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Abstract: Rapid development of additive manufacturing and new composites materials with unique
properties are promising tools for fabricating structural electronics. However, according to the typical
maximum resolution of additive manufacturing methods, there is no possibility to fabricate all elec-
trical components with these techniques. One way to produce complex structural electronic circuits
is to merge 3D-printed elements with standard electronic components. Here, different soldering and
surface preparation methods before soldering are tested to find the optimal method for soldering
typical electronic components on conductive, 3D-printed, composite substrates. To determine the
optimal soldering condition, the contact angles of solder joints fabricated in different conditions were
measured. Additionally, the mechanical strength of the joints was measured using the shear force
test. The research shows a possibility of fabricating strong, conductive solder joints on composites
substrates prepared by additive manufacturing. The results show that mechanical cleaning and using
additional flux on the composite substrates are necessary to obtain high-quality solder joints. The
most repeatable joints with the highest shear strength values were obtained using reflow soldering
together with low-temperature SnBiAg solder alloy. A fabricated demonstrator is a sample of the
successful merging of 3D-printed structural electronics with standard electronic components.

Keywords: structural electronics; conductive composites; 3D printing; additive manufacturing;
solder joint properties

1. Introduction

Additive manufacturing, also called three-dimensional printing (3D printing), is a new
manufacturing trend, allowing the fabrication of physical objects directly from the digital
design. It is rapidly and dynamically evolving, in some cases replacing or supplementing
conventional manufacturing techniques. 3D printing has many advantages like freeform
design, easy customization, personalization of elements, a significant automatization level,
or a lower waste of materials. Furthermore, it is also widely used in prototyping to reduce
the time and cost of manufacturing new parts or small-quantity productions [1]. Additive
manufacturing has been widely applied in many industries like automotive, architecture,
fashion, aerospace, biomechanical [2–5].

The term additive manufacturing has a broad meaning, and comprises many tech-
niques that use different materials and equipment, including Stereolithography (SLA),
PolyJet, Selective Laser Sintering (SLS), and Fused Deposition Modeling (FDM), with
the last one being the most popular nowadays [6]. The FDM technique is the trendiest
due to its low-cost equipment, process simplicity, accessibility of low-cost materials, and
acceptable printing resolution down to 50 µm [7]. Thanks to this, we are able to fabricate
functional elements that cannot be made with conventional methods, or we can develop
personalized elements with specific shapes and colors on customer demand. To achieve
even more complex manufacturing using 3D printing, new materials for this technique are
continuously being developed.
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A good example is a new trend in manufacturing called structural electronics. Nowa-
days, most electronic devices are still manufactured using the PCB design due to the
challenges of integrating new additive technology [8,9]. Structural electronics is a term
used to name structures that involve electronic circuits and components in the volume of
protective structures, housing elements, etc. [10–12]. Structural electronics can function
as electronic circuits and components and provide the optimal mechanical and protective
properties of the entire device. Additionally, reducing the volume of a conventionally
fabricated device can be done by fusing additive manufacturing and electronics [13]. Due
to the rapid development of this branch of manufacturing, there is a need to develop new
materials with unique properties that can be used in Additive Manufacturing. Materials
with excellent electrical properties like low resistivity or high dielectric constant, excellent
mechanical properties, unique magnetic or thermal properties, etc., have to be developed
to increase the number of structural electronics applications [14–18].

This paper presents the application of elaborated copper-based conductive filaments
with a different polymer matrix for 3D structural electronics fabrication. Such filaments can
be directly used in unmodified, low-cost FDM printers to fabricate electrical circuits and
other functional conductive elements. To manufacture a sophisticated electrical device, we
need to merge additive manufacturing methods with traditional PCB technology. Based on
the approaches used so far, the only way to fabricate conductive connections on composite
substrates is to use conductive adhesives. However, such connections are characterized by
lower shear strength compared to solder joints [19]. Additionally, and crucial in structural
electronics applications, conductive adhesives have lower electrical conductivity than
solder alloys. This is because conductive adhesives are composite materials containing a
non-conductive matrix that provide good adhesive properties. Only the functional phase
found in the adhesives can provide electrical conductivity. In the case of solder alloys,
they conduct throughout their volume [20–23]. In this paper, soldering tests of fabricated
composites were performed to obtain optimal process conditions for solder connections
on polymer composites. Two different soldering methods and two types of solder alloys
were used in the research: reflow and iron soldering were employed, along with SnPb
and low-temperature SnBiAg solder alloys, respectively. The shear strength test of the
fabricated solder connections was determined. This kind of research is being reported for
the first time in the literature. Additionally, the 3D-printed demonstrator incorporating
LED elements is presented.

