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Abstract: Neurodegenerative diseases are etiologically and clinically heterogeneous conditions,
often reflecting a spectrum of disease rather than well-defined disorders. The underlying molecular
complexity of these diseases has made the discovery and validation of useful biomarkers challenging.
The search of characteristic genetic and transcriptomic indicators for preclinical disease diagnosis,
prognosis, or subtyping is an area of ongoing effort and interest. The next generation of biomarker
studies holds promise by implementing meaningful longitudinal and multi-modal approaches in
large scale biobank and healthcare system scale datasets. This work will only be possible in an
open science framework. This review summarizes the current state of genetic and transcriptomic
biomarkers in Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis, providing
a comprehensive landscape of recent literature and future directions.

Keywords: Alzheimer’s disease; Parkinson’s disease; amyotrophic lateral sclerosis; biomarkers;
genetics; transcriptomics

1. Introduction

In 1998, the National Institutes of Health’s Biomarkers Definitions Working Group
defined a biomarker as “a characteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention.” [1]. It is widely assumed that a successful biomarker must
be objective, inexpensive, accessible, accurate in a diverse group of individuals and easily
quantifiable, and correlate with the presence or severity of the disease [2].

In the neurodegenerative diseases field, the discovery and validation of biomarkers is
an area of ongoing effort and interest. A plethora of studies have been conducted in an
attempt to unravel biomarkers that may be characteristic indicators for preclinical disease
diagnosis (before clinical symptoms occur), predictive prognosis, and disease subtyping. In
this arena, the search may be particularly difficult because these conditions are not clearly
defined entities. They are etiologically and clinically heterogeneous, and they may rather
reflect a spectrum of neurodegenerative disease processing. The intra- and inter-patient
variation and the fact that co-pathologies are frequent and have complex contributions to
clinical phenotypes makes biomarker discovery particularly challenging.

Over the years, biomarker studies conducted in the field of neurogenetics have usually
focused on identifying single biomarker metrics with limited applicability (Table 1).

These genetic markers are often disease-causing deleterious mutations responsible for
monogenic forms of disease. However, even in the majority of the cases, the relationship
between a genetic biomarker and the development of the disease is complex, due to the
variability of penetrance and the contribution of genetic risk factors interplaying with the
environment.
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Table 1. Genetic biomarkers for neurodegenerative diseases.

Gene Protein Neurodegenerative Disease

SNCA Alpha-synuclein monogenic PD

LRRK2 Leucine-Rich Repeat Kinase 2 monogenic PD

PINK2 PTEN-induced kinase 1 monogenic PD

PARK2 Parkin monogenic PD

DJ-1 DJ-1 monogenic PD

VPS35 Vacuolar protein sorting ortholog 35 monogenic PD

GBA Glucocerebrosidase PD (risk factor)

APP Amyloid precursor protein monogenic AD

PSEN1 Presenilin 1 monogenic AD

PSEN2 Presenilin 2 monogenic AD

APOE (ε4 allele) Apolipoprotein-E AD (risk factor)

TREM2 TREM2 AD (risk factor)

TARDBP TDP-43 monogenic ALS

SOD1 Superoxide dismutase 1 monogenic ALS

FUS Fused-in sarcoma monogenic ALS

C9orf72 C9orf72 ALS (risk factor)

KIF5A KIF5A ALS (risk factor)

The underlying molecular complexity in neurodegenerative diseases has made the
next generation of biomarker studies take shape as meaningful multi-modal approaches
using large scale biobank datasets. To a large extent, our current knowledge about the
etiology underlying neurodegenerative diseases has been driven by advances in the known
”-omics”, including genomics, transcriptomics, proteomics, and metabolomics. Despite
being widely applied in research, the road towards a successful implementation and
translation into the clinic is in its early stages. The availability of reliable biomarkers able
to provide an early diagnosis and the identification of individuals at risk, monitor disease
progression and allow the discovery of novel and more individualized treatments for these
debilitating conditions is urgently needed in our search for a cure.

This review aims at providing a general overview on the current status of genetic
and transcriptomic biomarkers in the era of big data and precision medicine by focusing
on the most common neurodegenerative diseases, including Parkinson’s disease (PD),
Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS). We assess the progress
achieved so far and discuss the main challenges and limitations in our way to dissect the
complexity underlying these debilitating conditions.

2. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative movement disorder in which the
diagnosis is currently based on the patient’s clinical history and examination. The clinical
diagnosis at first visit is, however, only accurate in 80% of pathologically-confirmed PD [3].
The classical presentation includes progressive slow movements, resting tremor, and
stiffness [4], and patients often report long-standing, prodromal non-motor symptoms [4].
Dopamine transporter imaging can be helpful for diagnosis when the examination does
not clearly reveal parkinsonism, but its usefulness is limited when parkinsonian motor
signs are unequivocally present [4]. There has been extensive research searching for protein
biomarkers in cerebrospinal fluid and blood [5], but these findings have not yet been
translated to the clinic. As such, there remains an unmet need for objective biomarkers for
early-stage diagnosis [6].
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2.1. Genetic Biomarkers
2.1.1. Rare Mutations

While the cause of PD is unclear, there are several genetic and environmental risk
factors. The genetic contributors to PD risk lie on a spectrum from rare variants with strong
effects to common variants with weak effects. A minority of PD cases carry rare mutations
that are sufficient to cause a familial or monogenic form of neurodegeneration, reviewed in
references [7–9]. These include mutations and/or copy number variants in SNCA, LRRK2,
PINK1, PARK2, DJ1, or VPS35. While these mutations can be considered relatively reliable
biomarkers for some patients, the vast majority of PD cases do not have a clear genetic
cause. As such, genetic variation is usually considered a risk factor for this disease. For
example, mutations in the GBA gene have been linked to roughly a fivefold increase in PD
risk [10]. As previously mentioned, the clinical usefulness of these mutations is limited by
their low prevalence and incomplete penetrance [11,12].

