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Abstract
1.	 A central theme for conservation is understanding how animals differentially use, 

and are affected by change in, the landscapes they inhabit. However, it has been 
challenging to develop conservation schemes for habitat-specific behaviors.

2.	 Here we use behavioral change point analysis to identify behavioral states of 
golden eagles (Aquila chrysaetos) in the Sonoran and Mojave Deserts of the south-
western United States, and we identify, for each behavioral state, conservation-
relevant habitat associations.

3.	 We modeled behavior using 186,859 GPS points from 48 eagles and identified 
2,851 distinct segments comprising four behavioral states. Altitude above ground 
level (AGL) best differentiated behavioral states, with two clusters of short-
distance movement behaviors characterized by low AGL (state 1 AGL  =  14  m 
(median); state 2 AGL  =  11  m) and two associated with longer-distance move-
ment behaviors and characterized by higher AGL (state 3 AGL = 108 m; state 4 
AGL = 450 m).

4.	 Behaviors such as perching and low-altitude hunting were associated with short-
distance movements in updraft-poor environments, at higher elevations, and 
over steeper and more north-facing terrain. In contrast, medium-distance move-
ments such as hunting and transiting were over gentle and south-facing slopes. 
Long-distance transiting occurred over the desert habitats that generate the best 
updraft.
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1  | INTRODUC TION

A central theme underpinning conservation is the need to under-
stand how animals use, and are affected by change in, the land-
scapes they inhabit (Baldwin et al., 2018; Betts et al., 2019). Study 
of this problem frequently involves choosing a set of habitat char-
acteristics and relating these to patterns in species occurrence or 
abundance (Johnson, 1980; Thurfjell et al., 2014). However, occur-
rence and abundance do not fully capture the effect of habitat on 
demography and behavior. Landscapes are typically not uniformly 
used, and, in fact, there is good evidence that habitat use, and 
consequently anthropogenic effects on wildlife, vary with time, 
by age classes, or even across behavioral states (Miller et al., 2017; 
Perona et al., 2019; Zeller et al., 2019). Although management ac-
tions sometimes account for variation in habitat associations with 
time of year and individual age, developing conservation schemes 
for habitat use specific to different behavioral states presents a 
unique set of challenges (e.g., if foraging only occurs in one habitat 
type, then protection of key prey species may be less useful in 
other habitats). In fact, one of the key reasons that conservation 
programs are rarely targeted at specific behaviors is because of 
the difficulties in understanding where and when individual be-
haviors occur.

Golden eagles (Aquila chrysaetos) are of interest for conservation 
in North America as their populations face a number of challenges, 
including risk from illegal shooting, electrocution, lead poisoning, 
and collision (USFWS, 2016). Conservation of a viable population of 
golden eagles requires integrated planning and management at the 
landscape level. This is especially true because the birds are thought 
to use different habitats for behaviors such as breeding, foraging, 
and transiting. However, as has been the case for so many other 
species, there have been few opportunities to quantify these ex-
pectations concerning differential habitat use, and this gap can limit 
options for conservation management.

Recent advances in the field of movement ecology present op-
portunities to characterize behavioral states of animals using high-
resolution telemetry data (Kays et  al.,  2015). A commonly used 
method of characterizing telemetry data to identify behavior is to 
employ thresholds and filters to identify movement tracks associ-
ated with specific behavior types (Edelhoff et al., 2016). When this 
is done, thresholds are often defined using expert knowledge and 
observations in the field. A newer approach involves use of derived 
movement attributes, such as speed and turning angle, together 

with modern statistical models (e.g., state space, maximum entropy, 
Gaussian mixture, exponential-segment mixture), to define behav-
ioral states (Tracey et al., 2013; Zhang et al., 2015). However, many 
of these models are difficult to implement and computationally 
challenging.

Behavioral change point analyses (BCPA) and clustering pres-
ent new opportunities for ecology and conservation because, like 
the complex models noted above, they interpret derived movement 
attributes, but they are much more straightforward to implement 
and are computationally efficient (Gurarie et  al.,  2009). BCPA is a 
likelihood-based method that detects structural changes in move-
ment parameters that correspond to shifts in behavior. In addition to 
its ease of implementation, BCPA models are robust to data gaps and 
to measurement errors that are common in telemetry data (Gurarie 
et al., 2016). That said, BCPA is still fairly new, and we know of no 
study in which behavioral states identified with this tool have subse-
quently been associated with habitat types.

