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Abstract: Bone is the most frequent organ for breast cancer metastasis, and thus it is essential to
predict the bone metastasis of breast cancer. In our work, we constructed a gene dependency network
based on the hypothesis that the relation between one gene and the risk of bone metastasis might be
affected by another gene. Then, based on the structure controllability theory, we mined the driver
gene set which can control the whole network in the gene dependency network, and the signature
genes were selected from them. Survival analysis showed that the signature could distinguish the
bone metastasis risks of cancer patients in the test data set and independent data set. Besides, we used
the signature genes to construct a centroid classifier. The results showed that our method is effective
and performed better than published methods.

Keywords: breast cancer; bone metastasis; gene dependency network; structure controllability theory;
driver gene set

1. Introduction

Breast cancer, one of the most frequent tumors, seriously affects human health [1,2]. Metastasis is
the main cause of death in breast cancer patients, and bone is the most frequently metastatic organ [3].
Therefore, it is necessary to explore the mechanism of bone metastasis in breast cancer [4], and the
research predicting bone metastasis in breast cancer is crucial [5].

At present, several works have attempted to explain the mechanism of bone metastasis in breast
cancer by using molecular biology methods [6–8]. However, only a few studies have mined the
prognostic makers and predicted the bone metastasis in breast cancer. Previously, we identified the
key genes of breast cancer by identifying dysregulated pathways in the bone metastasis of breast
cancer. The prediction model that we constructed to predict the risk of bone metastasis of breast
cancer—the dysregulated pathway-based prediction model (DPBM) [9]—achieved a certain predictive
effect, but the performance is still unsatisfactory.

Since cancer is a complex disease, a biological network that can reveal the gene regulatory
relations in cancer becomes an effective tool [10]. In our previous work, we proposed a method to
infer the gene dependency network which could uncover the gene regulatory relations during cancer
metastasis, based on the hypothesis that the influence of one gene on the prognosis may depend on
the other genes [11], and this network can be used to mine essential genes in the prognosis of cancer.
Therefore, it may be promising to construct a gene dependency network in the bone metastasis of
breast cancer.

In recent years, some exciting developments about the control of biological systems have been
made [12], such as the structural controllability theory, referring to a system which could be controlled
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from one state to another by controlling several nodes (i.e., genes) in the system (biological network) [13].
Therefore, it is to use the gene dependency network in the bone metastasis of breast cancer as the
biological system and identify the driver gene set based on the structural controllable theory. In addition,
the driver gene set may be helpful for the construction of a prediction model.

In this work, we integrated the gene expression profiles and clinical information of 855 breast
cancer patients to construct the gene dependency network, which could uncover the gene dependency
relations in the process of bone metastasis in breast cancer [14]. Then, combined with the structural
controllability theory we mined the driver nodes in the network as candidate features, based on which
the gene signature was selected and a centroid classifier was constructed. We also validated our
method by comparing it with other published methods.

2. Materials and Methods

2.1. Data Sets and Pre-Processing

We downloaded the gene expression profiles of breast cancer patients along with the clinical
information from the UNC microarray database [15]. The downloaded data consisted of four microarray
data sets: GSE2034 [16], GSE2603 [17], GSE12276 [18], and NKI295 [19]. The raw data was processed
and the clinical information of the patients (time of bone-metastasis and status of bone metastasis)
was extracted as in the previous work [15], and statistical “batch-effect correction” procedures were
already performed on the data. For the sake of comparing the results with other methods, we adopted
the same strategy as the DPBM to divide the data set into training, test, and independent data sets.
GSE2034 was used as the independent data set. In the remaining samples, 380 samples were selected
as the training set and the other 189 samples were used as the test data set. For constructing the gene
dependency network, the expression levels of all the genes and the clinical information were binarized.
For a gene, the expression level of a patient was set as 0 if it was not more than the median of the
gene’s expression levels in all the patients. Otherwise, it was set as 1. As to the clinical information,
in usual work, the 5-years rule is extensively recognized as the limitation in prognosis or metastasis
risk prediction in breast cancer [20,21], and bone is the most common metastatic organ of breast cancer
which occupied a large number of samples, so we chose 5 years as the threshold to determine the risk
of bone metastasis of breast cancer patients. If a patient had bone metastasis within 5 years, they were
set as high-risk (1); if they had bone-metastasis-free survival for more than 5 years, they were set in the
low-risk group (0); otherwise, the patient was abandoned.

