar beneficial effects [10]. CKD 
has been linked to a loss of stem cell quantity and func-
tion, particularly as patients progress to end stage disease 
[11]. Evidence also suggests that the pro-inflammatory 
state associated with CKD and uremic toxins, such as 
homocysteine [12] or p-cresol [13], can hasten stem cell 
senescence and apoptosis [14]. Hyperparathyroidism and 
insufficient erythropoietin activity can also contribute to 
progenitor cell dysfunction [15]. 

A recent meta-analysis demonstrated that cell-based 
therapies are effective in preclinical models of CKD [16], 
and systemic administration of MSCs is considered safe 
to treat renal and cardiovascular diseases in humans 
[17,18]. However, clinical translation of MSC-based 
therapeutics for human CKD is still in an early phase, 
and the optimal cell source, mode of administration and 
expected clinical effects are still not well characterized.

MSCs derived from adipose tissue (AT-MSCs) exhibit 
differentiation potential, kinetics, cell senescence, gene 
transduction efficiency and multi-lineage differentia-
tion capacity similar to BM-derived MSCs (BM-MSCs) 
[19]. Since BM samples require invasive procedures and 
yield fewer MSCs, AT-MSCs have been tested in different 
experimental and clinical scenarios. Indeed, we previ-

ously evaluated the use of AT-MSCs in a murine model of 
CKD and reported marked recovery in renal function and 
disease biomarkers [20]. We thus hypothesized that the 
injection of autologous ex vivo expanded AT-MSCs could 
exert positive functional effects in CKD patients with 
moderately advanced disease. Although the inclusion 
of a parallel control group is the desirable approach for 
a clinical trial, the purpose of this study was to acquire 
preliminary data that could inform the design of a future 
randomized, placebo-controlled, prospective trial. 

Methods

The National Health System Review Board located at 
the Servicio de Salud Metropolitano Oriente in Santiago, 
Chile, approved the protocol and the informed consent 
form, which was signed by each patient prior to any in-
tervention. The study was carried out in accordance with 
good clinical practice (GCP) guidelines, the Declaration 
of Helsinki and the rules of the International Society for 
Stem Cell Research (ISSCR) contained in the Guidelines 
for the Clinical Translation of Stem Cells, published in 
December 2008.

Patients, inclusion/exclusion criteria

Given the scarcity of data on the effect of AT-MSCs in 
CKD, we collected clinical data that might inform the de-
sign of a future trial. Therefore, CKD patients (n = 7) were 
enrolled for treatment with MSCs, using the following 
inclusion criteria.

1) CKD with an estimated glomerular filtration rate 
(eGFR) between 20 and 40 mL/min/1.73 m2 using the 
Modification of Diet in Kidney Disease (MDRD) formula, 
daily proteinuria > 150 mg, and blood pressure < 140/90 
mmHg with or without antihypertensive medications, at 
the recruitment visit. Diabetic patients were required to 
have a glycated hemoglobin ≤ 7.5%.

2) Clinical and laboratory evidence of progressive dis-
ease in the twelve months prior to the recruitment date. 

3) No other significant co-morbidity or condition that 
could affect the clinical disease course. These exclusion 
criteria included: active cancer or immunosuppressive 
treatments; women intending to be pregnant and/or not 
on effective contraception; and breast-feeding women. 
Additionally, patients could not have planned elective 
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surgical procedures or significant allergies reported.
4) All were receiving evidence based optimized stable 

pharmacological treatment for at least 12 months prior to 
recruitment, including dietary restricted salt (≤ 2 g/day 
of sodium) and protein (0.8 g/day) and renin angiotensin 
axis blockade (enalapril ≤ 40 mg/day or losartan ≤ 100 
mg/day) with the addition of furosemide, nitrendipine, 
atenolol or doxazosin as needed to achieve blood pres-
sure control (< 140/90 mmHg). Interventions were not 
changed (drugs and dosage) during the follow-up period.

Primary end point 

Change in CKD functional parameters, including the 
GFR and quantitative 24-hour urinary protein excretion 
rate in the 12-month period following MSC infusion. Be-
cause of the pilot nature of this study and the small sample 
size with no control group, variables were measured dur-
ing the 12 months prior to treatment (control period) and 
compared to measurements taken during the 12 months 
following MSC administration (intervention period). 

Secondary endpoints

Clinical or biochemical changes suggestive of treat-
ment-associated adverse events or warnings as described 
below. 