2.1.2. Common Variants and Polygenic Risk Scores

Genome-wide association studies (GWASs) have identified over 90 common genetic
variants associated with PD risk in Europeans, and 11 in Asian populations [13,14]. While
each GWAS-identified variant accounts for a very small proportion of this risk, variants
can be aggregated to form a polygenic risk score (PRS). Using the effect sizes and alleles
calculated for each variant in the GWAS, a PRS could be used as a biomarker to estimate an
individual’s risk of disease. Several studies have shown that GWAS-derived PRSs correlate
with disease risk, age at onset, as well as motor and cognitive decline (measured by change
in UPDRS part III score, time to Hoehn and Yahr stage 3, change in the mini-mental state
examination), but not survival [15–19].

Nevertheless, genetic testing does not currently have an established role in the diag-
nostic process unless the patient’s history prompts suspicion for a genetic cause through,
for example, a family history or early motor symptom onset. Calculating an individual’s
PRS would need to have a substantial impact on clinical trial recruitment or patient quality
of life before it could be implemented. Genetic variation is estimated to account for about
22% of PD risk, and to date only 16–36% of that risk may be explained by GWAS-identified
loci (depending on the estimated disease prevalence) [13]. It is thus unlikely that such
a PRS alone could currently have a substantial impact on patient care. Furthermore, the
vast majority of GWAS data is based on individuals of European descent only. The less an
individual is genetically similar to the GWAS study population, the less accurate the PRS
will be in predicting disease risk in that individual [20–22]. As such, current PRSs do not
yet reach the diagnostic accuracy needed to be translated to the clinic.

2.2. Transcriptomic Biomarkers

Beyond genetics, the potential of RNA-based biomarkers have recently been explored
in PD research (Table 2).

Several studies have sought to classify gene expression profiles in PD for diagnostic
purposes [23,24], and three forms of non-coding RNAs have been investigated as potential
biomarkers for PD: microRNA (miRNA), long non-coding RNA (lncRNA) and circular
RNA (circRNA) [25–28].

miRNAs are short RNA molecules that are easily detected in body fluids such as
blood, CSF, or saliva. Many studies have compared expression levels of various miRNAs
between PD patients and healthy controls [25,26]. For example, Cressatti et al., found that
salivary miRNA-153 and miRNA-223 may be able to distinguish PD patients from controls
with an area under the curve of 79% (95% confidence interval (CI), 64.5–99.2) and 74%
(95% CI, 59.6–93.0), respectively [29]. Similarly, Ravanidis and colleagues identified six
circRNAs that may be deregulated in PD patients [30]. The authors combined four of these
into one biomarker, which in the same patients had a sensitivity of 75.3%, a specificity of
78%, and an area under the curve of 0.84. It has been suggested that biomarkers should
achieve areas under the curve >80% in order to be clinically useful [31]. While current
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miRNA studies are encouraging, the diagnostic accuracy of a biomarker must be measured
in a cohort that is independent of the discovery population.

Table 2. Potential transcriptomic biomarkers in neurodegenerative diseases.

Gene Tissue/Biofluid Upregulated/Downregulated Neurodegenerative Disease

miRNA-153 Saliva Downregulated Sporadic PD

miRNA-223 Saliva Downregulated Sporadic PD

MAPK9_circ_0001566 PBMCs Downregulated Sporadic PD

HOMER1_circ_ 0006916 PBMCs Downregulated Sporadic PD

SLAIN1_circ_0000497 PBMCs Downregulated Sporadic PD

DOP1B_circ_0001187 PBMCs Downregulated Sporadic PD

RESP1_circ_0004368 PBMCs Downregulated Sporadic PD

PSEN1_circ_0003848 PBMCs Downregulated Sporadic PD

miR-7-5p Plasma Upregulated Sporadic PD

miR-22-3p Plasma Upregulated Sporadic PD

miR-124-3p Plasma Upregulated Sporadic PD

miR-136-3p Plasma Upregulated Sporadic PD

miR-139-5p Plasma Upregulated Sporadic PD

miR-330-5p Plasma Upregulated Sporadic PD

miR-433-3p Plasma Upregulated Sporadic PD

miR-495-3p Plasma Upregulated Sporadic PD

APOE CNS Upregulated Sporadic AD

TREM2 CNS Upregulated AD

APP; β-amyloid protein (Aβ42/Aβ40) CSF; Blood/Plasma Upregulated Familial AD

MAPT (Phosphorylated tau 181 or 231) CSF; Blood/Plasma Upregulated Sporadic AD

MAPT (Total tau) CSF; Blood/Plasma Upregulated Sporadic AD

NEFL (NfL; neurofilament light chain) CSF; Blood/Plasma Upregulated Sporadic AD

GFAP (Glial fibrillary acidic protein) Blood/Plasma Upregulated AD

miR-101 Downregulated AD

miR-153 Downregulated AD

miR-346 Upregulated AD

miR-342-3p Blood/Plasma Upregulated AD

miR-455-3p CNS; Serum Upregulated AD

miR-146a CSF Upregulated AD

miR-34a-5p CNS; Serum Upregulated AD

miR-93 Serum Downregulated AD

miR-127-3p CSF Downregulated AD

KIF5C CNS, PBMCs Downregulated Sporadic ALS

KIFC3 CNS, PBMCs Downregulated Sporadic ALS

DCTN1 CNS, PBMCs Inconsistent results Sporadic ALS

Trk-B PBL Downregulated ALS (non-specific)

BDNF PBL Downregulated ALS (non-specific)

PI3K PBL Downregulated ALS (non-specific)
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Table 2. Cont.