Furthermore, the human protein–protein interactions from HIPPIE (Human Integrated
Protein–Protein Interaction rEference) [22] were also downloaded.

2.2. Construction of Gene Dependency Network

In our previous work, we proposed a method to infer the gene dependency network which could
uncover the gene regulatory relations during cancer metastasis [11], based on the hypothesis that the
influence of one gene on the metastasis may depend on another gene. Here, we applied it to infer
the gene dependency network in the process of bone metastasis of breast cancer. Specifically, for two
genes A and B, if the influence of gene A on phenotype (bone metastasis risk) is modulated by gene B,
and we believe that gene A depends on gene B. Conditional mutual information (CMI) was applied
to calculate the gene dependency relation between gene A and gene B, and a permutation test was
performed to evaluate the significance of the gene dependency relation. The pipeline to construct the
gene dependency network is shown as follows:

(1) In order to reduce the false discovery rate, only the gene pairs involved in the protein–protein
interaction network were used as candidates. Here, all the gene pairs in HIPPIE [22] were set as
candidates for gene dependency pairs.

(2) For each candidate gene dependency pair (e.g., gene A and gene B), we set the expression levels
of gene A and gene B and the bone-metastasis risks of all the patients as a triple. The triple was
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sorted according to the expression level of gene B in ascending order. Then, the conditional
mutual information was calculated by using Equation (1):

CMI(GeneA; risk
∣∣∣GeneB) = Ihigh (GeneA, risk) − Ilow(GeneA, risk) (1)

where Ihigh(GeneA, risk) is the mutual information of gene A and the bone-metastasis risks of
35% cancer patients whose expression levels of gene B are high. Ilow(GeneA, risk) is the mutual
information of gene A and the bone-metastasis risks of 35% of cancer patients whose expression
levels of gene B are low.

(3) A permutation test was proposed to calculate the p-value of the conditional mutual information for
each gene pair. First, we randomly permuted the expression levels of gene B. Secondly, a random
CMI was calculated for gene A and gene B using the method described in step (2).
Thirdly, the random permutation was repeated 1000 times and 1000 random CMIs were
obtained, and the p-value of the CMI was calculated based on the 1000 random CMIs.
Finally, all the significant gene dependency pairs (p-value < 0.05) were combined as the gene
dependency network.

2.3. Structural Controllability of Networks

According to the controllability of complex networks [13], the non-linear processes (and linear
processes) can be studied using the canonical linear and time-invariant dynamics.

The system described by Equation (2):

dx(t)
dt

= Ax(t) + Bu(t) (2)

is controllable if it can be driven from any initial state to any desired final state in finite time,
which is possible if and only if the controllability matrix N × NM has full rank. That is, the matrix C in
Equation (3) follows Equation (4).

C =
(
B, AB, A2B, . . . , AN−1B

)
(3)

rank(C) = N (4)

Full controllability can be also posed by identifying the minimum number of driver nodes
such that Equation (4) is satisfied [13]. However, it is a computationally prohibitive task for large
networks [15], so it is to apply in practical problems. If it is possible to satisfy Equation (4) by selecting
non-zero weights in A and B, the system is structurally controllable [23]. As the calculation process of
structural controllability does not need to measure the link weights, it is acceptable in computational
complexity. Furthermore, structural controllability can be solved by identifying the maximum matching
in directed networks. Therefore, in this work, we applied the structure controllability theory to study
the controllability of the bone metastasis system in breast cancer and identify the driver nodes in the
system (direct network) as biomarker candidates.

2.4. Selecting the Driver Gene Sets by Controllability

Based on the hypothesis that the gene dependency network in the bone metastasis of breast cancer
can reveal the biological mechanism in bone metastasis, the driver nodes that could structurally control
the network may be crucial in the biological process of bone metastasis. Therefore, we identified these
driver nodes as biomarker candidates.