Here we use BCPA to identify behavioral states of golden ea-
gles in the Sonoran and Mojave Deserts of the southwestern United 
States, and we then use this knowledge to understand, for each 
behavioral state, habitat associations relevant to species conserva-
tion. In these deserts, Golden Eagles encounter threats from climate 
change and renewable energy development (Braham et  al.,  2015; 
Vandergast et al., 2013) and there is management interest in under-
standing how eagle behavior may influence their vulnerability to re-
newable energy development. To address this information need, we 
used a BCPA and clustering to identify eagle behaviors, and then, 
subsequently, we asked if different behaviors occurred with equal 
frequencies in different habitat types. To our knowledge, attribute-
based movement analyses have not previously been used to meet 
these types of ecological and conservation research goals. As such, 
this analytical approach provides unique information that can aug-
ment recently implemented conservation strategies in the study 
area (CBI, 2013).

2  | METHODS

2.1 | Study area

We collected GPS telemetry data from golden eagles inhabiting or 
transiting through the Mojave and Sonoran Deserts of the United 
States during the period 2012–2017 (Figure 1). Both regions have a dry 

5.	 This information can guide management of this species, and our approach provides 
a template for behavior-specific habitat associations for other species of manage-
ment concern.

K E Y W O R D S

animal movement, behavioral change point analysis, conservation management, Golden Eagle, 
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subtropical desert climate with hot summers and warm winters sup-
porting shrub communities with visually dominant succulents or trees 
(Turner, 1994). Some desert nesting eagles spend time uphill, in areas 
with higher elevations and different climates (Braham et al., 2015), 
but we focused analysis on data collected from desert elevations and 
climate. The Mojave Desert is characterized by creosote bush (Larrea 
tridentata), white bursage (Ambrosia dumosa), and various visually 
dominant yuccas (e.g., Joshua tree—Yucca brevifolia or Y.  jaegeriana), 
while the Sonoran Desert supports creosote bush, triangle-leaf bur-
sage (Ambrosia deltoidea), and palo verde (Parkinsonia microphyllum, 
and P. floridum), with giant saguaro cactus (Carnegiea gigantea) more 
prevalent in the Arizona Upland Subdivision of the Sonoran Desert 
(Turner & Brown,  1982). Golden eagles are sparsely distributed in 
these regions, nesting mostly on cliffs, in rugged areas adjacent to 
the broad slopes that support thermal generation, eagle foraging, and 
renewable energy development (Latta & Thelander, 2013).

2.2 | Telemetry data collection

Golden eagles were trapped using bow net traps set over carcasses 
(Bloom et al., 2007) or by hand in the nest, and each bird outfitted 
with 80–95 g solar-powered GPS/GSM (Global Positioning System/
Global System for Mobile Communications) transmitters (Cellular 
Tracking Technologies). Telemetry units were attached as back-
packs with a nonabrasive Teflon ribbon harness (Kenward, 1985). 
Each free-flying bird was aged using molt patterns (Bloom & 
Clark,  2001; Jollie,  1947) as preadult (hatch-year, 2Y, 3Y, or 4Y 
of age) or adult (>4Y), with sex identified based on morphology 
(Bortolotti, 1984; Edwards & Kochert, 1986; Watson, 2010) and, in 
most cases, confirmed genetically (Doyle et al., 2014). The telem-
etry units collected information on GPS locations, fix quality (2D 
or 3D), and horizontal and vertical dilution of precision (HDOP and 
VDOP). Data were recorded at intervals of either 15 min or 30 s, 

F I G U R E  1   Map of the study area including the Mojave and Sonoran Deserts within the USA. This includes the area covered by the 
Desert Renewable Energy Conservation Plan (DRECP) for California. Map also shows the GPS locations, colored by behavioral state, of 48 
golden eagles tracked from 2012 to 2017 within the Mojave and Sonoran Deserts within the USA. Inset shows how state 1 is in clusters in 
steeper terrain, whereas state 2 is more dispersed and often over flatter terrain
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stored on the units, and then uploaded to the internet through 
GSM networks.

2.3 | Data processing and associations

We standardized fix interval by subsampling 30  s data to 15-min 
intervals. Telemetry data were processed to remove 2D fixes and 
fixes where HDOP or VDOP ≥10 (D’eon and Delparte, 2005; Poessel 
et al., 2016). We removed GPS data collected before dawn and after 
dusk, as defined by civil twilight (R package ‘maptools’ v 9-4; Bivand 
& Lewin-Koh, 2018). We also removed data collected from hatch-
year birds prior to their independence from their parents. We con-
sidered the birds to be independent once they had moved >10 km 
from their natal nest for the first time.