2. Experimental Procedure
2.1. Materials

To fabricate a conductive composite filament for the FDM technique, two materials
need to be incorporated: polymer matrix and conductive filler. The bulk copper’s conduc-
tivity is 5.96 × 107 S/m, which is only slightly lower than silver—6.14 × 107 S/m. Taking
into consideration the significant weight of metal powder necessary to reach the electrical
percolation threshold in the composites and the cost of such material, it was decided to
choose copper micro powder as a filler. The metal powder was purchased from Makin
Metal Powder (Rochdale, Lancashire, United Kingdom). According to the datasheet, the
purity of copper powder was above 99%. To examine the average particle size of the filler,
particle size analysis was performed on the Malvern machine. Grain size distribution and
SEM picture of copper powder are shown in Figure 1. The average filler particle diameter
was calculated as 57 µm.
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Figure 1. Particle size distribution and SEM micrograph of copper powder.

To develop composite filament that can be used in FDM printing, three different
polymers were chosen as the matrix material to achieve the best possible processability. All
selected thermoplastic polymers have different properties, but all are used in 3D printing:
acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and polystyrene (PS).

Two different soldering alloys were used to prepare soldering tests. Sn63Pb37 is
a eutectic alloy. It has a melting temperature of 187 ◦C, and it solidifies rapidly at one
temperature rather than over the range, which can take place for non-eutectic alloys. In the
experiment, Sn63Pb37 alloy was used in the form of a 1-mm-diameter wire. The second
soldering alloy used in tests was low-temperature bismuth-based soldering paste. The
OM 520 paste consists of 42% tin, 57.6% bismuth, and 0.4% silver. OM 520 solder paste
was used because of its low melting temperature—138 ◦C—allowing it to be used in a low
temperature soldering process. It is essential for soldering on thermally sensitive substrates
not resistant to high temperatures.

2.2. Conductive Composite Fabrication

Metal–polymer composite filaments can be fabricated using two approaches. The first
way is the thermal mixing of polymers with metal powder. The polymer is plasticized at
high temperature and mixed with metal powder to obtain a homogeneous composite. This
method has disadvantages, because to achieve high material homogeneity, the polymer
needs to be melted at a high temperature for a long time. This process causes the thermal
degradation of the polymer, leading to the deterioration of the composite’s mechanical
properties. The second method used in this research is a two-stage solvent assisted pro-
cessing method. The first stage of this method is dissolving the polymer in a suitable
solvent. After that, the metal filler is added and mixed with the polymer. The last step is
the evaporating of the solvent. This method allows minimizing the thermal degradation
of the polymer during the fabrication of the composite. After solvent evaporation, the
obtained composite is pelletized. A single-screw extruder machine was used to fabricate
filaments from prepared composite pellets. Composites were extruded in a hot mixing
extrusion process. Most popular 3D printers use filaments with 1.75 mm diameter. Our
laboratory has extruded filaments with diameter values ranging from 1.7 mm to 1.8 mm,
which is acceptable for use in standard, non-modified FDM printers. A detailed description
of the fabrication of copper-based conductive filaments and the evaluation of electrical
properties with the percolation threshold calculation has been presented in our previous
work [24].
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For the soldering tests, composites with the optimal amount of copper powder,
ABS/Cu with 81.8 wt.%, PLA/Cu with 82.5 wt.% and PS/Cu with 85.5 wt.% of cop-
per powder were used, respectively. All composite elements were printed on the CTC
Bizer 2X 3D printer. Layer height was set to 0.3 mm, table temperature to 80 ◦C, and
printing speed to 40 mm/s. The nozzle temperature value was different for each composite,
depending on polymer matrix—for ABS/Cu composite, printing nozzle temperature was
set to 250 ◦C, for PLA/Cu composite to 160 ◦C, and for PS/Cu composite to 150 ◦C.