As we described above, structural controllability can be solved by identifying the maximum
matching in directed networks—that is, the minimal driver set that can drive all the nodes in the
network. Here, the maximum matching algorithm [24] was applied to identify the minimal driver
set in the gene dependency network, and these nodes were set as the driver nodes. However, as we
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know, the solutions of maximum matching in directed networks are not unique, especially in complex
networks. In this work, we randomly permuted the index of nodes (keeping the dependency relations
among the nodes) and ran this program for 500 times to get the frequencies of the occurrence of genes
in the minimal driver set, and we chose the genes with the frequency of 500 as the candidate genes.
That is, the nodes (genes) in all the driver sets were set as feature (biomarker) candidates.

In order to construct the classifier to predict the bone metastasis of cancer patients, the features
should be different in the two patient groups (i.e., high-risk and low-risk groups). Therefore, the feature
candidates were further selected by the t-test, so as to select the genes which were differentially
expressed in the two groups (in the training data set). As a result, the driver nodes with p-values less
than 0.002 were set as features.

2.5. Construction of the Classifier

In this work, we applied the centroid classifier to construct the prediction model. The first reason
we chose it is that the centroid classifier is suitable for microarray data, which has the character of
large feature size and few samples [25]. Secondly, the centroid classifier does not need to offer the extra
adjustment of the parameter. Besides, the centroid classifier is difficult to overfit [26]. Supposing the
number of bone metastases in breast cancer patients is N, and s1,sn, each si represents the gene
expression level vector from a patient. si contains the M dimensions of the measurement value of the
patient. Making a short explain about the si(i,j), it represents the expression level of the i-th feature
(gene) in the j-th patient. Above that, we denoted the n+ patients belonging to the positive class (with
the label 1) and the n- patients belonging to negative class (with the label 0) with Equation (5):

N = n+ + n− (5)

Then, we could calculate the gene expression level centroid (mean value) vector with M dimensions
separated by the class according to Equations (6) and (7) as follows:

→

C
+

=
1

n+

∑
S j∈Class+

S j(i, j) (6)

→

C
−

=
1

n−
∑

S j∈Class−

S j(i, j) (7)

In Equation (8)
→

C = (
→

C
+

+
→

C
−

)/ 2 (8)
→

C means the mean vector of the centroids, and in Equation (9)

→
w =

→

C
+

−

→

C
−

(9)

→
w is the weight vector of the M features. If the feature vector of a sample is s = (d1, . . . , dM), we can
appraise the samples by the following Equation (10):

γ = 〈̃s = −
→

C,
→
w〉 (10)

If γ > 0, then s̃ is assigned to a positive class; otherwise, it is assigned to a negative class.
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2.6. Tools and Package

The functions of the selected driver genes were annotated by GSEA (Gene Set Enrichment
Analysis) [27]. The network was analyzed and visualized by using Cytoscape 3.6.1 and the survival
analysis was performed using the R package “survival”.

3. Results

3.1. Basic Information of the Gene Dependency Network

We constructed the gene dependency network in the process of bone metastasis in breast cancer
using conditional mutual information. It contained 10,163 gene pairs (Table S1) among 5380 genes
(Figure S1). As a result, both in-degree and out-degree followed to the power law distribution, with
the R-square values 0.946 and 0.942, and the correlation coefficients were 0.942 and 0.985. The average
number of neighbors, both in-degree and out-degree, were 1.889. The results suggest that our gene
dependency network is scale free and coincident with the typical characteristics of biological network.

In addition, we also found some remarkable pairs in the gene dependency network related to
breast cancer and metastasis. For instance, MYC deregulation is conductive to development and
progression in breast cancer [28]. Wnt signaling in breast cancer is important [29]. It has been reported
that MYC can activate WNT in breast cancer [30], and in our work, Wnt1 was significantly dependent on
MYC (with p-value of 0.002). As we know, TP53 is a famous gene in breast cancer which can influence
cancer prognosis [31]. Migration in breast cancer can be suppressed by targeting MYO10 [32]. In our
gene dependency network, TP53 and MYO10 had a significant dependency relation (with p-value of
0.013), and according to the literature, the expression of MYO10 is relevant to the expression of TP53 in
breast tumors [33]. Furthermore, the BRCA1 gene is also crucial in breast cancer, which has an impact
on breast cancer risk [34]. EZH2 is a marker of aggressive breast cancer [35]. It has been found that the
downregulation of EZH2 decreases invasive breast cancer and requires BRCA1 [36]. In our network,
EZH2 was dependent on BRCA1 with a p-value of 0.009. Therefore, our gene dependency network
was reliable and could be used to study the bone metastasis of breast cancer.