Clinical procedures

Adipose tissue harvest: Adipose tissue (20-25 g) was 
aspirated from the abdominal subcutaneous fat pad from 
all patients by a single plastic surgeon, using a 19-G bore 
needle attached to a standard plastic syringe under local 
anesthesia. 

MSC isolation and in vitro expansion

Each autologous adipose tissue sample was suspend-
ed in sterile phosphate-buffered saline (PBS), passed 
through a 70-μm Falcon cell strainer (BD Biosciences, 
San Jose, USA) and centrifuged at 350 × g for 10 minutes. 
The MSC isolation and in vitro  expansion were per-
formed as described previously [19]. After three passages, 
MSCs were characterized for adipogenic, chondrogenic 
and osteogenic tri-differentiation. 

MSC characterization

Immuno-phenotyping of MSCs
MSCs were immune-phenotyped by flow cytometry 

using a FACSCanto II cytometer (BD Biosciences) after 
staining with the following anti-human monoclonal an-
tibodies: CD105, CD90, CD73, HLA-ABC, HLA-DR, CD34 
and CD45 (all from BD Pharmingen, San Jose, USA). In 
brief, cells were harvested, washed with cytometer buf-
fer (PBS + 0.2% bovine serum albumin + 0.01% sodium 
azide; all from Sigma-Aldrich, St. Louis, USA) and in-
cubated with the fluorescently-labeled antibodies in 
cytometer buffer for 20 minutes at 4°C. Matched isotype 
antibodies were used as negative controls. 

Differentiation
To induce adipogenic differentiation, confluent cells 

were cultured in medium supplemented with 1 × 10-6 M 
dexamethasone, 0.02 mg/mL indomethacin and 10 µg/
mL insulin (Sigma-Aldrich). After 12 days, cell differen-
tiation into lipid-laden adipocytes was confirmed by oil 
red O staining (Sigma-Aldrich). For chondrogenic differ-
entiation, cells were incubated for 1 hour at 5 × 103 cells/
µL in 10 µL of culture medium to achieve conditions for 
micromass formation. Cells were cultured in medium 
supplemented with 107 M dexamethasone, 50 µg/mL 
ascorbic acid, and 10 ng/mL of transforming growth 
factor-β3 (Sigma-Aldrich) for 7 days, and chondrogenic 
differentiation was assessed by Safranin O staining (Mer-
ck, Darmstadt, Germany). To induce osteogenic differ-
entiation, adherent cells were grown at 3 × 104 cells/cm2 
in culture medium with 10-7 M dexamethasone, 50 g/mL 
ascorbic acid, and 10 mM β-glycerophosphate (Sigma-
Aldrich). After 21 days of culture, calcium deposits were 
detected by Alizarin Red staining (Sigma-Aldrich).

Release criteria 
The criteria for MSC batch release included: > 90% of 

cells expressing CD105, CD73, and CD90, and < 3% of 
cells expressing CD34, CD45, and CD14; negative micro-
biology testing for mycoplasma, aerobic bacteria, an-
aerobic bacteria and fungi; and viability > 85% by trypan 
blue. Freshly harvested cells were resuspended in a 1:1 
mixture of Ringer’s lactate and autologous patient serum 
and transported in a cooled container to the administra-
tion site.
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Cell infusion
Patients were transiently hospitalized to receive 1 mil-

lion AT-MSCs per kg of body weight suspended in 120 
mL Ringer’s lactate solution. Infusions were done into 
a peripheral vein over 30 to 40 minutes. Asymptomatic 
patients were discharged after 2 hours of observation. 
Given the ample evidence from controlled trials of the 
safety of MSCs administered intravenously (i.v.) at much 
higher doses [18], we did not screen regularly for isch-
emic events. 

Follow-up
Patients were instructed to communicate with the clini-

cian in charge in the case of an adverse event. Vital signs 
were measured and physical examinations were per-
formed at monthly follow-up appointments. Additional 
follow-up evaluations included the assessment of serum 
creatinine, 24 hour urinary quantitative protein excretion 
rate, additional blood and urinary testing, and screening 
for solid organ or coagulation abnormalities, including 
transaminases and prothrombin or active thromboplas-
tin times. Collection of adverse events was done in accor-
dance with US Food and Drug Administration 21 312.32 
Code of Federal regulations and International Conference 
of Harmonization ICH E-6 Good Clinical Practices. Given 
the two-yearly periods of follow-up, the adverse event 
type and frequency were retrieved as follows; All adverse 
events occurring between MSC infusion and the monthly 
follow-up visit (month 1). All further events that were not 
attributable to CKD were judged by treating physicians 
and were reported as adverse effects either related to the 
MSC treatment or not related, according to GCP rules.