2.3. Soldering Methods

Two methods of soldering were tested—hot iron soldering and reflow soldering. Hot
iron soldering is a soldering method characterized by low repeatability but is widely used
in prototyping, small-volume production, and service repair. It is the most common and
easiest method of soldering. To fabricate the solder joint, soldering iron generates the
heat required to increase the temperature of the soldered elements and circuit pads, and
melt the solder. On the other hand, reflow soldering is a common technique used in
mass production and can be used to fabricate a large number of soldered connections at
once. To produce solder connections with this method, surface-mount components and
soldering paste are placed on the substrate and inserted into the reflow oven. The most
important feature of this method is that the substrate and solder paste slowly heats up to a
temperature slightly above the solder alloy’s melting point.

2.4. Composite Surface Preparation Methods

The research results described in this article are divided into four parts. This is due to
the use of two types of soldering alloys (SnPb and SnBiAg) and two methods of fabrication
of soldered joints (hand soldering and reflow soldering). Regardless of the chosen solder
and soldering method, the research was carried out on three types of composite substrates-
ABC/Cu, PLA/Cu, and PS/Cu. Composite substrates were prepared for the soldering
process in five different ways, according to Table 1. This allows us to determine the impact
of the composite surface preparation methods on the quality of soldered joints.

Table 1. List of preparation methods of the composite surfaces before soldering.

Surface Section
Symbol A B C D E

A method of
surface preparing

Surface
mechanically

cleaned with 400
grit sandpaper

RF800 flux
applied on

surface before
soldering

Surface
chemically

cleaned with
solvent

Surface mechanically
cleaned with sandpaper
and RF800 flux applied

before soldering

No surface
preparation before

soldering

3. Results and Discussion
3.1. Solder Wettability Test

Wettability is the ability of a material, typically a liquid, to spread over another
material. It is crucial for soldering because it plays an essential role in providing a good
connection between the solder element and the substrate. One of the solder wettability
measurements on different substrates is measuring the contact angle (θ). It has been
proven that the smaller the value of the contact angle, the better the wettability [25]. Good
wettability has a direct impact on solder joint properties, like mechanical strength and
electrical resistance. The contact angle depends on many factors, like the soldering method,
soldering alloy, substrate surface preparation, etc.

In the first part of this research, the SnPb solder alloy and hot iron soldering method
were applied. Standard SMD 1206 resistors were used throughout the research, with
dimensions as shown in Figure 2.
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Figure 2. The schematic of SMD resistor with dimensions.

Hot iron soldering is characterized by the fact that the temperature of the substrate is
increased only locally (at the area where the joint is formed), and the process itself can be
carried out very quickly, within a few seconds (around 4–6 s), which reduces the impact
of high temperature on the composite substrate reducing the risk of thermal damage.
On the other hand, SnPb solder alloy makes it necessary to use a soldering temperature
value much higher than the softening temperature of polymers used in composites. This
is due to the relatively high melting temperature of the SnPb soldering alloy—187 ◦C.
Observations show that it is possible to make such connections thanks to the mechanical
pressing of the solder particles into the composite structure. On the other hand, there was
no possibility of fabricating repetitive solder joints. The process of hot iron soldering with
high temperature causes further damage to each composite (Figure 3). In the case of these
connections, it is impossible to determine the contact angle. As a “rule of thumb”, the
selection of the solder joints for the further test was based on the preliminary mechanical
strength. If resistors were attached to the composite substrate and did not detach during
transportation, additional experiments were performed. The soldered joints made on all
three types of composite substrates fulfilled this rule. However, it should be noted that
the obtained soldered joints have a very irregular and unrepeatable shape. The substrate’s
preparation method does not affect the quality of the joints, which is caused by partial
damage to the composite substrate during the soldering process.
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In the case of the SnPb alloy, it was not possible to perform reflow soldering on
composite substrates. In our conductive composites, ABS, PLA, and PS are used as matrix.
These polymers have a much lower melting temperature than the melting point of the solder
alloy. In contrast to hot iron soldering, where a high temperature is applied selectively at
the spot where the soldered joint is made, it is necessary to heat the entire volume of the
substrate during reflow soldering in a convection oven in which the elements are soldered.
Therefore, composite samples in the convection oven heated to the temperatures above
the melting point of the PbSn soldering alloy are destroyed what unable to prepare the
soldered joints using this technique.

