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Abstract: Several pathologies have a direct impact on society, causing public health problems. Pulmonary
diseases such as Chronic obstructive pulmonary disease (COPD) are already the third leading cause
of death in the world, leaving tuberculosis at ninth with 1.7 million deaths and over 10.4 million new
occurrences. The detection of lung regions in images is a classic medical challenge. Studies show
that computational methods contribute significantly to the medical diagnosis of lung pathologies
by Computerized Tomography (CT), as well as through Internet of Things (IoT) methods based
in the context on the health of things. The present work proposes a new model based on IoT for
classification and segmentation of pulmonary CT images, applying the transfer learning technique
in deep learning methods combined with Parzen’s probability density. The proposed model uses
an Application Programming Interface (API) based on the Internet of Medical Things to classify
lung images. The approach was very effective, with results above 98% accuracy for classification in
pulmonary images. Then the model proceeds to the lung segmentation stage using the Mask R-CNN
network to create a pulmonary map and use fine-tuning to find the pulmonary borders on the CT image.
The experiment was a success, the proposed method performed better than other works in the literature,
reaching high segmentation metrics values such as accuracy of 98.34%. Besides reaching 5.43 s in
segmentation time and overcoming other transfer learning models, our methodology stands out among
the others because it is fully automatic. The proposed approach has simplified the segmentation process
using transfer learning. It has introduced a faster and more effective method for better-performing lung
segmentation, making our model fully automatic and robust.

Keywords: deep learning; mask R-CNN; fine-tuning; transfer learning; Image lung segmentation

1. Introduction

The principal exam for obtaining thoracic medical images, which allows a clear view of the
patient’s pulmonary airways, is the Computed Tomography (CT) [1]. CT is a high-contrast exam of
the thoracic region of pulmonary structures and anatomy. CT is efficient for different medical image
analyses; the examination gathers relevant information in the image through the density of pixels.
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Thus an improved analysis of the structures of patients and organs is possible [2]. Through CT scan,
is possible to identify and diagnose various diseases by their shape or texture, such as Pulmonary
Emphysema, Pulmonary Fibrosis, Lung Cancer and other Chronic obstructive lung disease in a
non-invasive, effective, and fast way [3].

The detection of abnormalities in CT scans is of great importance for preventing diseases detected at an
early stage: conditions such as lung cancer, if diagnosed in advance, can be better treated, which significantly
increases the chances of recovery and decreases the mortality index [4]. About 65 million people have
chronic obstructive pulmonary diseases and approximately 3 million of these people die each year from
these diseases. In 2010, it was the world’s third leading cause of death [5]. According to the World Health
Organization, in 2018, about 10 million people worldwide contracted tuberculosis [6]. It was estimated
an incidence of 2.09 million new lung cancer cases, with 1.76 million deaths [7]. The first step in
diagnosing a pulmonary pathology is the lung segmentation in CT images [8], which are performed
by medical specialists. They manually mark the region of interest to perform analysis regarding the
type of pathology and its aggravation, and thus arrive at a definitive diagnosis [9].

However, this diagnostic procedure is subject to a series of errors and uncertainties, which may
cause inaccuracy of the diagnosis [10]. Bechtold et al. [11] carried out a study to analyze the factors that
influence the error rate of the interpretation of abdominal computed tomography scans in an academic
medical center. This study had 694 patients with an average age of 54 years, whose abdominal CTs were
analyzed by three to five university radiologists. It was found that the margin of errors was correlated
with the reader’s viability, the number of cases reads per day, the presence of a resident, the patient’s
situation as being external or internal to the institution, and their genetic conditions. Among the
results obtained, the reports recorded 56 errors in 53 patients, which led to a general error rate of
7.6%. Besides, 19 of these errors were considered clinically significant, and seven directly affected the
patient’s management [10,11]. Aware of the difficulties in diagnosing lung diseases, several researchers
have joined forces to elaborate and construct tools to assist medical specialists in the most diverse
operations. For instance, they can help in the detection of diseases in exams [12], in the segmentation
of whole organs [13] for a better analysis of a specialist, or even in the segmentation of the regions
visibly affected by the disease [14]. These tools are known as Computed Aided Diagnosis (CAD) [15].