3.2. Functional Annotation of the Driver Nodes

As we described above, structural controllability can be solved by identifying the maximum
matching in directed networks, and the minimal driver set driving all the nodes in our gene dependency
network may be important in the bone-metastasis process of breast cancer. Here, we selected driver
nodes as feature candidates to construct the prediction model. The number of nodes in the minimal
driver set in our network was 2483, which is about 46% of all the nodes. In a previous work [13], it was
proved that about 80% of the nodes in biological networks should be controlled to satisfy the structural
controllability, which may indicate that the gene dependency is easier to control.

Although the driver nodes in the network may be essential, there are two problems here hindering
the application of the minimal driver gene set in feature selection. First of all, the size of the driver set
is too large. As described above, almost 80% of all the nodes in biological networks are driver nodes.
Even in our gene dependency network, 2483 genes were driver nodes. In addition, the solutions of
the maximum matching are not unique, especially in complex networks. To solve these problems,
we randomly permuted the index of nodes (keeping the dependency relations among the nodes) and
ran this program for 500 times to get the frequency of the occurrence of genes in the minimal driver set,
and we chose the genes with the frequency of 500 as the candidate genes. As a result, 1864 genes from
the gene dependency network were selected as feature candidates (Table S2).

We also used GSEA [27] to investigate the function of the feature candidates. The top 10 KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathways are listed in Table 1.

The MAPK signaling pathway is the most significant pathway in breast cancer metastasis.
Meanwhile, through suppression of the MAPK signaling pathway, metastasis of breast cancer cells can
be reduced [37]. In addition, it has been reported that HGFK1 could inhibit bone metastasis in breast
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cancer through the TAK1/p38 MAPK signaling pathway [38]. Furthermore, the feature candidates are
significantly enriched by pathways in cancer, with a p-value of 2.82 × 10-13. The feature candidates
were significantly involved in the pathway of focal adhesion (p-value = 4.05 × 10-11), and it has been
reported that focal adhesion kinase is a prominent determinant in the metastasis of breast cancer [39],
has an effect on bone tumors, and may be crucial in bone metastasis [40]. The cytokine–cytokine
receptor interaction is also significant (p-value = 8.22 × 10-11), and cytokines are relevant to the
microenvironment of bone metastasis in breast cancer [41].

In conclusion, the genes which are frequently involved in the minimal driver gene sets are related
to the metastasis, even bone metastasis in breast cancer.

Table 1. Functional annotation of the driver gene set.

KEGG Gene Set Name p-Value FDR q-Value

MAPK signaling pathway 7.31 × 10−19 1.36 × 10−16

Neuroactive ligand-receptor interaction 1.12 × 10−15 1.04 × 10−13

Pathways in cancer 2.82 × 10−13 1.75 × 10−11

Focal adhesion 4.05 × 10−11 1.88 × 10−9

Cytokine-cytokine receptor interaction 8.22 × 10−11 3.06 × 10−9

Regulation of actin cytoskeleton 2.72 × 10−10 8.43 × 10−9

SNARE (SNAP Receptor) interactions in vesicular transport 1.62 × 10−9 4.29 × 10−8

Complement and coagulation cascades 1.26 × 10−8 2.92 × 10−7

Purine metabolism 3.08 × 10−8 6.36 × 10−7

Spliceosome 5.07 × 10−8 9.42 × 10−7

KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: False discovery rate.

3.3. The Selected Features

Based on the feature candidates (the genes involved in all the minimal driver gene sets), we selected
51 signature genes (Table 2) with p-values (t-test) less than 0.002 in order to find the differential
expression genes.

In the signature, almost all the genes were related to cancer, and many genes were associated with
bone metastasis of breast cancer. FSTL1 promotes bone metastasis by causing immune dysfunction [42].
It has been reported that Wnt signaling is related to bone metastasis in breast cancer [43] and that
DIXDC1 can promote the metastasis of cancer cells by activating the Wnt signaling pathway [44].
Breast cancer patients with bone metastasis presented with reduced expression of NDRG1 and their
survival was also influenced by NDRG1 expression [45]. Experiments have shown that a group of
genes including MLPH can predict bone metastasis in breast cancer well [46]. CRIM1 is a potential risk
factor of cancer that regulates the migration of cancer cells [47]. RANBP10 may help inhibit the growth
of breast cancer cells [48]. The expression of RXRA also plays a key role in breast cancer [49].