Gene Tissue/Biofluid Upregulated/Downregulated Neurodegenerative Disease

AKT PBL Downregulated ALS (non-specific)

NFκB PBL Downregulated ALS (non-specific)

GSK3β PBL Downregulated ALS (non-specific)

FASL PBL Upregulated ALS

CyFIP2 hMSC, PBL Upregulated Sporadic ALS

RbBP9 hMSC, PBL Upregulated Sporadic ALS

VEGF-A PBMCs Upregulated Sporadic ALS

CCL2 PBMCs Upregulated Sporadic ALS

Nurr1 Whole blood Upregulated ALS

COL19A1 Whole blood Upregulated ALS (prognosis)

miR-1234-3p Serum, Plasma Downregulated Sporadic ALS

miR-1825 Serum, Plasma Downregulated ALS

miR-206 Serum, Plasma, PBL Upregulated Sporadic ALS (non-specific)

miR-338-3p PBL, Serum, CSF Upregulated Sporadic ALS (non-specific)

miR-9 Plasma, CSF, PBL Upregulated Sporadic ALS (non-specific)

The current table represents some of the examples discussed in the text. It does not include by any means a complete list of the numerous
differently expressed genes that have been associated with neurodegenerative conditions in the extensive literature. CNS = central nervous
system, PBL = peripheral blood leukocytes, hMSC = human mesenchymal stem cells, PBMC = peripheral blood.

Furthermore, RNA-based biomarker studies in PD have focused on discerning PD
patients with motor symptoms from healthy controls. In the clinic, the difficulty often
lies in distinguishing idiopathic PD from other causes of parkinsonian symptoms such
as progressive supranuclear palsy, multiple system atrophy, or monogenic PD. In this
vein, a recent miRNA study identified dysregulated miRNAs that differed between pa-
tients with idiopathic vs. monogenic forms of PD, and they found some overlap between
patients carrying SNCA and GBA mutations [32]. From a diagnostic point of view, a
biomarker distinguishing monogenic and sporadic PD could help identify cases caused by
de novo mutations.

Establishing reproducible, robust RNA-based biomarkers for PD has been a great
challenge, in part because most studies have very small sample sizes and the techniques
used to detect and analyze miRNA levels are not standardized [25,26,33]. A recent review
found that the sensitivity among 24 miRNA studies looking to distinguish between PD
cases and healthy controls ranged from 56.7% to 96%, and their specificity from 63.3 to
92% [26]. As such, thorough replication studies will be crucial before these biomarkers can
be considered in the clinic.

An early diagnostic test or a progression biomarker would allow pre-symptomatic
or high-risk individuals to make more informed plans for their future and, thus, improve
quality of life [34]. Such tools would also enable clinical-phase research to target pathogenic
processes at an early stage. The underlying disease-causing process of PD is thought to
occur up to two decades before motor symptom onset, suggesting that there is indeed
a pathological process to be detected early on [35,36]. Longitudinal, population-based
biomarker studies will therefore be crucial for establishing clinically effective biomarkers
in PD.

3. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of dementia worldwide and is
the most prevalent complex neurodegenerative disease with an estimated 14 million cases
in the United States [37] and 115 million globally [38] by the year 2050. AD is characterized
clinically by impaired short-term memory coupled with progressive cognitive decline and
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behavioral changes. AD has two distinct neuropathologies: extracellular β-amyloid protein
plaque depositions and intracellular neurofibrillary tangles of hyperphosphorylated tau,
resulting in neuronal loss in the cortex.

3.1. Genetic Biomarkers
3.1.1. Rare Mutations

Early-onset familial AD cases, classified as individuals with familial AD who exhibit
symptoms before the age of 60, make up <1% of cases and are caused by mutations in
three genes: the β-amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2
(PSEN2) [39]. The majority of mutations in these three genes result in autosomal dominant
forms of early-onset AD [40]. APP, found on chromosome 21, encodes for the amyloid-β
precursor protein. APP is at the center of the amyloid cascade hypothesis, the theory
suggesting that a key event in AD pathology is the deposition of the β-amyloid peptide.
Alternative splices of the APP gene generate different APP proteins, and these aggregated
plaques initiate various kinase sequences which ultimately lead to hyperphosphorylated
tau and the creation of neurofibrillary tangles [41].

The PSEN1 and PSEN2 genes, on chromosomes 14 and 1, respectively, encode pre-
senilins which make up the catalytic subunit of the γ-secretase complex, the complex
responsible for the cleavage of amyloid precursor proteins which lead to formation of
β-amyloid peptides [42]. Causative mutations in these genes likely either increase overall
production of β-amyloid (such as APP duplications) or produce β-amyloid peptides more
prone to aggregation [40].

The triggering receptor expressed on myeloid cells-2 (TREM2) gene on chromosome
6, a transmembrane receptor of the immunoglobulin superfamily, has been identified as
an immune signaling hub that activates robust immune remodeling in response to tissue
damage. The TREM2 pathway is essential in restricting the spread of tissue damage [43],
and rare mutations in TREM2 affect amyloid and tau pathologies, implicate the role of
microglia in the pathogenesis of AD, and strongly increase the risk for developing AD [44].