Several pieces of research have been developed to aid medical diagnosis through digital image
processing, machine learning [16], and deep learning [17]. For instance, Pehrson et al. [18] proposed
a general study on Machine and Deep Learning techniques applied to a database of lung images
available in the literature, such as the detection of pulmonary nodules in CT images. Their study
was carried out through extensive research of 1972 publications in total, of which 41 were selected
to compose the work. Most of the techniques obtained accuracy equal to or greater than 90% when
compared to the ground truth provided by the specialist doctor.

New approaches involving transfer learning with methods such as fine-tuning provide better
results for the segmentation of objects contained in an image, such as the region of interest in medical
images [13]. The works of Shojaii et al. [19] present the importance of segmenting the pulmonary
airways as a fundamental step to aid diagnosis using medical images. After lung segmentation,
it becomes possible to analyze the airways [20], density [21], or diaphragm [22]. One of the methods
currently used for medical image segmentation is Convolutional Neural Networks (CNN) [23,24].
The Parzen-window method consists of a nonparametric model to estimate a probability density
function. Parzen-window, used as a segmentation method, estimates the probability of a pixel relating
or not a given domain, making it easier to view the object of interest contained in the image [25].
Parzen-window can be used as a fine-tuning tool to improve Machine and Deep Learning techniques
if used well [26].

An example of efficient use of CNN to assist the medical diagnosis of lung diseases is the work by
Lin et al. [27]. They developed a 2D CNN study with parametric optimization Taguchi [28] to recognize
lung cancer from CT scans automatically. The authors used 36 experiments and eight mixed-level
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control factors to select the ideal parameters for the 2D CNN. The method obtained accuracy between
90% and 98% according to the datasets used.

IoT has become an increasingly recurring reality in the most varied technology and services
branches due to the emergence of new technologies and higher communication speed between devices.
These applications are in areas such as robotics [29], security [30], and even health: The so-called
Personalized Healthcare (PH) is a new approach to healthcare in the field of monitoring. The service
uses patient data through health records, sensor signals, wearable devices, web-based information,
and social media, among others. Machine Learning techniques and artificial intelligence are applied to
this data set to generate analytics. Then, specialists study this information to plan a better lifestyle and
disease prevention for their patients [31].

The focus of these new advances is patient data collected from electronic health records (EHR),
IoT sensing devices, wearable and mobile devices, web-based information, and social media. The PH
applies Artificial Intelligence (AI) techniques to the data set collected to improve techniques of disease
progression, disease prediction, patient self-management, and clinical intervention. Tools with the use
of IoT in the health area are increasingly explored in recent studies. The use of these tools frequently
assists medical diagnoses, such as the approach by Tao Han et al. [32], which used IoT to detect lung
and brain in CT images. The authors used a combination of networks and achieved good results
with fine-tuning. The use of segmentation in medical images in lung CT scans is a complex challenge
in image processing, as shown by the work of Souza et al. [33] that used techniques based on Mask
R-CNN for segmentation of pulmonary regions in CTs. There are several studies in the area of the
Internet of Medical Things, as shown by et al. Arthur Gatouillat [34]. They addressed techniques and
studies related to IoT in the field of medicine and several solutions.

These powerful techniques for diverse existing lung diseases, in general, have something in common:
good lung segmentation to make the application of disease detection optimized. Good pulmonary segmentation
can optimize the method used to dispense with auxiliary fine-tuning techniques, for example [35], who
used CNN to target lung regions. The same occurred with the study by Souza et al. [36], which used the
CNN Mask R-CNN network to segment lung images on CTs. The results were excellent with accuracy
above 97%, raising the quality level of many studies using deep learning. The segmentation problem
in medical images is classic and challenging. Several methods of Digital Image Processing (DIP) bring
solutions in a non-automatic way, which through various combinations of image processing, reach
satisfactory results. Taking into account all pre-processing and processing in order to achieve levels of
quality in its results, techniques such as these are very relevant in the post-processing of deep learning
networks. The combinations of classic methods in the post-result generated by networks bring great
improvements through fine-tuning methods, making the results more relevant and meaningful for
processing with deep processing networks.