We used ArcGIS 10.3.1 to associate each GPS location from 
an eagle with topographical data on elevation, slope, aspect, topo-
graphical position index (TPI), and terrain ruggedness index (TRI), 
all measured at 30-m resolution (USGS, 2015). Because aspect data 
are a circular measure in degrees, for analysis we converted them 
into two Euclidean vectors, termed eastness (positive values face 
east) and northness (positive values face north; Roberts, 1986). TPI 
was estimated with Topography Tools for ArcGIS (Dilts, 2015) and 
was classified into one of four landform categories, canyons, steep 
slopes, gentle slopes, or ridges (Jenness et  al.,  2013). TRI was es-
timated with Geomorphometry and Gradient Metrics Tools (Evans 
et al., 2014; Riley et al., 1999) as a continuous variable. We also as-
sociated GPS locations with 30-m land cover data from National 
Gap Analysis Program (USGS GAP, 2011). We condensed these land 
cover data into four categories, semidesert, forest, rock vegetation, 
and shrubland and grassland. Semidesert was the most widespread 
land cover type in our study and included vegetation dominated by 
xeromorphic growth forms that varied from shrub-scrub to com-
plexes of succulents, thornscrub, and microphyllous-leaved sub-
shrubs (USGS GAP, 2011). Forests included tropical, temperate 
deciduous, and coniferous forest types. Rock vegetation included a 
variety of near barren landscapes to desert pavement, rocky slopes, 
and cliffs sparsely vegetated by vascular plants. Finally, shrubland 
and grassland communities mostly included mesomorphic perennial 
grasses and shrubs, with smaller quantities of perennial forbs. We 
did not include a predictor describing urban areas, as golden eagles 
avoid these areas but their response is likely more fine-scale than 
that measured by the habitat maps (Katzner et al., 2021).

We calculated altitude above ground level (AGL) for each GPS 
location as the difference between altitude above sea level as mea-
sured by the telemetry unit and the estimate of ground elevation at 
that point obtained from a 30-m resolution digital elevation model 
(USGS, 2015). Next, we filtered out GPS locations for which AGL 
values were < −50 m and >4,000 m (Katzner et al., 2012; Poessel 
et  al.,  2018). To assess correlation among predictor variables, we 
calculated bivariate Pearson correlation coefficients for all pairs of 
topographic covariates. If variables were either positively or nega-
tively correlated to each other (|r| >  .55; a conservative threshold; 

Dormann et al., 2013), we retained for analysis only the one variable 
of the pair that we thought would provide the more logical biological 
insight.

2.4 | Analysis

We applied a two-step process to classify distinct behavioral states 
indicated by the telemetry data (Zhang et  al.,  2015). These steps 
were (a) segmentation: a process to detect significant change or 
break points in a trajectory based on a selected movement param-
eter and (b) clustering: a process to identify the groups of segments 
that have similar characteristics, and thus likely indicative of similar 
movement behavior. Once we had clustered similar segments to-
gether, then we used statistical tools to model differences in habitat 
association for each behavioral cluster.

2.4.1 | Segmentation

We used filtered eagle locations as input into a behavioral change 
point analysis (function ‘windowsweep’, R package ‘bcpa’ v 1.1; 
Gurarie, 2014; Gurarie et al., 2009) to partition, for each bird, series 
of locations into discrete segments separated by changes in trajec-
tory. We used persistence velocity as the movement parameter to 
input into the BCPA model. Persistence velocity captures the ten-
dency and magnitude of a movement to persist in a given direction 
and is calculated as the product of instantaneous speed and cosine 
of the turning angle (Gurarie et al., 2009; Teimouri et al., 2018; Zhang 
et al., 2015). The BCPA identifies changes in persistence velocity val-
ues by using likelihood comparisons in a moving window over the 
time series of those values. We used a window size of 30 sequen-
tial locations and, within the window, located the most likely change 
point using the Bayesian information criterion (Gurarie et al., 2009). 
We also at tested if changes in settings of parameters such as the 
size of the window had an impact on the number of segments de-
tected. Mathematical details of the calculation of persistence veloc-
ity and the formulation of BCPA can be found in Gurarie et al. (2009). 
The output from the BCPA provides information on change points 
needed to distinguish the distinct behavioral segments that we then 
input into the clustering analysis.

2.4.2 | Clustering

We grouped the segments identified by the BCPA using a k-mean 
cluster analysis. To do this, we first calculated, for each segment, 
the median of the instantaneous speed (in km/hr), the relative turn-
ing angle, and the AGL (Zhang et al., 2015). We input these charac-
teristics into our clustering algorithm, and we selected the optimal 
number of clusters using the ‘elbow method’ (function ‘fviz_nbclust’, 
method  =  “wss”, R package NbClust v 3.0; Charrad et  al.,  2014). 
Because the cluster analyses do not account for bird-to-bird 
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variability (i.e., it is not possible to include a random effect for bird 
in this analysis), we first identified an optimal number of clusters for 
each bird separately and subsequently on data for all birds combined 
together. Since the optimal number of clusters for individual birds 
was similar, we then grouped segments into that optimal number 
of clusters using data for all birds together (function ‘kmeans’, R 
packages ‘stats’ v 3.4.3 and ‘fpc’ v 2.1- 11.1). We used a Wilcoxon–
Mann–Whitney test to evaluate parameter differences among states 
identified by the BCPA.