Another type of soldering alloy used during the research was the low-temperature
soldering alloy SnBiAg. In contrast to the previously considered PbSn alloy, the melting
temperature of the soldering alloy SnBiAg is lower: 138 ◦C. The use of a low-temperature
soldering alloy makes it possible to significantly reduce the soldering temperature and
has the advantage of reducing the risk of damage to composite substrates during both
soldering processes.

Again, attempts have been made to solder SMD resistors to composite substrates using
two soldering techniques–hot iron and reflow soldering. Tests show that using the hot
iron method with low-temperature SnBiAg soldering paste makes it impossible to obtain
satisfying results. The preparation method of the composite surface has no direct impact.
The wetting of the composite surface is not good enough, and solder alloy sticks to the
hot iron preventing the formation of the soldering joint. The surface energy of fused metal
alloys is not compatible with the surface energy of polymer substrate, creating obstacles in
the proper wetting of the alloys on printed composited during the soldering process [26].
The greater the substrate surface energy, the better the wettability. The surface energy of
polymers is approximately two orders of magnitude lower than metals [27–29]. Those
material properties result in significantly better wetting of the soldering iron tip than the
composite substrate and make it impossible to fabricate solder joints. Soldering attempts
were carried out on all three composites without significant positive results (Figure 4).
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Reflow soldering makes it possible to use the temperature closest to the melting
point of soldering paste. Thanks to that, the lowest possible temperature necessary to
obtain a soldering connection is used in this process. Moreover, additional heating of the
substrate on which the solder connection is fabricated helps improve the wetting of the
soldering alloy. The soldering process was prepared in the reflow oven, and the reflow
temperature profile is shown in Figure 5. Low-temperature SnBiAg paste was applied with
the dispenser to ensure the same volume of paste is applied on each sample. Thanks to
using low-temperature soldering paste, the maximum temperature used during soldering
was set to 140 ◦C, which is a temperature that does not cause significant damage to the
composite substrates used.
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Tests of reflow soldering have shown that it is possible to make repeatable joints
soldered on all three composite substrates using the SnBiAg low-temperature solder alloy
with the reflow soldering technique. All SMD resistors soldered to composite substrates
were attached to the substrate, so they were taken into account in further tests of mechanical
properties of soldered joints.

After reflow soldering tests, we noticed that PS/Cu composite substrates had been
deformed in the process (Figure 6). Other composites have not shown such behavior.
The deformation of PS/Cu elements can be due to the internal stresses in the material.
Thermal stresses can emerge after the printing process and be relieved in the process of slow
heating up. Polystyrene has a lower Young’s modulus compared to PLA and ABS. This
causes PS/Cu composites to be the easiest to process, especially at higher temperatures.
Internal stresses occurring in the material can deform it while relieving. To avoid such
deformations during the soldering process on polystyrene matrix composite substrates,
selective soldering may be necessary. During the reflow soldering process, the entire
volume of the sample was heated to about 140 ◦C, causing its deformation. The use of
another selective soldering method, such as wave soldering or laser soldering, should make
it possible to obtain soldered joints without damaging the substrate. Another possible
way to avoid such deformations may be to optimize the 3D printing process with PS/Cu
composite to prevent an accumulation of thermal stresses on one side of the element. This
optimization can be achieved, for example, by randomly choosing the place where the
deposition of the layer starts. At this moment, the fabrication of every layer begins in the
same X-Y spot. This causes an accumulation of stress on one side of the element. With each
layer started in a different spot, deformation should not appear due to the even distribution
of stress throughout the element.
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Figure 6. Soldered joint fabricated with reflow soldering on different composites: (a) ABS/Cu,
(b) PLA/Cu, (c) PS/Cu.

While the use of a low-temperature SnBiAg soldering alloy and reflow soldering
made it possible to obtain soldered joints with satisfying quality and high repeatability,
contact angle measurements were carried out depending on the preparation method of
the composite surface. The contact angle measurement results show that the appropriate
preparation of the surface is necessary to achieve good quality solder connections. It is
noted that the mechanical cleaning of the surface has a significant impact on the contact
angle. It is necessary to solder to the copper grains in the composite, not to the polymer
matrix, in order to form a correctly soldered joint. The prepared samples are characterized
by the fact that during the printing process, they are covered with a layer of polymer that
must be removed to expose as much of the copper grains as possible in the place where the
soldered joint is formed. After the mechanical removal of polymer film, the solder alloy
can be soldered to the copper particles situated below. This is clear for the measured angle
values for samples A and D. Moreover, using mechanical cleaning together with additional
flux allows fitting the criteria of acceptable wetting θ < 55◦, according to Klein-Wassink [30].
The differences in the observed wetting angle values depending on the composite surface
preparation are presented in Table 2 on the example of ABS/Cu composite substrates.
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Table 2. Contact angle measurements results of SnBiAg solder correlated with the surface preparation of ABS/Cu composite.