Given the importance of pulmonary segmentation in computed tomography images, either for the
process of assisting the diagnosis or assisting with the accompaniment of the pathology. The model
proposed in this study uses a new approach with fine-tuning Convolutional Neural Network architecture
(R-CNN mask) aided by Parzen-window method [37]. Also, into account the demand for increasingly
practical and accessible systems for the most varied services. The system developed in this study has a
tool that can be accessed remotely by devices with internet use.

The proposed work aims to study the following thematic areas within the research:

• The application of computer vision tools based on IoT in medical images.
• The use of deep extractors for the classification of pulmonary CT images.
• CT segmentation of lung images based on deep learning techniques.
• The use of Deep Learning with a fine-tuning technique based on Mask R-CNN and Parzen-window.

2. Related Works

Different computational methods are applied to medical images for different problems searching
for solutions to segment objects in medical images [17]. Different techniques address the use of filters



Sensors 2020, 20, 6711 4 of 24

based on detection and image segmentation. The lung is segmented using the Digital Contour Processing
transformation technique, as shown in the work [38], which is based on a detection technique to smooth
out the extracted lungs contours, showing efficiency by achieving an average Jaccard result of 94%. Thus,
different segmentation methods have been proposed to aid medical diagnosis [39] to detect lung diseases
such as cancerous nodules [40], cystic fibrosis [41] or detect lung physiological structures [42].

However, in the face of a large part of the more complex problems, Digital Image Processing
techniques are inefficient, with results below expectations. It is then necessary to use more advanced
techniques to solve the proposed problems. With the evolution of hardware processing capabilities,
deep learning techniques have been more explored [43] and consequently used for the segmentation of
physiological structures in medical images [44]. Wang [45], proposed the use of Convolution Neural Networks
to segment pulmonary nodules, the method obtained results around 80% Accuracy, which means a good
ratio of targeted hits to total pixels in the image. But showed difficulty in segmenting smaller nodules.
Duraisamy [46] developed a segmentation method using techniques of DIP and Convolutional Neural
Networks, applied in Magnetic Resonance Imaging (MRI) on brain and chest images exams.

When proposing machine learning methods with medical images, a specific and constant problem is
the absence of labeled data to develop proper model training. Several works use transfer learning and
fine-tuning methods to provide proportions of solutions for medical images and successively improve
their results [47]. Fine-tuning allows a network model that has already been trained for a specified task to
perform a second similar task. A network already designed and trained takes advantage of the resource
extraction that occurs in the front layers of the network without developing this resource extraction
network from scratch [48]. The work [49], proposes a new structure using Transfer Learning, allows CNN
training to locate the lesion in breast regions. The method achieved 83% accuracy at its best.

Rebouças et al. [50] proposed an adaptive method based on Region Growth and Hydrographic
Basin called Optimum Path Snakes (OPS) for the segmentation of CT images of Lung and brain. In their
results, a Dice Coefficient of 93% was adopted, which proves the method’s effectiveness. However, it is
noteworthy that the technique is based on digital image processing, having difficulty segmenting in
non-standard cases. In this perspective, countless studies have been carried out [47], including Hu [13],
who proposed the use of the Mask R-CNN network and machine learning for the segmentation of
lung CT employing fine-tuning and transfer learning. The automatic network obtained good results
with an accuracy of 97.68% and an average time of 11.2 s for segmentation. We use the same database
to train our model and generate our results according to the proposed method.

With the advancement of communication between systems, the IoT has been spreading to various
areas of knowledge. In the medical field, the IoT can implement support and monitor systems. Healthcare
professionals who provide care, and even patients, can have remote access to sensor data collected from
devices connected to people under monitoring or with special needs [51].