Statistical analysis

Based on the limited sample size and unknown dis-

tribution, we employed non-parametric analyses and 
Wilcoxon or Mann-Whitney tests. We also computed the 
slopes of the linear regression equations for the change 
in eGFRs of each individual patient, spanning the four 
quarterly measurements from the 12 months prior to 
treatment and the 12 monthly measurements taken after 
the MSC infusion. The percent change was calculated as 
difference for each variable from pre- to post-treatment 
divided by pre-treatment level multiplied by 100. The P 
values less than 0.05 were considered statistically signifi-
cant.

Results

Patients

Seven patients with stage III-IV CKD and no prior di-
alysis therapy were recruited between January 2013 and 
August 2014. Specific diagnoses were 1) focal and seg-
mental glomerulosclerosis (FSGS), 2) immunoglobulin 
A (IgA) nephropathy, 3) diabetic nephropathy, 4) post-
acute kidney (AKI) injury RIFLE stage L, 5) Tubulo-inter-
stitial chronic nephritis due to Sjögren’s disease, 6) renal 
dysplasia, and 7) hypertensive nephrosclerosis. Patient 
clinical characteristics are shown in Table 1. One patient 
with diabetic nephropathy was excluded from the study 
due to poor proliferation and a resulting low number of 
AT-MSCs in culture.

All patients were on stable renin angiotensin blockade 
during the study period, as described in the inclusion 
criteria. While this achieved blood pressures < 140/90 
mmHg in four cases, two patients required the addition 
of 40 mg/day nitrendipine to reach goal blood pressure. 
Patients reported not fully adhering to dietary protein 
restriction; nevertheless, four patients decreased (1-4 
kg) and two increased in body weight (2-4 kg) in the year 

Table 1. Baseline clinical characteristics of patients and the number mesenchymal cells infused
Patient 

No.
Age (yr) Sex CKD diagnosis HTN

Serum creatinine 
(mg/dL)

Patient 
weight (kg)

Number of cells 
infused (× 106)

1 22 Male FSGS Yes 3.30 68 40.0
2 58 Male CKD post-AKI Yes 2.18 98 98.5
3 36 Female Hypertensive nephrosclerosis Yes 1.83 75 72.5
4 59 Female Renal dysplasia Yes 1.49 72 72.0
5 42 Male IgA nephropathy No 2.42 65 65.0
6 36 Female Sjögren-associated chronic tubulointerstitial nephritis No 2.07 63 65.0

AKI, acute kidney injury; CKD, chronic kidney disease; FSGS, focal segmental glomerulosclerosis; HTN, hypertension; IgA, immunoglobulin A. 
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following AT-MSC infusion. Only the nephrotic patient 
with FSGS had low serum albumin (< 3.5 g/dL).

Cell characterization

The AT-MSCs isolated from 6 patients that completed 
study procedures proliferated normally and exhib-
ited typical tri-lineage differentiation into adipocyte, 
chondrocyte and osteoblast lineages (Fig. 1A-F). As 
described, AT-MSCs expressed CD105, CD73, and CD90 
(Fig. 1G) and were negative for CD45, CD34, CD14, and 
HLA-DR (data not shown). There was no difference in the 
expression of these markers between CKD and control 
AT-MSCs derived from a healthy individual (Fig. 1G).

Infusion safety and patient follow-up

All infusions were well-tolerated, and no treatment-
related adverse events were reported. To assess disease 
progression, patients were stabilized with optimization 
and stabilization of therapy 12 months prior to study 
entry and then followed for one year. Individual clinical 
courses are summarized in Supplementary Table 1 (avail-
able online).