2.4.3 | Statistical analysis

Once we identified clusters, we modeled cluster-(i.e., behavioral 
state-) specific response of eagles to topographic and land cover 
features. We wished to use a multinomial model for this analysis. 
However, we could find no modeling tool that accurately incorpo-
rated >1 random effect into a computationally efficient multino-
mial analysis, as required of this analysis (see below). Instead, we 
created a set of generalized mixed effect logistic regression mod-
els for pairs of state-specific responses (function ‘glmer’, R pack-
age ‘lme4’ 1.1-15; Dobson & Barnett, 2018 provide a justification 
for this approach).

In each model, the response variable described the probability of 
being in one of two behavioral states that were identified by cluster-
ing algorithms. After removing correlated variables (Table S1), fixed 
effects in these models were the continuous elevation, northness, 
eastness, and slope variables, and the categorical bird age, land 
cover, and TPI variables. These models had a logit link function and, 
because we were not interested to test the effect of these two vari-
ables, random effects for month (12 months) and bird ID (54 birds). 
When building our dataset for modeling, we increased the age of 
eagles each January. We also rescaled all continuous variables by 
subtracting the mean and dividing by twice the standard deviation 
(Gelman, 2008).

We evaluated competing models in an information theoretic 
framework, and when a single model did not account for the ma-
jority of model weights, we averaged parameter estimates from 
models with weights ≥0.01 (functions ‘dredge’ and ‘model.avg’, R 
package ‘MuMIn’ 1.43.1, Anderson, 2007; Barton, 2018; Anderson 
and Burnham, 2002). For comparative purposes, we also ran an iden-
tically parameterized multinomial model but with a single random 

effect for bird ID (omitting random effects for month and bird age; 
R package ‘mclogit’, Elff, 2018). We used a baseline category logit 
model with state 1 (described in results) as the baseline category.

3  | RESULTS

We tracked 10–20 eagles each year from 2012 to 2017, resulting in 
955,462 GPS locations collected from 21 male and 33 female ea-
gles. Of these 54 eagles, 31 were preadults for the entire study, 12 
were adults for the entire study, and 11 were preadults at capture 
but became adults during the course of the study. After subsampling 
and filtering, we considered as input into BCPA models 186,859 data 
points from 48 birds (19 males, 29 females, 25 preadults, 12 adults, 
and 11 whose age class changed during the course of the study; 
Table S2), for a total of 81 bird-years.

3.1 | Identification of behavioral states

We identified 2,851 distinct segments within the eagle telemetry 
data. Regardless of whether we ran these analyses with all birds 
grouped together or separately for each bird, the optimal number 
of grouping clusters (i.e., behavioral states) for these segments was 
4 (average “silhouette width” for all birds  =  0.487; Figures S1 and 
S2). We refer to these four behavioral states as states 1–4 (Table 1). 
In the analysis for all birds, states 1 and 2 were the most commonly 
observed, making up 58% and 39% of data points, respectively 
(Table 1; Figure S3). States 3 (2%) and 4 (1%) were less commonly 
observed. Because the four states in this model were not identical to 
the four states in the models for each bird, not all birds were repre-
sented in all states (Table 1).

Altitude above ground level was the best differentiator among 
behavioral states (Table 1, Figure 2a), with two clusters character-
ized by low AGL (state 1 AGL = 14 m (median); state 2 AGL = 11 m; 
for means, see Table 1) and two by higher AGL (state 3 AGL = 108 m; 
state 4 AGL  =  450  m) (Wilcoxon–Mann–Whitney test for AGL of 
states 1 & 2 vs. states 3 & 4: z = 60.14, p <.001). Behavioral states 
that occurred at lower altitudes also had distinctly lower speed 
(z = 79.80, p <.001; Table 1, Figure 2b) and somewhat higher turning 
angles (z = −32.36, p <.001; Table 1, Figure 2c) than did states at 
higher altitudes.

TA B L E  1   Summary statistics (mean ± SE) for the four behavioral states identified by a behavioral change point analysis of GPS telemetry 
data gathered from golden eagles in the Mojave and Sonoran Desert of the southwestern USA. Summary statistics are for number of data 
points and of birds, altitude above ground level (AGL), instantaneous movement speed, and turning angle of the trajectory. See text for 
description of how each behavioral state was defined

Behavior n points n birds AGL (m) Speed (km/hr) Turn angle (deg.)