When placed in terms of CAD systems, the IoT can come in the form of an interface that directly
connects the end-user to the tools for segmentation, detection, or classification of medical images.
Thus, a device that initially needed the training to be used can be manipulated by any user through
a visual interface [52]. Another application of IoT in conjunction with segmentation techniques is
in the continuous monitoring of diseases, to measure their progression or regression. Aware of this
application, Yao et al. [53] developed an IoT-based technique, along with fuzzy clustering techniques,
Otsu thresholding, and morphological operations for the segmentation and monitoring of lung
cancer in CT images, to make the prevention and monitoring of the disease progression easier and
more efficient.

Han et al. [32] proposed a technique based on the health of things to perform the classification
and segmentation of computed tomography images of the lung and hemorrhagic stroke. The IoT used
in this work took the form of a tool for direct interaction with the user, which directly selects the best
set of extractors and classifiers for the proposed problem. The authors were successful in their task of
classifying and segmenting, with an accuracy above 95%.
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With the help of the massive flow of medical data provided by the advancement of the IoT,
Masood et al. [54] proposed the creation of a computer-aided decision support system to detect and
classify lung cancer. Their technique is based on the deep learning model and information obtained
from the Medical Body Area Network. The proposed model is called DFCNet, which is based on the
deep convolutional neural network (FCNN) and detects pulmonary nodules in four different stages of
cancer. The accuracy achieved with the FCNN was 84,58%, which shows the potential of the technique
in helping radiologists detect nodules.

This work proposes a new lung segmentation method in CT images using the Mask R-CNN
Model as initialization to apply the fine-tuning technique in the Parzen-window method. Thus the
expected result is a segmentation with a high standard and with more speed. Besides, the technique
is based on IoT to help select the best deep extractor/classifier combination to optimize the method
and make it a practical and innovative tool to aid medical diagnosis. Finally, to validate our study,
the results obtained were compared to the works of [13,50].

3. Background

3.1. LINDA

With the advancement of technology, the emergence of alternatives to aid medical diagnosis has
been boosted and developed. Thus, through IoT, technologies and proposed methods are applied to
achieve this objective. The present study uses the Lapisco Image Interface for the Development of
Applications (LINDA) [52] as a microservice. This IoT system provides computer vision and signal
processing resources and services for various cloud-hosted contexts. The API can communicate via
the Representational State Transfer (REST) protocol through the JavaScript Object Notation (JSON).
Through the use of advanced techniques of deep extraction and machine learning, it is possible
to accurately evaluate CT images quickly to detect if there is a region of interest to start the lung
segmentation stage.

LINDA initially classified strokes only. However, with adjustments, the network can classify the
presence or absence of any pathology in a medical image and what type of pathology is among the
existing classes. The tool uses different CNNs with transfer Learning, combining it with the various
classification techniques found in the literature. LINDA shows the result of these combinations to
find the best one, proposing to be an efficient and flexible system to aid medical diagnosis, with a
differential: its graphical interface allows its access from any computer or mobile device with internet
access, even for users with little experience in Computer Vision [52]. The operation of the LINDA tool
is illustrated in detail in the Figure 1.