Surface Section
Symbol A B C D E

A Method of
Surface Preparing

Surface
mechanically

cleaned with 400
grit sandpaper

RF800 flux
applied on

surface before
soldering

Surface
chemically

cleaned with
solvent

Surface mechanically
cleaned with sandpaper
and RF800 flux applied

before soldering

No surface
preparation

before soldering

Solder Ball
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different polymer matrix materials in the composite substrate. The most important is the 
process of surface preparation before the soldering. Table 3 presents the average contact 
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Matrix Polymer 
Surface Preparation Method 
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ABS 57.82° ± 0.85° 74.48° ± 0.82° 78.07° ± 0.81° 50.27° ± 0.95° 83.74° ± 1.15° 
PLA 57.24° ± 0.85° 74.09° ± 0.98° 78.18° ± 0.79° 50.48° ± 0.91° 84.02° ± 1.19° 
PS 57.57° ± 1.11° 74.34° ± 0.76° 78.48° ± 0.77° 50.55° ± 0.81° 84.11° ± 1.18° 

A brief summary of the quality evaluation of soldered joints depending on the sol-
dering alloy used, the soldering method, and the surface preparation is presented in Table 
4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 
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A brief summary of the quality evaluation of soldered joints depending on the sol-
dering alloy used, the soldering method, and the surface preparation is presented in Table 
4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 
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A brief summary of the quality evaluation of soldered joints depending on the sol-
dering alloy used, the soldering method, and the surface preparation is presented in Table 
4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 
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A brief summary of the quality evaluation of soldered joints depending on the sol-
dering alloy used, the soldering method, and the surface preparation is presented in Table 
4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 
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A brief summary of the quality evaluation of soldered joints depending on the sol-
dering alloy used, the soldering method, and the surface preparation is presented in Table 
4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 
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A brief summary of the quality evaluation of soldered joints depending on the sol-
dering alloy used, the soldering method, and the surface preparation is presented in Table 
4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 
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A brief summary of the quality evaluation of soldered joints depending on the sol-
dering alloy used, the soldering method, and the surface preparation is presented in Table 
4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 
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A brief summary of the quality evaluation of soldered joints depending on the sol-
dering alloy used, the soldering method, and the surface preparation is presented in Table 
4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 
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were classified as not meeting the requirements and were not considered to be soldered 
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4. Further tests of the joints’ mechanical properties were carried out only for specimens 
that passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” 
were classified as not meeting the requirements and were not considered to be soldered 
joints of acceptable quality. 

Measured
ContactAngle 57◦ 74◦ 78◦ 50◦ 83◦

This is the first time such experiments measuring the contact angle on conductive
composites have been performed. The literature does not provide similar wetting angle
results for composite substrates, so it is necessary to refer to standard metal substrates. It
must also be noticed that using Pb-free soldering alloys always results in higher contact
angle values compared with SnPb soldering alloys [31–33]. Another condition that made
it challenging to fabricate good-quality solder joints on polymer composite substrate is
that higher soldering temperatures positively influence contact angle values [34,35]. In the
presented research, the lowest possible soldering temperature was used in order to not
damage the composite substrate. Contact angle values from 30◦ to 58◦ are reported in the
literature for bismuth-based soldering paste, Cu substrate and optimal soldering tempera-
ture [32,36,37]. Values in this range were obtained on all tested composite substrates after
appropriate substrate preparation (A and D). However, it was observed that the application
of mechanical cleaning and suitable flux, with chemical cleaning of the soldered substrate,
reduced the average contact angle for reflow soldering significantly. It also resulted in the
highest-quality solder joints that fit the criterion of acceptable wetting mentioned earlier. It
is worth mentioning that the contact angle value does not vary significantly with different
polymer matrix materials in the composite substrate. The most important is the process of
surface preparation before the soldering. Table 3 presents the average contact angle values
depending on the composite type and surface preparation method. Each average value
was calculated from the measurement results of 10 samples.