State 1 – low altitude 108,795 47 52 ± 5 8 ± 1 131 ± 2

State 2 – low altitude 72,930 44 69 ± 6 11 ± 1 115 ± 2

State 3 – high altitude 3,502 28 293 ± 29 56 ± 12 96 ± 7

State 4 – high altitude 1,632 21 545 ± 53 105 ± 27 76 ± 9
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The two low-altitude behavioral states also were well sepa-
rated by flight altitude, with state 1 generally occurring at the low-
est altitudes (Table 1) (z = 23.966, p <  .001). Despite the fact that 
flight speeds were similar between the two classes (z  =  0.72997, 
p  =  .4654), turn angles were greater in state 1 than in state 2 
(z = 84.368, p <  .001). The two high-altitude behaviors were also 
strongly differentiated by flight altitude (z = −38.08, p <  .001) and 
velocity (z = −39.32, p < .001), with state 4 characterized by behav-
iors that were higher, faster, and with more variation in speed than 
those in state 3 (Table 1). Turn angles also tended to be greater in 
state 3 than in state 4 (z = 20.198, p < .001).

3.2 | Environmental correlates of variation in 
behavioral states

Correlation analysis showed that two of our potential habitat 
predictors, TRI and slope, were highly correlated (Table S1). We 
removed TRI from our models describing behavioral associa-
tions with habitat because it is a derived variable and we believed 
that the slope variable provided a more intuitive interpretation. 
Because we observed that AGL so strongly separated behaviors 
into two groups, our first logistic regression described the proba-
bility of being in a high-altitude state (states 3 and 4 together) ver-
sus that of being in a low-altitude state (states 1 and 2 together), 
given the habitat predictors. Subsequently, we ran similar models 
describing the probability of being in one low-altitude state versus 
the other (state 1 vs. state 2) and of being in one high-altitude 
state versus the other (state 3 vs. state 4), in each case given the 
habitat predictors.

There were strong differences in habitat at locations where eagles 
were in low (states 1 and 2) versus high (states 3 and 4) altitude be-
havioral states. The top model describing response of state to habitat 
had 99% of model weights and included fixed effects for all model 
parameters (Table 2a). Low-altitude behavioral states were more likely 
to occur over higher ground elevations, on ridges, steep slopes, and 
canyons, and on slopes that faced in more northerly and westerly di-
rections (Figure 3a–c, Table 3). They were less likely to occur on gently 
sloping terrain. Although inclusion of land cover improved the fit of 
our model, we did not detect an effect of land cover class on the prob-
ability of being in a low- or high-altitude behavioral state (Table 3). 
Finally, younger birds were more likely to fly at lower altitudes.

The two low-altitude behavioral states (1 and 2) also did not 
occur in the same habitats (Table  2b). In this case, the top two 
models together accounted for >99% of model weights. These 
models only differed by inclusion of an eastness parameter. The 
best differentiators of the two behaviors were slope and eleva-
tion, with the probability of being in state 1 increasing with slope 
and decreasing with elevation (Figure 1 inset, Figure 3d,e, Table 4). 
Eagles also were more likely to be in state 1 with increasing north-
ness of slope (Figure  3f), in semidesert habitats, and over steep 
slopes and ridges. They were less likely to be in this state over 
shrubland and grasslands than over forests. Finally, there was a 
strong age effect, with young birds more likely to be in state 1 
than in state 2.

The two high-altitude behavioral states (3 and 4) also occurred 
over different habitat types (Table 2c). In this case, the top three 
models only accounted for 37% of model weights. Model aver-
aging suggested that the locations where these two behaviors 
occurred were differentiated by substantially different features 
than those that differentiated the two low-altitude states. In this 
case, golden eagles were less likely to be in state 3 over rocky 
vegetation, but more likely to be in that state over steeper and 
east-facing slopes, and over TPI categories for ridges (Figure 3g–i, 
Table 5). In contrast, eagles were more likely to be in state 4 over 

F I G U R E  2   Boxplot of (a) altitude above ground (AGL), (b) speed, 
and ​(c) turning angle of the four behavioral states identified by 
BCPA (behavior change point analysis). AGL and speed were log-
transformed more clearly illustrate variation among groups. Light 
gray boxplots represent the two low-altitude states (state 1 and 2), 
and the dark gray boxplots represent the high-altitude states (state 
3 and 4). Lower and upper box boundaries represent 25th and 75th 
percentiles, respectively, and line inside the box represents the 
median
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semidesert, the TPI category for steep slopes, and over north- and 
west-facing slopes. There were no age-related differences in use 
of these two states.