3.2. Deep Learning Extractors

LINDA uses different CNNs to extract attributes from the set of medical images. Then, through
transfer Learning, it applies the classification to the extracted attributes. These networks can extract
attributes not reached by standard extractors, hence their importance. These CNNs are described below.
The CNN Extreme Inception (Xception) is composed of Depthwise Separable Convolutions layers.
The structure comprises 36 of these layers structured in a total of 14 modules [55]. MobileNet has 28 layers
and is built in Depthwise Separable Convolutions layers (except the first layer [56]. The Oxford Visual
Geometry Group (VGG) is a CNN that is of 11, 13, 16, or 19 layers; there is a positive correlation between
increasing the models’ depth and accuracy in the ImageNet Dataset [57]. Inception-ResNet-V2 is composed
by combining the Residual Connections with the model Inception [58]. The Dense Convolutional Network
(DenseNet) makes shorter connections between adjacent layers connecting each layer to all others with
the same input resolution [59]. The Residual Network (ResNet) introduced by Microsoft Research has a
depth of up to 152 layers and has the standard input image size of 224 × 224 × 3 [60].
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Figure 1. Illustration of the LINDA system architecture. The platform is accessed from computers,
notebooks, and mobile devices. The IoT system (1) features a web access interface to select two options:
training or prediction. In the training stage (2), the user must provide the image exams and the classes.
Then, at (2.a), deep extraction of attributes is performed, generating a new one-dimensional vector
data set. In (2.b), the training of classifiers is done, combining each extractor and classifier. In (2.c),
the trained models perform a classification step in the test set previously separated. In (3), the results
of experiments and its charts are made available, and the user can select the best combination. In (4),
the model is made available through a cloud service that can be accessed from any device with Internet
access. In the prediction stage (5), the user can access an API to perform a pre-diagnosis or, in the case
of this work, classify the absence or presence of lung in the image. This figure represents STEP 1—IOT
APPLICATION of Figure 3.

3.3. Classifiers

The classifiers used by LINDA in this study are: Bayesian classifier [61], Multilayer Perceptron
(MLP) [62], k-Nearest Neighbors (KNN) [63], Random Forest [64], and Support Vector Machine (SVM) [65].

The Bayesian classifier uses the probability to classify the object as to the existing attributes.
Thus, it does not express the sample class, but the probability for each class [61]. MLP is a classifier
based on the joining of perceptrons, which is based on the organic neuron. MLP can solve nonlinear
problems very effectively after a long training process [62]. The KNN is a classifier based on distances;
the sample is classified according to the numerical distances of its attributes with the attributes of the
samples already classified [63]. Random Forest is a conditional classifier that creates a sequence of
decisions to classify the sample [64]. SVM is a non-probabilistic binary linear classifier, which, through
regression, extends the sample class according to the trained pattern of the attributes [65].

3.4. Deep Learning

Mask R-CNN is a Convolutional Neural Network architecture based on deep learning that has
the function of classifying the existing pixels in the image. This classification process involves the
most varied layers used by the network, and vary according to the characteristics identified in the
image. Its operating process consists of two stages: In the first, Mask detects the region of interest
and demarcates it with a bounding box. In the second stage, the method consists of classifying the
pixels of the demarcated region, in which, during the convolutional process of the network, the pixels
selected as belonging to the region of interest are used for the construction of a mask. This mask will
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represent the detected region. The pixels that make up the region of interest are added to the mask
using the formula:

L = Lcls + Lbox + Lmask (1)

In which Lcls represents the loss of the bounding box, Lbox represents the identical regions and
Lmask represents the weight selected by the algorithm for a better selection of the pixels of interest [66].

In item a of Figure 2, we have the input images. In item b we have the first convolutional layers.
In deep models, these layers are stacked that allow the layers next to the input to learn low complexity
through systematic filters learned from the input images. wherein item c, we have the pooling
process that reduces the sampling along the spatial dimensions, reaching than the item d, which is
responsible for processing high resources complexity level, and no item e, we have the segmented
output image [67].

K F
K F

K F

First Convolutional
Layer

Pooling Layer Last Convolutional
Layer

...
...

...

CT RoI
b c da Output imagee

Figure 2. The ilustration of the deep features generation process on the CT images of the lung, in which the
initial layers undergo a pooling process and only then form the last convolutional layer, this process makes
the method less sensitive to the location of resources since the pooling method reduces sampling [67].

3.5. Parzen-Window

The Parzen window technique is a non-parametric function based on the calculation of probability
density and pattern recognition. This method is very efficient for estimation and standards when there
is no previous knowledge about the standards. The function aided by the weighted sum of some
structuring element functions. It uses the sum of several distinct structuring elements, such as the
Gaussian, uniform, and triangular structuring element. The Parzen window equation is given by:

p(z) =
1
n

n

∑
i=1

δn(z− zi)

hn
(2)

In which p(z) is the probability of the pixel being or not in the region, where z corresponds to the
pixel, δ is the structuring element function used to limit the neighborhood of the pixel, h is the size
from the edge of the region, and n is the total number of pixels in the region [68].