Table 3. Average contact angle measured values for SnBiAg soldering alloy and reflow soldering technique.

Matrix Polymer
Surface Preparation Method

A B C D E

ABS 57.82◦ ± 0.85◦ 74.48◦ ± 0.82◦ 78.07◦ ± 0.81◦ 50.27◦ ± 0.95◦ 83.74◦ ± 1.15◦

PLA 57.24◦ ± 0.85◦ 74.09◦ ± 0.98◦ 78.18◦ ± 0.79◦ 50.48◦ ± 0.91◦ 84.02◦ ± 1.19◦

PS 57.57◦ ± 1.11◦ 74.34◦ ± 0.76◦ 78.48◦ ± 0.77◦ 50.55◦ ± 0.81◦ 84.11◦ ± 1.18◦

A brief summary of the quality evaluation of soldered joints depending on the solder-
ing alloy used, the soldering method, and the surface preparation is presented in Table 4.
Further tests of the joints’ mechanical properties were carried out only for specimens that
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passed the “rule of thumb”. Soldering joints that did not pass the “rule of thumb” were
classified as not meeting the requirements and were not considered to be soldered joints of
acceptable quality.

Table 4. Impact of the soldering alloy and soldering method on the quality of the soldered joints.

Solder Alloy Soldering Method Description Fit the Criteria of Acceptable
Wetting (θ < 55◦)

SnPb Hot iron soldering

Possible to fabricate soldered joints on all tested
composite substrates; the method of surface

preparation does not affect the quality of joints; not
possible to determine the wetting angle; irregular

shape of the obtained soldered joints

yes

SnPb Reflow soldering

Not possible to fabricate soldered connections due
to the high melting point of the soldering alloy

(significantly exceeding the softening temperature
of the polymer matrixes in all tested composites)

no

SnBiAg Hot iron soldering

Not possible to fabricate solder joints due to the
significant difference in wettability between the

composite substrates and the soldering tip;
soldering alloy sticks to the soldering tip and does

not deposit on the composite substrate

no

SnBiAg Reflow soldering

Possible to fabricate repeatable soldered joints;
quality of soldered joints depends mainly on how

the composite substrate’s surface is prepared;
minor impact of the type of composite matrix on

the quality of joints

yes

3.2. Shear Test

According to the wettability test results, two soldering methods were used to fabricate
samples for shear tests: hot iron soldering with Sn63Pb37 solder alloy and reflow soldering
with OM 520 solder paste. 1206SMD resistors were soldered on each of the composite
substrates, ABS/Cu, PLA/Cu, and PS/Cu, using both methods. The schematic diagram
of the laboratory stand for investigating the maximum shear force of the solder joints is
presented in Figure 7. The thorn applies the shear force on the soldered element until the
component, joint, or substrate is damaged. The maximum value of the shear force used
during the test was measured. For all tested components, the connection was damaged
between the surface of the composite and the solder. There were no cases in which the SMD
component or composite paths were damaged. The measurement results are presented in
Figure 8.
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It was also noticed that soldering joints prepared with the hot iron method significantly
differed from each other, with a noticeable spread of measured shear force values. These
results confirm the previous observation that the quality of soldering joints fabricated with
this method is variable. The significant differences in the shear force measurement results
obtained are also related to the impossibility of fabricating surface-repeatable connections
soldered with a soldering iron. It should also be mentioned that a solder joint is only
formed with the surface of the copper, not the polymer matrix, in the composite. The
spread of the obtained results is also due to the variable number of copper grains on the
composite surface where the soldering process was performed.

The results of shear force measurements also correspond with the thermal stability
properties of the polymer matrix. It can be observed that for composites based on polymer
matrixes with lower glass transition temperatures, the maximum value of the force at
solder connection failure is lower. Materials with lower glass transition temperatures show
lower thermal stability, and thermal degradation is quicker, resulting in failure at lower
shear forces (Table 5).

Table 5. Glass transition temperature for different polymers according to literature.