The results of the multinomial model showed roughly similar 
results as did the sets of logistic models (Table S3). In this analy-
sis, we used state 1 as our reference because, from a conservation 
perspective, it was especially important for us to know the specific 
habitat types for low-altitude behaviors, such foraging and perching, 
of eagles. Because the logistic models incorporated multiple random 
effects that we know were biologically relevant, and because they 
allowed for more interesting comparisons, we interpret those mod-
els to provide ecological and conservation insights.

4  | DISCUSSION

Our analytical approach is unusual for conservation in that it links 
specific behaviors to differential habitat use. The process of in-
terpreting these statistically defined behavioral states and subse-
quently associating them with the habitats in which they occur also 
leads us to substantive insight into eagle ecology. That insight leads 
to direct guidance for mitigation or management that could be im-
plemented for golden eagles facing habitat loss in the Sonoran and 
Mojave Deserts of the American southwest.

4.1 | Identifying behavioral states of eagles

The descriptive statistics (Table 1, Figure 2) provide a foundation 
for interpretation and identification of the behavioral states we 

identified. We interpret the two behavioral states occurring at low 
altitudes as different types of short-distance movement behav-
iors. For example, state 1, which is lower and slower, is likely in-
dicative predominantly of perching (GPS points from a stationary 
receiver are rarely in exactly the same spot and thus a high turn 
angle can be characteristic of a nonmoving GPS unit). However, 
this state likely also included other slow, low, and altitudinally 
varying flights such as territorial displays, low-altitude hunting, 
and approach and departure from nests (Watson, 2010). State 2, 
which is also low, but less variable in altitude, was faster and more 
direct, and likely is indicative of transiting within a home range or 
use area, or of other behaviors such as hunting (Watson,  2010; 
Wiens et al., 2017). Furthermore, the spatial relationships of these 
points are consistent with these interpretations. That is, state 1 
behaviors occured in clusters in steeper terrain, and state 2 behav-
iors occured more broadly across the landscape, including flatter 
terrain (i.e., eagles perch and roost in specific locations but forage 
more widely around those locations; Figure 1, inset). That these 
two states are more common than the other two (Table 1) also is 
consistent with the biology of these birds, many of which spend 
most of their time within defined home ranges and less time trans-
iting to and from those home ranges (Braham et al., 2015).

We interpret the two behavioral states occurring at high alti-
tudes as indicative of less frequent but longer-distance transiting 
behaviors. Transiting by eagles beyond a home range or use area can 
be characteristic of movements between those ranges or areas (e.g., 
some territorial eagles make regular movements through the Mojave 
Desert to high-elevation foraging areas near Tehachapi California; 
Braham et  al.,  2015) or of dispersal (some of the data we consid-
ered were from hatch-year birds that moved southeast through 

TA B L E  2   Results of the top five models describing factors affecting probability of being in (a) low altitudes (state 1 and state 2) compared 
to high altitudes of golden eagles (state 3 and state 4); (b) one of the two low-altitude states (state 1 vs. state 2); and (c) one of the two high-
altitude states (state 3 vs. state 4) in the Mojave and Sonoran Deserts, 2012–2017. We used logistic regression to model eagle response, 
with bird ID, bird age, and month of the year as random effects and predictors as described below and in the main text

Comparison Predictors in top 5 models in set AICc ΔAICc wi

(a) 1 & 2 vs. 3 & 4 Elevation + Eastness + Northness + TPI + Slope + Land cover + Age 26,765 0 0.99

Elevation + Eastness + Northness + TPI + Slope + Age 26,775 10.5 0.01

Elevation + Northness + TPI + Slope + Land cover + Age 26,776 11.1 0.00

Elevation + Eastness + Northness + TPI + Land cover + Age 26,778 12.9 0.00

Elevation + Eastness + TPI + Slope + Land cover + Age 26,780 15.8 0.00

(b) 1 vs. 2 Elevation + Northness + TPI + Slope + Land cover + Age 205,322 0 0.68

Elevation + Eastness + Northness + TPI + Slope + Land cover + Age 205,324 1.5 0.32