3.1.2. Common Variants and Polygenic Risk Scores

Sporadic AD cases make up most diagnoses and affect individuals older than 60 years
with no discernible pattern of inheritance, indicating a cumulative effect of common,
rare, and environmental contributions for AD risk [39]. Found on chromosome 19, the
apolipoprotein E (APOE) gene is a core component of production, conversion, and clearance
of plasma lipoproteins. APOE has three common alleles (ε2, ε3, and ε4), and having the
ε4 allele is the commonest genetic risk factor for AD [45]. The ε4 allele increases risk
in developing AD at earlier ages and in a dose-dependent manner, where one copy is
a threefold increase in risk and two copies of the ε4 allele puts individuals at a 10-fold
increased risk, with over 60% of AD cases having at least one ε4 allele [45]. In a meta-
analysis conducted by Farrer and colleagues, the ε4 allele was found to be a major risk
factor across all ethnicities studied (Caucasian, African-American, Hispanic, and Japanese),
between the ages of 40 to 90, and in males and females [46]. While the APOE ε4 allele is
the strongest genetic risk factor, and accounts for up to 25% of heritability in AD [47], the
ε2 allele is the strongest genetic protective factor in AD [48]. However, having the APOE
ε2/ε2 genotype has been associated with severe pathology in primary tauopathies such as
progressive supranuclear palsy and corticobasal degeneration [49].

The most recent GWAS meta-analysis to investigate the genetic etiology of AD was
conducted by Bellenguez and colleagues and led to the identification of 42 new loci, totaling
75 known risk associations that were replicated in a separate cohort. PRS based on all
75 known AD loci, totaling 83 variants, was significantly associated with progression of
all causes of dementia progression (HR = 1.05 per average risk variant, 95%CI (1.03–1.06),
P = 1.2 × 10−13) [50]. The genes prioritized at these loci were associated with known AD
pathways such as amyloid and tau metabolism, endocytosis, and innate immunity. New
candidate genes identified in AD were previously found to be associated with other neu-
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rodegenerative diseases like IDUA in PD, progranulin and TMEM106B in frontotemporal
dementia (FTD). When a locus is associated with two traits, a colocalization analysis can be
used to determine if one variant affects both traits, or if there are two causal variants close
to each other [51]. A colocalization analysis showed that the AD risk variant near IDUA
is likely separate from the PD signal, but the variants in progranulin and TMEM106B are
likely to contribute risk for both AD and FTD [52].

Despite advances in investigating genetic contributions of AD, the translational impact
of these findings to the clinic and as diagnostic measures still remains limited [47]. While it
has been demonstrated that PRS is useful in estimating individualized AD risk, a recent
multi-center longitudinal analysis by Daunt and colleagues have highlighted that PRS is a
simple, effective way of identifying mild cognitively impaired patients who are most likely
to decline cognitively due to AD over the span of four years with an area under the curve
of up to 79% [53]. PRS, since directly derived from GWAS data, has the inherent limitation
that it is based on people of European ancestry. Further research will need to be done to
assess the predictive accuracy of PRS in other populations, and without robust accuracy
and replication, PRS has not reached the rigorous threshold to be used as a diagnostic tool
in the clinic.

3.2. Transcriptomic Biomarkers

Finding connections between AD associated genes and pathological mechanisms has
been an area of interest to identify robust transcriptomic biomarkers for the diagnosis and
progression of AD (Table 2) [47]. In addition to increasing diagnostic accuracy when sup-
plemented with clinical findings and informing pre-symptomatic or high-risk individuals
earlier in the disease course, reliable and accurate biomarkers of diagnosis and progression
would allow therapeutic targeting at an earlier stage of the disease. Previously, most work
in AD transcriptomic biomarkers have focused on amyloid and tau-related biomarkers [54].

Biomarkers in the CSF are preferred over most other biochemical biomarkers because
the CSF is isolated from the peripheral system by the blood-CSF barrier and interacts
directly with the brain in a bidirectional manner. The three established CSF biomarkers
based on the core pathological proteins are the 42-amino acid form of the β-amyloid
protein (Aβ42), total tau (T-tau), and phosphorylated tau at threonine 181 (P-tau181), which
have been used diagnostically to validate AD diagnosis in ambiguous clinical dementia
diagnosis cases, atypical presentations, and patients with mixed pathologies [55]. The
Aβ42 biomarker measures β-amyloid, a core component of the amyloid plaques found in
the brain due to misfolding of the peptides and is low in the CSF when the individual
has AD [56]. Tau protein, generated by the microtubule-associated protein tau (MAPT)
gene on chromosome 17, is predominantly expressed in neurons and stabilizes internal
microtubules. In AD, tau dysfunction leads to tau buildup, and the tau levels are high in
the CSF [57]. P-tau181 levels in the CSF are high in individuals with AD, though recent
work by Janelidze and colleagues postulate that CSF P-tau217 outperforms P-tau181 and
distinguishes dementia from AD versus non-AD dementia better than P-tau181 [58].

Blood-based biomarkers are minimally invasive, and therefore favored over CSF
biomarkers in terms of scalability and cost-effectiveness [54]. Measures of plasma have
been associated with β-amyloid deposition, astrogliosis, and neurodegeneration. A recent
observational study conducted by Simrén and colleagues investigated both the diagnostic
and prognostic capabilities of the following plasma biomarkers of AD pathology: plasma
total β-amyloid (Aβ), the 40- and 42-amino acid forms of β-amyloid (Aβ42/Aβ40) ratio,
T-tau, P-tau181, axonal injury (neurofilament light; NfL), and astrogliosis (glial fibrillary
acidic protein; GFAp) [59]. Both P-tau181 and NfL were increased in individuals with mild
cognitive impairment. However, P-tau181 was found in higher levels in those initially
diagnosed with mild cognitive impairment and later converted to AD than those who
did not convert to an AD diagnosis. P-tau181 also significantly outperformed the other
plasma biomarkers when detecting AD at mild cognitive impairment and dementia stages,
with longitudinal analyses indicating higher amounts of P-tau181 resulted in faster rates
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of cognitive decline [59]. In a separate study done by Janelidze and colleagues, plasma
P-tau181 and CSF P-tau181 correlated only in individuals who were Aβ+, stipulating that
P-tau181 in the CSF and blood may be regulated depending on Aβ status [60].