The Parzen window function is used to lose part of its efficiency when it passes through areas of
discontinuities in the estimation of the probability density function. To smooth out such discontinuities,
the density model represented by:

p(z) =
1

N(
√

2πh)D

N

∑
n=1

exp

[
−1

2

(
‖x− xn‖

h

)2
]

(3)

where h now represents the density estimate of Gaussian components, D is n-dimensional Euclidean
space, N represents the number of centered cubes, and the term [(x− xn)/h] will be a value of 1 if
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xn is within the region of interest in z, otherwise it will be a value of 0. Thus, the final value of the
function results from the sum of contributions from several Gaussian models placed into a data set,
and then it is normalized. The model becomes too sensitive to noise when the h is too small, while the
loss of information occurs when h is too large [69].

3.6. Metrics

In order to validate our results, the following metrics were used: Accuracy, Sensitivity, Matthews,
Dice, Jaccard and Hausdorff.

Accuracy is related to the number of pixels correctly segmented, with the total number of pixels
segmented in the total [70].

Sensitivity, indicates how much pixels of the region of interest were correctly segmented among
all the pixels in which they were segmented as part of this [70].

Matthews, represents the correlation of prediction of regions regardless of their size [71].
Dice, represents the similarity between segmented regions, this coefficient indicates how overlapped

are the region segmented by the proposed method and the region obtained by the gold standard [72].
Jaccard, measures the similarity between two regions, according to the total number of pixels

concatenated between both. In this way the segmented region is compared with the ground truth [73].
Hausdorff, which measures the degree of incompatibility between two sets, based on the calculation

of distances between points of intersections present in the two regions [74].
Friedman test, the statistical test used in our experiments was the Friedman test, a non-parametric

test that serves to assess whether a given distribution is similar or not to another distribution. Thus, one
can indirectly affirm the superiority of a given distribution in relation to the other [75].

4. Methodology

4.1. Data-Set

The data set used by this work contains a set of 1265 lung CT images, in Digital Imaging and
Communications in Medicine (DICOM) format, with dimensions of 512 × 512 pixels and 16-bit depth,
containing the ground truth. The images were acquired in partnership with the Walter Cantídio
Hospital of the Federal University of Ceará (UFC), Brazil, approved by the Research Ethics Committee.
Committee–COMEPE (Protocol No. 35/06). We designed the experiments using 80% for training the
model and 20% for testing.

4.2. Methodology

The methodology of this study is divided into two phases. The First phase, described in Figure 3,
represents the classification for detection of lung images in CT scans using IoT, using trained models to
identify the existence of lung in the input image of the proposed model. In this first phase, the LINDA [52]
model detects pulmonary regions’ existence based on classic classifiers and classifiers based on deep
learning to proceed to the second phase of the model, pulmonary segmentation phase.

The second phase of the proposed model is shown in Figure 4. A lung map is created in Step 2,
using the Mask R-CNN network to detect the lung region. After this process, the model uses fine-tuning
to detect the edges of the lung region by readjusting it to the lung wall, as clarified in Steps 3 and 4.

4.2.1. First Phase—Classification

Figure 3 illustrates the initialization of the model trained by the LINDA application [52]. After training
the model, in this first phase, the image representation (EXAM UPLOAD) corresponds to the input images
in the API for lung detection in CT images. It is in STEP 1, where APPLICATION IoT classifies the images
of the model entry. If the API detects the lung in the image, the process proceeds to the Second Phase,
as shown in Figure 3 in RESULT. If it does not find lung to be segmented on the CT image, the process is
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completed. In the First Phase, classifiers and extractors presented in Section 3 are used to detect pulmonary
images on CTs.