Proteinuria measurements

Over the 12 months prior to treatment, 4 of 6 patients 
demonstrated increased protein excretion (ranging from 
20% to 205% increase). In contrast, in the 12 months after 
MSC infusion, a reduction of proteinuria occurred in all 
cases, with the exception of patient 4 with renal dyspla-
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Figure 1. AT-MSCs from CKD patients exhibit normal expression of stem cell phenotypic markers and multilineage capacities. Dif-
ferentiation potential of AT-MSCs was assessed for each patient. Adipose differentiation was characterized by the formation of lipid droplets 
that were positive on oil red O staining (A) compared to a control without differentiation media (B). Chondrogenic differentiation was con-
firmed after 7 culture days by safranin O staining (C) compared to a control without differentiation media (D). Osteogenic differentiation was 
confirmed after 21 culture days by alizarin red staining (E) compared to a control without differentiation media (F). Scale bar, 250 µm. (G) To 
assess immunophenotype, AT-MSCs from each patient and age/sex matched healthy donor cells were stained by fluorescent-conjugated an-
tibodies against mesenchymal and hematopoietic stem cell markers and analyzed by flow cytometry. CKD AT-MSCs (red-filled histogram) and 
control cells (green-filled histogram) displayed positive expression for mesenchymal stromal cell markers (CD73, CD105, CD90) and were 
negative for other markers such as CD14, CD34, CD45 (data not shown). Isotype-matched controls are depicted as blue-filled histograms. 
Representative plots are shown in (G). 
AT-MSCs, adipose tissue-derived mesenchymal stromal cells; CKD, chronic kidney disease. 
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sia, falling from a baseline median of 0.75 g/day (range, 
0.15-9.57) to 0.54 (range, 0.01-2.66 g/day) at month 12 
after infusion (P = 0.046) (Fig. 2 and Supplementary Table 
1). One patient demonstrated a decrease of 10% and one 
demonstrated a decrease of 60% decrease post-infusion. 
Of note, although absolute levels of protein excretion did 
not decline in patient 4 after MSC treatment, the percent 
increase in proteinuria observed over the 12 months 
following MSC infusion was only 12% while it had been 
205% in the 12 months prior to infusion, suggesting im-
provement.

Creatinine and MDRD eGFR

Overall, renal function as assessed by plasma creatinine 
levels and MDRD eGFR was decreased at 12 months fol-
lowing MSC infusion, although this decrease was not sta-
tistically significant (P = 0.065). All cases, with the excep-
tion of patient 4, showed a slight percent decrease in the 
eGFR ranging from 7.5% to 49.0%. Therefore, to analyze 
individual cases, we compared the slope of eGFR changes 
over the four quarterly visits in the year prior to infusion 
with the slope of eGFR changes over the twelve monthly 
visits following MSC infusion. The calculated eGFR slope, 
from the regression analysis for each patient, decreased 

from a median of -0.0049 mL/min/year (range, -0.6237 
to 0.5528) to -0.3919 mL/min/year (range, -1.1075 to 
-0.0926), but this decrease was not significant (Wilcoxon 
paired test, P = 0.075). Interestingly, while it is difficult 
to reach conclusions with such a small, heterogeneous 
group of cases, the individuals demonstrating eGFR sta-
bilization (patients 2, 3, 4; Fig. 3) were those with less in-
flammatory CKD types such as hypertensive nephroscler-
osis, post-AKI CKD and renal dysplasia. This suggests 
that MSCs exert a range of effects that are not necessarily 
restricted to anti-inflammatory mechanisms. 

The laboratory measurements regarding patient safety 
and measurements including coagulation (prothrombin 
and thromboplastin clotting times and platelet num-
ber), liver function (aspartate aminotransferase, alanine 
aminotransferase, alkaline phosphatases, gama glutamil 
transpeptidase, total bilirubin, direct bilirubin, and se-
rum albumin) and metabolic tests (glycaemia, uric acid, 
total cholesterol, high-density lipoprotein and low den-
sity lipoprotein cholesterol, and triglycerides) did not 
change between pre- and post-infusion periods (data not 
shown).
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Discussion

Although not all six patients responded equally, these 
results indicate that autologous AT-MSC infusion reduced 
24-hour proteinuria without recognizable adverse effects 
in six patients. However, this small and heterogeneous 
sample precludes wider generalization of these findings.

There is increasing evidence regarding the possible 
mechanisms of cell therapy in CKD. MSCs are capable 
of self-renewal, proliferation and migration to damaged 
areas, where they can differentiate into mature and func-
tional cells [16]. Because low levels of persistent tissue 
engraftment can occur after i.v. MSC infusion [21], it is 
believed that therapeutic benefits are explained mainly 
by trophic and/or immune mediated effects [6,8]. Immu-
noactivity of MSCs is mediated by both secreted mole-
cules and cell-cell contact and can involve dendritic cells, 
B cells, natural killer cells, and a variety of T helper cells 
[22]. Significant paracrine and trophic effects are medi-
ated by the secretion of angiogenic and antiapoptotic 
factors such as vascular endothelial growth factor, insulin 
growth factor, and hepatocyte growth factor [23,24]. The 
broad repertoire of secreted and immunomodulatory 
factors produced by MSCs has potential to contribute to 
kidney regeneration, as MSC-conditioned culture media 
can confer renoprotective benefits comparable to those 
of direct cells [25]. Additional effects are mediated par-
tially through microvesicles containing different protein 
and RNA cargo [26], and more recent data have suggested 
that stromal cell administration can rescue damaged cells 
even in the absence of MSC persistence in tissues and 
improve tissue regeneration through the transfer of active 
mitochondria [27]. In animal CKD models, such as 5/6 
nephrectomy remnant kidney [28], diabetic nephropathy 
[7], and unilateral ureteral obstruction [29], MSC infu-
sion has been associated with reduction in pro-fibrotic 
markers as well as with a decrease in inflammation, as 
evidenced by a decrease in interleukin (IL)-6 and tumor 
necrosis factor-α levels and heightened levels of the anti-
inflammatory cytokines IL-4 and IL-10 [28,24,30]. Con-
ditioned media from MSC cultures can also induce the 
migration and proliferation of kidney-derived epithelial 
cells [26]. 