miRNAs are small non-coding RNA species, about 22 nucleotides long, that work to
regulate gene expression by binding to complementary target messenger RNA (mRNA)
sequences post-transcriptionally. In addition to miRNAs being expressed in the central ner-
vous system, an estimated 200 mRNAs can be regulated by a singular miRNA, suggesting
that dysregulation of miRNA expression is likely associated with multiple diseases [61].
Depending on the upregulation or downregulation of certain miRNAs, common different
pathological processes such as Aβ accumulation, synaptic dysfunction, memory dysfunc-
tion, toxicity due to tau accumulation, cell death, and inflammation are affected [62,63]. An
area of particular interest are miRNAs that manipulate the expression of APP or the genes
that code for its processing enzymes (α-secretase, β-secretase, and γ-secretase), and how
those miRNAs slow down or speed up Aβ accumulation [64–67]. Another area of interest
are miRNAs that regulate MAPT affecting tau accumulation and relevant protein kinases
affecting tau phosphorylation [68,69], looking at both of the distinct neuropathologies
associated with AD. In-depth reviews of other miRNAs currently associated with AD have
been expanded on elsewhere [61,70,71], however, further studies will be required to assess
if a panel of miRNA biomarkers is sufficient to be clinically and diagnostically useful in
the identification of AD patients, discerning AD patients from other neurodegenerative
disease, or to monitor the progression of AD.

While similar protein deposits are made in both the CSF and blood, further inves-
tigation is required to assess the validity and accuracy of blood-based biomarkers [72].
There is a crucial need for robust blood-based biomarkers to screen for AD risk in large
numbers in young and healthy individuals and to start treatment early on in the disease
course for pre-symptomatic individuals, as it is a safer, less invasive, and cheaper option
than CSF biomarkers [73]. Additionally, recent efforts have been made to identify non-tau
and non-Aβ biomarkers for use of monitoring response to treatment in drug trials, such
as the therapeutic trials targeting Aβ [74]. From a diagnostic and prognostic perspective,
population-based longitudinal studies to identify robust blood-based biomarkers alongside
having non-tau and non-Aβ biomarkers could aid in the identification of pre-symptomatic
individuals and test the efficacy of therapeutic interventions, respectively.

4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a form of motor neuron disease, and it is a
fatal neurodegenerative condition characterized by the progressive deterioration of motor
neurons in the brain and spinal cord, leading to muscle weakness, atrophy, and death
within a few years of disease onset [75]. The global incidence of ALS is currently estimated
at ~1.59 cases per 100,000 people per year, with estimates rising steadily over the past
few decades [76]. ALS is a highly heterogeneous disease both in terms of its clinical
presentation and genetic etiology. There are two recognized forms of ALS: familial (fALS),
which accounts for ~10% of cases and is often caused by autosomal dominant inheritance;
and sporadic (sALS), which accounts for the remaining cases [77]. In around 10–15% of
ALS cases, non-motor defects such as behavioral or cognitive impairment manifest in a way
that meets the diagnostic criteria for frontotemporal dementia (FTD), and the two disorders
are often described as being the opposite ends of a single syndromic spectrum [77].

Although numerous cellular processes have been implicated in ALS—including mem-
brane trafficking, excitotoxicity, signal transduction, nucleocytoplasmic transport, and
neuron projection morphogenesis, among others [78–80], the mechanisms that underlie the
disease are uncertain. As a result, there has been less progress made towards the diagnosis
and treatment of ALS compared to other neurodegenerative diseases. ALS diagnosis is cur-
rently based on clinical symptoms and electrophysiological criteria, usually over 12 months
after symptom onset accompanying substantial motor neuron degeneration [81–83]. There
has also been interesting progress in the use of non-invasive brain stimulation as a diagnos-



Cells 2021, 10, 1030 9 of 17

tic tool for ALS [84]. Current ALS treatments have limited effects on disease survival and
progression [85,86] and could greatly benefit from biomarkers that aid in presymptomatic
diagnosis, monitoring of disease progression, or stratification of ALS patients for clinical
trials. There are currently no reliable biomarkers for the majority of ALS cases, though
numerous candidate biomarkers are under investigation.

4.1. Genetic Biomarkers

Over the past few decades, over 30 genes have been linked to ALS. Although current
genetic testing panels can identify many monogenic forms of disease, known ALS-linked
genes only account for about two-thirds of all fALS cases and 10–15% of sALS cases [87].
The remaining 80% of ALS cases have no known monogenic cause [88].

4.1.1. Rare Mutations

The most common genetic causes of ALS are pathogenic rare missense mutations
in the superoxide dismutase 1 (SOD1), fused in sarcoma (FUS), and TAR DNA-binding
protein 43 (TARDBP) genes, as well as hexanucleotide repeat expansions in the chromo-
some 9 open reading frame 72 (C9ORF72) gene. Mutations in these four genes can lead to
the accumulation of cytoplasmic protein aggregates and have been extensively studied as
potential biomarkers. Novel ALS-linked genes such as KIF5A have also been recently iden-
tified [89], though pathogenic mutations in the remaining ALS-linked genes are relatively
uncommon in comparison.

SOD1 was the first gene to be linked to ALS, accounting for ~15 to 30% of fALS cases
and ~1% of sALS cases depending on the population [90]. Wild-type SOD1 dimers are
involved in critical antioxidant defense mechanisms, but pathogenic mutations in the
gene have been suggested to confer a toxic gain of function that results in motor neuron
damage. There are currently over 185 mutations throughout the SOD1 gene that have been
associated with ALS, some of which cause more aggressive forms of disease (e.g., A4V,
H43R, L84V, G85R N86S, and G93A) and others that lead to slower disease progression
(e.g., G93C, D90A, and H46R) [91]. Genetic screening for known SOD1 mutations could
be beneficial not only for ALS diagnosis and predicting disease progression, but also for
enrollment in clinical trials of SOD1-targeted therapeutics.