In all, the genes in the signature were involved the minimal driver gene set, and they were
distinguished in high-risk and low-risk groups. In addition, most of these genes are indeed related to
the metastasis in breast cancer. Therefore, our gene signatures may be good features for classification
in the bone metastasis of breast cancer.
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Table 2. The signature genes in our work.

Gene Id Gene Name Frequency p-Value

85458 DIXDC1 500 1.68192 × 10−6

29068 ZBTB44 500 3.29096 × 10−6

51232 CRIM1 500 1.46030e × 10−5

9986 RCE1 500 2.12898 × 10−5

56888 KCMF1 500 4.00030 × 10−5

1456 CSNK1G3 500 4.58237 × 10−5

6256 RXRA 500 7.63144 × 10−5

55343 SLC35C1 500 0.00012
55520 ELAC1 500 0.00012
55081 IFT57 500 0.00012
57610 RANBP10 500 0.00018
5877 RABIF 500 0.00018

25839 COG4 500 0.00019
23261 CAMTA1 500 0.00020
3009 HIST1H1B 500 0.00020
3092 HIP1 500 0.00026

246243 RNASEH1 500 0.00030
3104 ZBTB48 500 0.00031

10342 TFG 500 0.00032
6282 S100A11 500 0.00033

10462 CLEC10A 500 0.00033
51199 NIN 500 0.00041
10531 PITRM1 500 0.00048
9856 KIAA0319 500 0.00049

11167 FSTL1 500 0.00049
3993 LLGL2 500 0.00052

56729 RETN 500 0.00054
51514 DTL 500 0.00054
9202 ZMYM4 500 0.00058

51302 CYP39A1 500 0.00065
9971 NR1H4 500 0.00067

79083 MLPH 500 0.00073
65082 VPS33A 500 0.00075
10179 RBM7 500 0.00078
55794 DDX28 500 0.00082
57405 SPC25 500 0.00089
51659 GINS2 500 0.00089
1852 DUSP9 500 0.00092

57017 COQ9 500 0.00096
10397 NDRG1 500 0.00098
9911 TMCC2 500 0.00128

55095 SAMD4B 500 0.00137
23649 POLA2 500 0.00143
10615 SPAG5 500 0.00143
7134 TNNC1 500 0.00145
7083 TK1 500 0.00146
9442 MED27 500 0.00151
8449 DHX16 500 0.00171
8817 FGF18 500 0.00176
483 ATP1B3 500 0.00179
2175 FANCA 500 0.00190

The frequency of a gene is the times involved in the minimal driver gene sets and the p-values were calculated
based on t-test.
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3.4. Survival Analysis of Breast Cancer Patients

In order to predict the risk of bone metastasis in breast cancer patients, we divided the patients
in the training data set into two groups (i.e., high-risk and low-risk groups). Using the genes in the
signature as features, we constructed a centroid classifier to predict the bone metastasis of cancer
patients based on the training data set. Then, the classifier was applied in the test data set and
independent data set. We performed survival analysis of the patients in both the test data set and
independent data set respectively to validate our classifier.

In the test data set, 71 patients were predicted as high-risk patients, and 98 patients were predicted
as low-risk patients. Survival analysis showed that the bone-metastasis risks of the patients in the two
groups were indeed different, with a p-value of 0.007 (Figure 1).
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Figure 1. Survival analysis of test data set.

Among the 286 patients in the independent test set, 117 were classified as high-risk patients,
and 169 patients were classified as low-risk patients. The p-value of the log-rank test of the patients in
the two groups was 0.002 (Figure 2), indicating that the low-risk patients predicted by our method had
longer survival time (bone-metastasis-free survival) than the high-risk ones.
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From the results, it could be demonstrated that our classifier could distinguish the bone-metastasis
risks in the test and independent data sets, indicating that the features (i.e., genes) we selected could
indeed play a key role in the bone metastasis of breast cancer.