Clinical trials recently demonstrated no safety signals in 
CKD patients treated with BM-MSCs [31-33]. In a single-
arm phase I study of 6 patients with autosomal dominant 

polycystic kidney disease treated intravenously with au-
tologous BM-MSCs (2 × 106/kg), there were no changes 
in eGFR or reductions in serum creatinine at 12 months 
compared to baseline [32]. This might be explained by 
evidence that suggests autologous BM-MSCs are defec-
tive in CKD individuals [13,15]. In contrast, Packham et 
al [31] published a report of a placebo controlled dose es-
calation study of allogeneic immunoselected BM-MSCs 
in a population of 35 diabetic kidney disease patients, 
randomized (2:1) with 150 × 106 MSCs, 300 × 106 MSCs, 
or placebo [31]. No adverse events or alloantibodies were 
detected. Additionally, they reported that median levels 
of IL-6 decreased, and there was a suggestion of a more 
pronounced treatment effect within the subgroup with 
higher baseline eGFR that received 150 × 106 cells. Uri-
nary protein and albumin excretion remained unchanged 
[31]. 

Although AT-MSCs also have a favorable safety profile 
overall [34], adverse events have been reported, and re-
nal deterioration has occurred with i.v. administration of 
extremely high doses [35]. The data we report here sug-
gest that systemic AT-MSC infusion is feasible, safe, and 
reduces protein excretion in CKD patients. The observed 
reduction in proteinuria after AT-MSC infusion, which 
occurred in 5 of the 6 patients studied, is promising and 
contrasts with prior clinical reports [31,32]. In most ne-
phropathies, proteinuria is a validated surrogate marker 
for progression of disease. Indeed, protective renin-
angiotensin axis blockers that decrease proteinuria are 
titrated until protein excretion reaches less than 300 mg 
daily or adverse effects become intolerable [36]. 

It remains unclear at what level of GFR an individual 
may benefit most from cell therapy aimed at slowing 
CKD progression. Such a “therapeutic window” has been 
explored in clinical nephrology trials, including the RE-
NAAL study of diabetic nephropathy [37] and fish oil for 
IgA nephropathy [38]. A well-controlled trial in diabetic 
kidney disease suggests individuals with major deteriora-
tion of their eGFR could be less responsive [31]. We chose 
to study patients with an eGFR ranging from 20 to 40 mL/
minute to avoid including individuals with end stage dis-
ease while still including patients at risk for deterioration. 
There are several evident limitations of our study. First, 
it is not a placebo-controlled trial, but rather an explor-
atory study comparing prolonged (12 month) pre- and 
post-treatment periods in CKD patients that underwent 
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AT-MSC treatment. We utilized autologous AT-MSCs 
mainly for security reasons, but as suggested by trial re-
sults reported by Packham et al [31] and the increasing 
use of umbilical cord-derived MSCs [39], allogeneic cells 
could be explored. The main strength of this study is that 
it informs the safety and feasibility of a future controlled 
trial, which could assess additional serum and urinary 
biomarkers and morphological measurements on kidney 
biopsy samples that we were unable to assess. 

In conclusion, we report an initial pilot study provid-
ing evidence that it is possible to generate autologous 
AT-MSCs for cell therapy in CKD patients and that the 
infusion treatments did not cause adverse events in the 
year following treatment. AT-MSCs demonstrated the 
potential to modify the progression of CKD, as the treat-
ment reduced urinary protein excretion, which is a well-
known surrogate marker of kidney disease progression. 
Such promising preliminary results justify designing and 
conducting future clinical trials that further evaluate the 
clinical response and molecular mechanisms of AT-MSC-
based treatment of CKD and assess characteristics of re-
sponder patients to inform the best future candidates for 
treatment.
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