Polymer Glass Transition Temperature
(Tg) [◦C]

Average Shear Force (Reflow
Soldering) [N]

Average Shear Force
(Hot Iron Soldering) [N]

ABS 105 48.1 45.5
PS 100 46.7 35.4

PLA 60 36.1 28.7

Comparing the results obtained with other examples of soldering tests on 3D-printed
composite substrates is not possible, because there are no such reports in the literature.
Therefore, the obtained results were compared with the shear force values for standard
joints soldered on metal substrates. The shear force reported in the literature, depending
on the soldering paste used, for the 1206 SMD composite size soldered to a copper surface
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varies from 86 to 111 N [38,39]. The shear forces obtained for polymer composites as
substrates are around 50% lower. The mechanical properties of the prepared soldered joints
are still good enough to prepare high-quality electrical connections that easily pass the
“rule of thumb”. Developing a method for soldering standard electrical components to
3D-printed composites allows us to merge traditional electronics with the rapidly growing
field of structural electronics. It is also worth mentioning that structural electronics are
expected to embed electronic elements in the housing of structural materials with excellent
mechanical properties [40]. Therefore, the mechanical properties of electrical connections
are of secondary importance, because components in structural electronics systems will be
sealed inside the structure of the whole device and thus protected from forces that could
damage the electrical connections between the components.

3.3. Demonstrator Fabrication

To demonstrate the functionality of the developed conductive composites together
with the soldering method, the electrical structure was fabricated. Conductive paths were
3D printed on an unmodified FDM printer, and an SMD LED component was soldered to
its surface (Figure 9). Conductive paths were printed with PS/Cu composite filled with
85.5 wt.% copper powder. The LED was soldered to the surface using the hot iron method
with Sn63Pb37 solder alloy. Previous tests showed that reflow soldering gave far better
results, but using the hot iron method in demonstrator fabrication proved that it could
also be used in the fast prototyping of structural electronics systems. A 5 V USB charger
powered the electronic circuit. The electrical resistivity of the printed composites and
solder connections was low enough to power the LED with high efficiency. The example
of this demonstrator shows that it is possible to manufacture complex electronic systems
using additive techniques despite their apparent limitations. The limitation of obtaining
miniature integrated circuits with FDM technology can be solved by combining printed
elements with standard electronic components. Soldering the components to composite
substrates turns out to be a method that can be used to obtain fully functional 3D-printed
electronic systems.

Materials 2021, 14, x FOR PEER REVIEW 12 of 15 
 

joints soldered on metal substrates. The shear force reported in the literature, depending 
on the soldering paste used, for the 1206 SMD composite size soldered to a copper surface 
varies from 86 to 111 N [38,39]. The shear forces obtained for polymer composites as sub-
strates are around 50% lower. The mechanical properties of the prepared soldered joints 
are still good enough to prepare high-quality electrical connections that easily pass the 
“rule of thumb”. Developing a method for soldering standard electrical components to 
3D-printed composites allows us to merge traditional electronics with the rapidly grow-
ing field of structural electronics. It is also worth mentioning that structural electronics 
are expected to embed electronic elements in the housing of structural materials with ex-
cellent mechanical properties [40]. Therefore, the mechanical properties of electrical con-
nections are of secondary importance, because components in structural electronics sys-
tems will be sealed inside the structure of the whole device and thus protected from forces 
that could damage the electrical connections between the components. 

3.3. Demonstrator Fabrication 
To demonstrate the functionality of the developed conductive composites together 

with the soldering method, the electrical structure was fabricated. Conductive paths were 
3D printed on an unmodified FDM printer, and an SMD LED component was soldered to 
its surface (Figure 9). Conductive paths were printed with PS/Cu composite filled with 
85.5 wt.% copper powder. The LED was soldered to the surface using the hot iron method 
with Sn63Pb37 solder alloy. Previous tests showed that reflow soldering gave far better 
results, but using the hot iron method in demonstrator fabrication proved that it could 
also be used in the fast prototyping of structural electronics systems. A 5 V USB charger 
powered the electronic circuit. The electrical resistivity of the printed composites and sol-
der connections was low enough to power the LED with high efficiency. The example of 
this demonstrator shows that it is possible to manufacture complex electronic systems us-
ing additive techniques despite their apparent limitations. The limitation of obtaining 
miniature integrated circuits with FDM technology can be solved by combining printed 
elements with standard electronic components. Soldering the components to composite 
substrates turns out to be a method that can be used to obtain fully functional 3D-printed 
electronic systems. 