TDP-43, encoded by the TAR DNA-binding protein (TARDBP) gene, is the main
component of ubiquitinated aggregates present in >95% of all sALS cases, ~50% of FTD
cases and numerous other neurodegenerative diseases [92]. Although TDP-43 is a nu-
cleoprotein primarily involved in RNA processing and transcriptional regulation, stress
and/or mutation can cause it to relocate to the cytoplasm where it is hyperphosphorylated
and truncated at the C-terminus, making it prone to aggregation. Since 2008, at least
48 pathogenic mutations in TARDBP have been linked to ALS, primarily clustered in the
C-terminal domain [93]. These mutations account for ~1 to 4% of fALS cases [90] and could
aid in presymptomatic diagnosis for some ALS patients.

Similar to TDP-43, FUS is a nucleoprotein that is involved in transcriptional regulation
through RNA/DNA binding and RNA splicing. Though the two proteins share many
cellular roles, FUS also functions in DNA repair mechanisms and regulates distinct RNA
targets. Mutations in FUS cause ~3 to 6% of fALS cases and <1% of sALS cases [90],
and carriers of pathogenic FUS and SOD1 mutations rarely exhibit TDP-43 pathology.
There are currently over 50 FUS mutations that are associated with ALS/FTD, most of
which are missense mutations in the nuclear localization signal (NLS) domain that have
been shown to cause the mislocalization of FUS to the cytoplasm. Mutations in the low
complexity, prion-like N-terminal domain have also been linked to ALS and similarly
cause pathological FUS aggregation [94]. Although most FUS-ALS cases present with
autosomal-dominant, early-onset or juvenile forms of disease with rapid progression, some
present with slower progressing late-onset ALS, indicating that there could be distinct
pathological mechanisms associated with specific FUS mutations [94]. FUS mutations
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could therefore be important prognostic biomarkers of fALS and could have implications
for personalized treatment.

The intronic hexanucleotide repeat expansion (GGGGCC) in the C9orf72 gene is the
most common genetic cause of both ALS and FTD, affecting ~34% of fALS and ~5% of
sALS cases in Europeans and ~2% of fALS and <1% of sALS cases in Asians [90]. While
the G4C2 repeat typically ranges from ~5 to 10 copies in healthy individuals, it can range
in the hundreds or thousands of copies in ALS patients who carry this expansion [95].
There are two main mechanisms that are thought to underlie C9orf72-ALS. First, a portion
of the RNAs that are transcribed from the expanded transcript are subject to non-ATG-
mediated translation (RAN translation), resulting in the production of abnormal dipeptide
repeat proteins that form neuronal inclusions [96,97]. Second, the expanded transcripts
adopt unusual secondary structures known as RNA foci which induce cellular toxicity by
sequestering RNA-binding proteins, leading to general RNA misprocessing [98]. Since
ALS patients harboring C9orf72 repeat expansions often present with cognitive/behavioral
impairment [99], and C9orf72-targeted antisense oligonucleotides are currently under
investigation (NCT03626012), genotyping to determine the length of the C9orf72 repeat
expansion could be an important biomarker for ALS diagnosis and prognosis, and an
inclusion criterion for some clinical trials.

4.1.2. Common Variants

In addition to the genetic variants that are thought to cause ALS, genetic modifiers of
ALS risk and progression have also been identified. The largest GWAS meta-analysis to
date recently identified a total of 15 loci conferring risk for ALS prioritizing genes through
different methodological approaches [88]. Additionally, several studies have explored how
genetics influences survival in ALS patients. For instance, loss of function mutations in the
ephrin receptor EPHA4 (e.g., R571Q, and R514X) are associated with longer survival in ALS
patients [100], the V249I mutation in the chemokine receptor CX3CR1 is associated with
reduced survival in both ALS [101] and AD [102], and common variants in the UNC13A
gene are associated with increased ALS susceptibility and reduced survival [103,104].
Variants in numerous other genes, including several that are implicated in familial ALS
such as the well-studied SOD1 variants, have also been proposed to modify ALS risk or
phenotype [91,105] and could provide valuable information for patient prognosis. Due
to the genetic architecture of this devastating disease, in which only few independent
loci have been associated with disease through common variation, PRS studies have been
scarce [78].

4.2. Transcriptomic Biomarkers

Given the molecular heterogeneity associated with ALS and the central role of RNA
processing and dysregulation, considerable effort has been made to understand how
changes in RNA transcription disrupt disease-relevant pathways and exacerbate disease
effects (Table 2). The use of high throughput technologies such as RNA sequencing and
microarray platforms has uncovered numerous mRNAs and miRNAs that are differentially
expressed in ALS patients.