Elevation + Northness + Slope + Land cover + Age 205,336 13.4 0.00

Elevation + Eastness + Northness +Slope + Land cover + Age 205,337 15.0 0.00

Elevation + TPI + Slope + Land cover + Age 205,339 16.5 0.00

(c) 3 vs. 4 Northness + TPI + Slope + Land cover 5,246 0 0.15

Eastness + Northness + TPI + Slope + Land cover 5,247 0.4 0.12

Northness + TPI + Slope + Land cover 5,248 0.8 0.10

Elevation + Northness + TPI + Slope + Land cover 5,248 1.2 0.08

Eastness + TPI + Slope + Land cover 5,248 1.6 0.08
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the Sonoran Desert; Figure 1). Because these transiting behaviors 
are higher, faster, and more direct than behaviors in states 1 or 2, 
they likely corresponded to two forms of this latter type of longer-
distance transiting behavior. The fact that these two behaviors oc-
curred less frequently than the first two, and the relatively greater 
proportion of these migration-like behaviors that occurred in spring 
and fall (Figure S3), supports this explanation. Furthermore, these 
expectations corresponded with the spatial arrangement of these 
points, such that the long-distance movements appear to be combi-
nations of state 4 (long, fast, direct flights) and state 3 (at the start 
and end of those long flights) that occur between clusters of move-
ments in states 1 and 2 (Figure 1).

4.2 | Associating behavioral states with habitat

Our computational approach of linking statistical states to habitat 
features illustrates that certain behaviors were more likely than 

others to occur in certain habitats, and this approach provides new 
conservation-relevant insight into the drivers of those behaviors. 
For example, perching, low-altitude hunting, and territorial behav-
iors were more likely to occur in environments associated with 
poor thermal generation, at higher elevations, and over steeper, 
and more north-facing terrain. These habitats are those where 
eagles nest, roost, and use orographic soaring to hunt for prey. 
In contrast, higher-altitude hunting behavior and short-distance 
transiting were in more gentle and south-facing slopes. These are 
areas where thermal generation is improved yet not optimal, and 
transition zones between flat and steep slopes where prey may 
be abundant. Finally, the longer-distance traveling we observed 
occurred over desert habitats that generate the best updraft but 
possess lower prey and nesting resources for eagles (i.e., low el-
evation, south-facing, gentler or flat terrain; Dunk et  al.,  2019; 
Wiens et  al.,  2017). Because this analysis links a behavioral re-
sponse by eagles to the topographic environment they encounter, 
it has important implications for conservation.

F I G U R E  3   Plots describing the probability of golden eagles tracked by telemetry in the Mojave and Sonoran Deserts, 2012–2017, 
of being in one behavioral state versus another. Shown are, for each of three model sets, plots of the top three predictors in the best 
performing model. In our first model, we evaluated the probability of being in a low-altitude state (states 1 or 2, as opposed to being in a 
high-altitude state, states 3 or 4) as a function of (a) ground elevation, (b) northness of slope, and (c) Topographic Position Index (TPI) of the 
terrain. In our second model, we evaluated the probability of being in one of two low-altitude states (state 1 vs. 2; reference level state 2), as 
a function of (d) ground elevation, (e) degree of slope, and (f) northness. In our third model, we evaluated the probability of being in one of 
two high-altitude states (state 3 vs. 4; reference level state 4), as a function of (g) land cover, (h) degree of slope, and (i) TPI
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4.3 | Conservation implications

Although conservation relies, in part, on linking species to the habi-
tat they occupy, highly motile species almost never use their habi-
tats uniformly. As such, there is a strong conservation imperative 
to connect behavioral states to habitat. For example, our study was 
initially developed at the request of management agencies who were 
concerned about loss of habitat for golden eagles in the Sonoran 
and Mojave Deserts (Braham et al., 2015). Past work has suggested 
that urban development has pushed golden eagles out of histori-
cally suitable lower-elevation nesting habitats in southern California 
(Bloom, 1991; Scott, 1985).

Our analysis adds considerable nuance to these prior suggestions 
that help to characterize the habitat associations of the eagles that 
remain outside of those historically occupied lower-elevation sites. 
Behavioral analyses we present here suggest that modern golden 
eagles engage in behaviors such as foraging and perching in areas 
at higher elevations and with steeper terrain. There, eagles flew at 
low altitude above ground and were likely thus strongly influenced 
by microfeatures of that terrain. In contrast, flatter, lower-elevation 
habitats were sometimes used for low-altitude behaviors such as 
hunting, but were more likely to be used for transiting flight at higher 
altitude above ground. When making these longer-distance, higher-
altitude movements, eagles were less likely to be affected by small 
scale perturbations to the landscape below (that said, the shape 
of our data distributions illustrates that some of these movements 

TA B L E  3   Effect estimates for the top model in Table 2a showing 
probability of being in a low-altitude state (state 1 and 2) compared 
to the probability of being in a high-altitude state (state 3 and 4) as 
a function of habitat-related predictors for golden eagles tracked 
with GPS telemetry between 2012 and 2017 in the Mojave and 
Sonoran Deserts within the USA. TPI = topographic position index. 
The reference category for TPI = canyons, for land cover = forest, 
and for age = adult