 
Figure 9. 3D-printed demonstrator with soldered LED on PS/Cu conductive substrate using a hot iron and SnPb soldering 
alloy. 

  

Figure 9. 3D-printed demonstrator with soldered LED on PS/Cu conductive substrate using a hot iron and SnPb solder-
ing alloy.



Materials 2021, 14, 3850 13 of 15

4. Conclusions

The possibility of fabricating soldering joints on 3D-printed conductive substrates was
investigated in the current work. Two soldering methods (hot iron soldering and reflow
soldering) and two soldering alloys (SnPb and low-temperature SnBiAg) were tested to find
the optimal technique for soldering. The main conclusions can be summarized as follows:

1. The surface preparation of conductive composite plays a significant role in forming
high-quality solder joints. The influence of surface preparation was evaluated by
measuring the contact angle of the melted solder alloy. It can be observed that the
best results were obtained with the mechanical removing of a thin polymer layer,
revealing a copper powder inside a composite structure, and using flux that allows the
removal of oxides and other compounds from the soldered surfaces. After the surface
preparation, the contact angle value was reduced to 55◦ for reflow soldering with
low-temperature SnBiAg solder paste, which fits the criteria of acceptable wetting.

2. The shear test results show that the maximum force value that could be applied before
damaging soldered joints is strongly dependent on the polymer matrix used in the
composite substrate. In general, maximum shear force values for reflow soldering
are slightly higher than for hot iron soldering. Shear forces obtained for polymer
composites as substrate are around 50% lower compared to a typical copper substrate.

3. The highest average shear strength of the joint occurs on ABS/Cu substrates, then on
PS/Cu, and the lowest results were obtained for the PLA/Cu substrate. The obtained
results correlate directly with the thermal stability of the polymer matrixes used. The
higher the thermal stability of the substrate material, the higher the maximum shear
force of the soldered joints fabricated on that substrate.

4. Hot iron soldering can be used to fabricate soldered joints on prepared composite com-
posites. Still, it is recommended that this method only be used for rapid prototyping
of individual structures because of its low repeatability.

5. The soldering joints with the best properties were obtained using low-temperature
SnBiAg solder paste and reflow soldering. This allows the fabrication of repeatable,
high-quality solder joints without damaging the composite substrate. This method
can be used for the mass production of structural electronics elements.
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37. Fima, P.; Gąsior, W.; Sypien, A.; Moser, Z. Wetting of Cu by Bi–Ag based alloys with Sn and Zn additions. J. Mater. Sci. 2010, 45,

4339–4344. [CrossRef]
38. Bernasko, P.K.; Mallik, S.; Takyi, G. Effect of intermetallic compound layer thickness on the shear strength of 1206 chip resistor

solder joint. Solder. Surf. Mt. Technol. 2015, 27, 52–58. [CrossRef]
39. Pan, J.; Toleno, B.J.; Chou, T.; Dee, W.J. The effect of reflow profile on SnPb and SnAgCu solder joint shear strength. Solder. Surf.

Mt. Technol. 2006, 18, 48–56. [CrossRef]
40. Espalin, D.; Muse, D.W.; MacDonald, E.; Wicker, R.B. 3D Printing Multifunctionality: Structures with Electronics. Int. J. Adv.

Manuf. Technol. 2014, 72, 963–978. [CrossRef]

http://doi.org/10.1016/j.scriptamat.2010.12.026
http://doi.org/10.1016/S0169-4332(03)00342-8
http://doi.org/10.1007/s11664-009-0888-y
http://doi.org/10.1007/s10853-009-4120-5
http://doi.org/10.1007/s10854-020-02975-x
http://doi.org/10.1007/s11664-999-0251-3
http://doi.org/10.1007/s10853-010-4291-0
http://doi.org/10.1108/SSMT-07-2013-0019
http://doi.org/10.1108/09540910610717901
http://doi.org/10.1007/s00170-014-5717-7

	Introduction 
	Experimental Procedure 
	Materials 
	Conductive Composite Fabrication 
	Soldering Methods 
	Composite Surface Preparation Methods 

	Results and Discussion 
	Solder Wettability Test 
	Shear Test 
	Demonstrator Fabrication 

	Conclusions 
	References