Although many studies have investigated the transcriptional changes associated with
ALS, there are currently no reliable, ALS-specific mRNA biomarkers, as discussed in a
recent systematic review by Vijayakumar et al. [106]. However, some mRNAs are differ-
entially expressed in ALS patients and could potentially serve as diagnostic biomarkers.
These include kinesins (e.g., KIF5C and KIFC3) and the dynactin subunit DCTN1 which are
involved in axonal transport [107–109], neurotrophic factors (e.g., Trk-B, BDNF, PI3K, AKT,
NFκB, GSK3β, and FASL) involved in cell proliferation and differentiation [110], apoptotic
regulatory proteins CyFIP2 and RbBP9 [111], the vascular endothelial growth factor-A
(VEGF-A) and chemokine ligand (CCL2) which are thought to play a role in neuroprotec-
tion [112], and the transcription factor Nurr1 which is involved in neuroinflammation [113].
However, most of these mRNAs are similarly dysregulated in other neurodegenerative
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diseases or have not been tested for ALS specificity, with exceptions for FasL mRNA, which
showed a significant increase in the peripheral blood leukocytes (PBL) of ALS patients
relative to PD, ataxia, and healthy controls [114], and Nurr1, which was downregulated in
the peripheral blood of PD patients [114] and upregulated in ALS [113]. Further, VEGF-A
and CCL2 mRNAs showed higher elevation in the PBL of Indian ALS patients with res-
piratory dysfunction and could therefore be disease progression biomarkers [112]. The
expression COL19A1 mRNA, which is involved in maintaining muscle integrity, has also
been proposed as a prognostic biomarker of ALS [115]. In addition to these potential
biomarker candidates, there has been minimal overlap in the mRNAs that are differentially
expressed across studies and further studies are needed to determine if these mRNAs can
reliably differentiate ALS from ALS mimic syndromes.

Similar to mRNAs, expression profile studies have found that many miRNAs are
dysregulated in ALS patients and have been investigated as diagnostic and prognostic
biomarkers. Although the role of miRNAs in ALS pathogenesis is more complex than other
neurodegenerative diseases, miRNAs could be better biomarker candidates than mRNAs
due to their stability in many human biofluids and potential dysregulation in earlier stages
of disease [116]. Despite substantial heterogeneity in the miRNAs that are dysregulated
across studies, the downregulation of miR-1234-3p in sALS and miR-1825 in both sALS
and fALS has been consistently observed in patient serum and could have high diagnostic
value since it is specific to ALS relative to AD and Huntington’s disease [117,118].

In addition, miR-206, which slows ALS progression by promoting skeletal muscle
growth and regeneration, has been consistently reported to be upregulated in the serum,
plasma and PBL samples of ALS patients [119–122]. Although the upregulation of miR-206
has been identified in other muscular disorders [123,124], it is a promising prognostic
biomarker of already-diagnosed ALS since higher serum expression is associated with
slower changes in muscle power in ALS patients over one year [121]. miR-338-3p, which
regulates neuromuscular junctions, was also reported to be upregulated in the serum, PBL,
CSF and spinal cord from sALS patients compared to healthy controls and Parkinson’s,
Alzheimer’s, and Huntington’s disease patients [125,126]. Meanwhile, several miRNAs
that are dysregulated in ALS patients are involved in ALS-related pathways, including neu-
rogenesis (e.g., miR-9), apoptosis (e.g., let-7d, miR-125b, and miR-155), muscle regeneration
(myo-miRNAs: e.g., miR-1, miR-27a, miR-133a, and miR-133b) and neuroinflammation
(e.g., miR-125b, miR-155, and miR-146a) [122,127–132]. Given the inconsistent results
of ALS miRNA profiling studies, using a panel of miRNAs rather than a single miRNA
biomarker could have valuable clinical applications for distinguishing ALS cases from both
healthy controls and ALS mimic syndromes.

5. Future Directions and Conclusions

In recent decades, progress has been made in the development of biomarkers that can
inform clinicians and drug developers of critical molecular mechanisms in the neurode-
generative disease process. Success in the development of biomarkers requires extensive
scientific collaboration, and cooperation in an open science environment will accelerate this.

Genetic screenings in patients with early-onset neurodegenerative conditions can
confirm and refine diagnosis or predict disease in very specific situations. However, in
the vast majority of cases, single genomics or transcriptomics biomarkers cannot operate
in isolation. There is an increasing need of generating harmonized data across sites to
build well-powered biomarker studies by using deep learning and artificial intelligence
to combine different types of markers including neuroimaging, *-omic, clinical, and fluid
biomarkers. Imaging-related biomarkers are key and have been widely reviewed else-
where [133,134].

In this arena, the Parkinson’s Progression Marker Initiative and the Accelerating
Medicines Partnership for PD and the various efforts for AD and ALS are promising
initiatives that will allow data and researchers to connect and work in concert to build
better, more effective biomarker panels.
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So far, no single biomarker has achieved sufficient accuracy in isolation to be diagnostic
for neurodegeneration. As such, research into a multi-modal combination of genetics,
imaging, clinical and/or sensor data (such as accelerometry) may provide a more promising
approach compared to the search for a single “silver bullet”. Multi-modal biomarkers
could be used to chart patient risk, progression, and disease trajectories. Nevertheless,
genetic sequencers, neuroimaging scanners and other sensors are not universally available,
limiting the price and accessibility of multi-modal diagnostic approaches.

Some major gaps exist in the neurodegenerative disease biomarker space. In particular,
these include longitudinal data relating to progression of disease(s) in diverse populations
with well characterized outcomes. Diversity on a genetic and genomic scale will be key
for applicability and generalizability of findings, as well as increasing the sheer number
of relevant candidate biomarkers through methods such as trans-ethnic fine-mapping.
These longitudinal cohorts should also include pre-diagnostic cases and leverage existing
biomarker work to identify high risk individuals for follow-up from biobanks, healthcare
systems or similar resources. From a drug development perspective, these longitudinal
case cohorts of well characterized individuals are important as preventing disease onset is
an extremely difficult aim and halting disease progress may be a more attainable goal and
more efficient use of resources.
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Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis.
Neurodegener. Dis. 2016, 16, 235–244. [CrossRef]

110. Sadanand, A.; Janardhanan, A.; Vanisree, A.J.; Pavai, T. Neurotrophin Expression in Lymphocytes: A Powerful Indicator of
Degeneration in Parkinson’s Disease, Amyotrophic Lateral Sclerosis and Ataxia. J. Mol. Neurosci. 2018, 64, 224–232. [CrossRef]