Variable Estimate SE z p

Intercept 4.38 0.70 6.26 <.001

Elevation 0.40 0.03 13.66 <.001

TPI: Ridge 0.48 0.04 10.95 <.001

Age: Preadult 0.91 0.12 7.39 <.001

Northness 0.14 0.03 4.23 <.001

Slope 0.19 0.05 3.87 <.001

Eastness −0.12 0.03 −3.62 <.001

TPI: Steep Slope 0.20 0.06 3.11 .002

TPI: Gentle Slope −0.16 0.06 −2.64 .008

Land cover: Semidesert −0.09 0.06 −1.55 .121

Land cover: Rock 
Vegetation

0.09 0.06 1.39 .164

Land cover: Shrubland & 
Grassland

−0.02 0.09 −0.23 .819

TA B L E  4   Averaged effect estimates for the top two models 
from Table 2b showing probability of being in one of two low-
altitude states (state 1 vs. state 2) as a function of habitat-related 
predictors for golden eagles tracked with GPS telemetry between 
2012 and 2017 in the Mojave and Sonoran Deserts within the 
USA. TPI = topographic position index. The reference category for 
TPI = canyons, for land cover = forest, and for age = adult

Variable Estimate
Adjusted 
SE z p

(Intercept) −0.34 0.27 1.22 .223

Age: Preadult 0.78 0.02 49.61 <.001

Slope 0.28 0.02 17.70 <.001

Elevation −0.08 0.02 5.38 <.001

Northness 0.05 0.01 4.28 <.001

Land cover: 
Shrubland & 
Grassland

−0.16 0.04 3.88 <.001

Land cover: 
Semidesert

0.11 0.03 3.66 <.001

TPI: Steep Slope 0.05 0.02 2.33 .020

TPI: Ridge 0.03 0.02 1.79 .073

Land cover: Rock 
Vegetation

0.03 0.03 1.10 .274

Eastness 0.01 0.01 0.69 .492

TPI: Gentle Slope −0.01 0.02 0.28 .783

TA B L E  5   Average effect estimates from the top four models 
from Table 2c showing probability of being in one of two high-
altitude states (state 3 vs. state 4) as a function of habitat-related 
predictors for golden eagles tracked with GPS telemetry between 
2012 and 2017 in the Mojave and Sonoran Deserts within the 
USA. TPI = topographic position index. The reference category for 
TPI = canyons, for land cover = forest, and for age = adult

Variable Estimate
Adjusted 
SE z p

(Intercept) 2.52 0.71 3.54 <.001

Land cover: Rock 
Vegetation

−0.58 0.13 4.28 <.001

TPI: Ridge 0.37 0.09 4.10 <.001

Slope 0.29 0.10 2.83 <.001

Land cover: 
Semidesert

−0.29 0.12 2.31 .021

TPI: Steep Slope −0.26 0.13 1.98 .047

Northness −0.12 0.07 1.67 .095

Eastness 0.09 0.07 1.26 .209

Land cover: 
Shrubland & 
Grassland

−0.20 0.20 1.01 .310

Elevation 0.09 0.10 0.94 .345

TPI: Gentle Slope −0.04 0.11 0.34 .738

Age: Preadult 0.12 0.90 0.13 .893
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still occurred at flight altitudes where eagles could encounter risk in 
those landscapes; Figure 2).

Although urban development is certainly an impediment to ea-
gles (Domenech et al., 2015), our results suggest that smaller scale 
development that does not dramatically change the updraft environ-
ment of flatter, lower-elevation terrain is unlikely to substantially in-
fluence movement behavior of extant eagle populations. Since most 
solar and many wind energy projects utilize these flatter, lower-
elevation sites (Arnette & Zobel, 2011; Doljak & Stanojević, 2017), 
our results suggest potential for compatibility between extant eagle 
populations and carefully sited renewable energy developments in 
the Mojave and Sonoran Deserts. That said, larger-scale projects, 
or those in habitat types eagles use more frequently, may be more 
impactful to their daily life (Tracey et al., 2014).

5  | CONCLUSIONS

Eagles have more than four types of behaviors, each of which has 
conservation relevance. However, by using readily available analyti-
cal tools to devolve the diversity of eagle behavior into four states, 
we were able to simplify a complex problem. Doing so allowed us to 
identify otherwise obscure and behavior-specific habitat associations 
of a high-priority species that is the focus of extensive conservation 
management. The approach we used—identifying and clustering be-
havioral states and subsequently linking them to the habitat in which 
they occurred—allowed us to illustrate a small part of the complexity 
and habitat associations of this species’ behavior. A logical next step 
for this research would be to expand on the linkages between behavior 
and the environment, by linking factors such as prey availability, risk to 
eagles, and seasonal variability in land cover and prey availability.
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