3.5. Comparison with Other Methods

In the previous work, the dysregulated pathway-based prediction model (DPBM) [11] was
proposed to predict the bone metastasis of breast cancer patients. In addition, two other classifiers,
support vector machine (SVM) and shrunken centroids classifier (SCC), using the same genes in DPBM
as features, were also compared with the DPBM in the original work. As our work used the same data
sets as the DPBM, we compared our centroid classifier with the DPBM, SVM, and SCC to validate the
performance of our work.

The AUC (area under the curve) of the four classifiers in the test data set and independent data set
are shown in Figure 3 (the details of the performance are shown in Table S3). As a result, our centroid
classifier could achieve AUCs of 0.65 and 0.66 in the two data sets, respectively, while the best AUC of
all the other methods was about 0.60. That is, our centroid classifier outperformed other methods and
our method dramatically improved the predictive performance in bone metastasis.
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3.6. Evaluation the Significance of Our Method

We made predictions based on our signature genes in other organ metastases (lung, liver, brain,
and any organs) to verify the specificity of bone metastasis. We calculated the AUC and accuracy of
five organs in the training, test, and independent data sets. The results are shown in Table S4 and
Figure 4. We found that our signature had very limited predictive ability for each of the other organs.
In addition, the performance of metastasis prediction in any organs (the traditional overall survival or
distant-metastasis-free survival) was good, but slightly worse than bone-metastasis prediction. This is
because most of the organ metastases are bone metastases. This illustrates that our signature genes have
specificity for bone metastasis. Moreover, it has been reported that the status of a single gene (e.g., estrogen
receptor (ER)) can distinguish the bone-metastasis risk in breast cancer [50], so we also compared the
performance of ER status and our method in evaluating the risk of bone metastasis of breast cancer. Since ER
status listed in the data set is not a continuous risk score but a discrete status, we used the MCC (Matthews
correlation coefficient), which is a classification evaluation index for unbalanced data sets, to evaluate the
performance of our signature and ER status (Table 3). The results show that our method was better than
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the use of single genes (e.g., ER status) in classification. Therefore, our gene signature performed better
than a traditional clinical index (i.e., ER status) and had specificity for bone metastasis.
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Table 3. Comparing results with estrogen receptor (ER) status.

Training Data Set Test Data Set Independent Data Set

Centroids classifier 0.22 0.15 0.20
ER status 0.18 0.16 0.07

4. Discussion

Predicting the bone metastasis of breast cancer patients is still a challenge. In this work,
we proposed a new method based on the minimal driver gene set in a gene dependency network to
predict the risk of bone metastasis of breast cancer.

First of all, we used a merged data set which contained the transcriptome data and clinical
information of 855 breast cancer patients. Then, the conditional mutual information was applied to
infer the gene dependency pairs in the network for which the mutual information between one gene and
the bone-metastasis risk was significantly dependent on the other genes. All the significant gene pairs
were constituted as a gene dependency network, and the network was scale free. Besides, case study
and function annotation confirmed that the network could reveal the gene dependency relation in the
process of bone metastasis. Structure controllability theory states that a system (e.g., biological network)
can be controlled by controlling the nodes in the minimal driver gene set. Therefore, the driver nodes in
the gene dependency network may be biomarker candidates. However, the size of the minimal driver
gene set for the driver sets is too large (In our work, 2483 genes were in each minimal driver gene set).
In addition, the solutions of the maximum matching are not unique, especially in complex networks.
To solve these problems, we calculated multiple minimal driver gene sets and selected the genes which
were involved in all the minimal driver gene sets as feature candidates. Function annotation illustrated
that these genes were related to bone metastasis in breast cancer. Based on the feature candidates,
51 genes which were differentially expressed were selected as features, and a centroid classifier was
constructed. Our method was validated by survival analysis and through comparison with other
methods, and the results showed that our method dramatically improved the predictive performance
in bone metastasis.

In conclusion, we provided a new method to study the bone metastasis in breast cancer. The method
uncovered the regulation mechanism in bone metastasis by constructing a gene dependency network.
A new feature selection method based on the minimal driver gene set in structure controllability theory



Genes 2019, 10, 466 11 of 13

was proposed to select the key genes. Finally, the prediction model was constructed by using the
essential genes as features. In fact, our method can also be used to study other biological problems,
as long as there are enough genotypic and phenotypic data. We will validate our method in other
biological problems in our future work.
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