111. Nachmany, H.; Wald, S.; Abekasis, M.; Bulvik, S.; Weil, M. Two Potential Biomarkers Identified in Mesenchymal Stem Cells and
Leukocytes of Patients with Sporadic Amyotrophic Lateral Sclerosis. Dis. Markers 2012, 32, 211–220. [CrossRef]

112. Gupta, P.K.; Prabhakar, S.; Abburi, C.; Sharma, N.K.; Anand, A. Vascular Endothelial Growth Factor-A and Chemokine Ligand
(CCL2) Genes Are Upregulated in Peripheral Blood Mononuclear Cells in Indian Amyotrophic Lateral Sclerosis Patients. J.
Neuroinflam. 2011, 8, 1–6. [CrossRef] [PubMed]

http://doi.org/10.1136/jnnp-2016-315018
http://doi.org/10.1186/s40035-015-0036-y
http://doi.org/10.1186/s12883-018-1091-7
http://doi.org/10.1002/humu.22319
http://doi.org/10.1038/nrneurol.2014.78
http://www.ncbi.nlm.nih.gov/pubmed/24840975
http://doi.org/10.1016/j.neuron.2011.09.011
http://doi.org/10.1016/j.neuron.2014.12.010
http://www.ncbi.nlm.nih.gov/pubmed/25521377
http://doi.org/10.1007/s00401-013-1189-3
http://doi.org/10.3389/fnins.2017.00711
http://doi.org/10.1016/S1474-4422(12)70014-5
http://doi.org/10.1038/nm.2901
http://doi.org/10.1371/journal.pone.0096528
http://doi.org/10.1007/s12035-017-0489-3
http://doi.org/10.1016/j.neurobiolaging.2012.07.016
http://www.ncbi.nlm.nih.gov/pubmed/22921269
http://doi.org/10.1016/j.neurobiolaging.2011.10.029
http://doi.org/10.1002/ana.410410212
http://doi.org/10.3389/fneur.2019.00400
http://doi.org/10.1007/s11064-013-1160-7
http://www.ncbi.nlm.nih.gov/pubmed/24078265
http://doi.org/10.1159/000339529
http://doi.org/10.1159/000443664
http://doi.org/10.1007/s12031-017-1014-x
http://doi.org/10.1155/2012/824692
http://doi.org/10.1186/1742-2094-8-114
http://www.ncbi.nlm.nih.gov/pubmed/21906274


Cells 2021, 10, 1030 17 of 17

113. Valsecchi, V.; Boido, M.; Montarolo, F.; Guglielmotto, M.; Perga, S.; Martire, S.; Cutrupi, S.; Iannello, A.; Gionchiglia, N.; Signorino,
E.; et al. The Transcription Factor Nurr1 Is Upregulated in Amyotrophic Lateral Sclerosis Patients and SOD1-G93A Mice. Dis.
Model. Mech. 2020, 13. [CrossRef] [PubMed]

114. Yang, Z.; Li, T.; Li, S.; Wei, M.; Qi, H.; Shen, B.; Chang, R.C.-C.; Le, W.; Piao, F. Altered Expression Levels of MicroRNA-132
and Nurr1 in Peripheral Blood of Parkinson’s Disease: Potential Disease Biomarkers. ACS Chem. Neurosci. 2019, 10, 2243–2249.
[CrossRef] [PubMed]

115. Calvo, A.C.; Cibreiro, G.A.; Merino, P.T.; Roy, J.F.; Galiana, A.; Rufián, A.J.; Cano, J.M.; Martín, M.A.; Moreno, L.; Larrodé, P.; et al.
Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis. Aging Dis. 2019, 10, 278–292. [CrossRef]

116. Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA Spectrum in 12
Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [CrossRef]

117. Freischmidt, A.; Müller, K.; Zondler, L.; Weydt, P.; Mayer, B.; von Arnim, C.A.F.; Hübers, A.; Dorst, J.; Otto, M.; Holzmann, K.;
et al. Serum microRNAs in Sporadic Amyotrophic Lateral Sclerosis. Neurobiol. Aging 2015, 36, 2660.e15–2660.e20. [CrossRef]

118. Takahashi, I.; Hama, Y.; Matsushima, M.; Hirotani, M.; Kano, T.; Hohzen, H.; Yabe, I.; Utsumi, J.; Sasaki, H. Identification of
Plasma microRNAs as a Biomarker of Sporadic Amyotrophic Lateral Sclerosis. Mol. Brain 2015, 8, 1–9. [CrossRef]

119. Toivonen, J.M.; Manzano, R.; Oliván, S.; Zaragoza, P.; García-Redondo, A.; Osta, R. MicroRNA-206: A Potential Circulating
Biomarker Candidate for Amyotrophic Lateral Sclerosis. PLoS ONE 2014, 9, e89065. [CrossRef]

120. Waller, R.; Goodall, E.F.; Milo, M.; Cooper-Knock, J.; Da Costa, M.; Hobson, E.; Kazoka, M.; Wollff, H.; Heath, P.R.; Shaw, P.J.; et al.
Serum miRNAs miR-206, 143-3p and 374b-5p as Potential Biomarkers for Amyotrophic Lateral Sclerosis (ALS). Neurobiol. Aging
2017, 55, 123–131. [CrossRef]

121. de Andrade, H.M.T.; de Albuquerque, M.; Avansini, S.H.; de S Rocha, C.; Dogini, D.B.; Nucci, A.; Carvalho, B.; Lopes-Cendes, I.;
França, M.C., Jr. MicroRNAs-424 and 206 Are Potential Prognostic Markers in Spinal Onset Amyotrophic Lateral Sclerosis. J.
Neurol. Sci. 2016, 368, 19–24. [CrossRef]
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