Figure 3. The API uses different CNNs and classifiers in an IoT-based architecture for the classification
of lung images according to their presence or not in the other slices of the exam. The API uses a
graphical interface for more significant interaction with the user, in which the user inserts the image
bank and the classes to be classified. This interface then communicates with the server, which contains
the algorithm (endpoint) that will apply the different CNN models used. Then, through Transfer
Learning, it sends the attribute vectors to the classifiers used. This event co-occurs; each CNN model
receives the same images and sends them to their respective classifiers. This process co-occurs, as there
is a need to find the best combination of the CNN model for extraction and its respective classifier.

In Figure 4, before starting the transfer learning process stages with our model for segmentation
of lung CT, training of the model based on the R-CNN mask network is performed, designed to detect
the area corresponding to the lungs. The set is trained based on the ground truth, as it uses only images
already segmented by a specialist doctor. The knowledge generated by the Mask R-CNN model is
stored at the end of the training.

INPUT

v

v

K F
K F

K F

First Convolutional
Layer

Pooling Layer Last Convolutional
Layer

...
...

...

CT RoI

LINDA + MASK R-CNN

Segmentation Result

RESULT

PARZEN WINDOW

v

MASK R-CNN OUTPUT
Region Map

Exam Upload
STEP 2

STEP 3

STEP 4

Figure 4. This Infogram represents the second phase of the proposed method. The image (INPUT),
the result of the process of the first STEP 1 phase, is the input to the Mask R-CNN network. In (STEP 2),
the model based on deep learning creates a map of the proposed region belonging to the lung
represented by the image (STEP 3–Mask R-CNN OUTPUT). And finally, Transfer Learning process
using Parzen’s Window method in (STEP 4) finishing with the segmentation of the lung region.

4.2.2. Second Phase—Segmentation

In Step 2, as shown in Figure 4, the model receives the image from the previous phase (Step 1) that
contains the lung image. If the classifier does not find the lung in the CT image, the process already
ends in phase 1 (Step 1) automatically. In the case of detection of the lung image, the model proceeds
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to Step 2. In (STEP 2), the Mask R-CNN network is used to create the lung map of the input image
of the proposed model. After making the pulmonary map in (STEP 3), the fine-tuning process using
the Parzen window in the (STEP 4) method using the Mask R-CNN network’s weights is followed.
And finally, after STEP 4 with the result of pulmonary segmentation.

In STEP 2 of the model, the lung tomography image is processed with the R-CNN Convolutional
Neural Net Mask. In the image (INPUT), the segmentation process based on our method is initiated with
the insertion of the lung CT image in the model, process image from previous phase 1. In STEP 2 of the
model, the lung tomography image processed with the Convolutional Neural Network Mask R-CNN,
a network built in order to classify different types of objects with attributes stretched by their wide range
of layers. The classification process is divided into two phases: In the first phase, the possible region
of the lung’s existence is demarcated with a bounding box. During the second phase, the bounding
box’s pixels are classified as belonging or not to the pulmonary regions. It is worth mentioning that the
attributes used are selected based on the network architecture. Then, after the pixels are classified as
belonging or not to the region of interest, the network performs the construction of the region of interest
through the pixels classified as belonging to the pulmonary region.

After STEP 3 of the model, the Mask R-CNN classifier detects the region of interest parallel to its
classification and detection process, applied over the lung tomography image pixels. The output of
this classification is a demarcated (detected) region. This region, called a mask, is used in the second
stage of operation of the proposed method: the mask can be considered as a kind of segmentation
through the detection of the object, detailed its functioning in Section 3–A. However, the results are
not entirely satisfactory, as the method captures by detecting the object as a kind of segmentation
bypassing the object showing its location in the image.

In Step 4, to improve the detection contour for high-level segmentation, the result generated by
Mask R-CNN has its dimensions reduced so that it can be used as an input parameter in the Parzen
window function, being the starting point for the meeting of the edges of the lung. This decrease
can be demonstrated in the Equation (1). The Parzen window function estimates the probability that
a particular pixel belongs to a specific region or not. This estimation is performed by calculating a
probability density function. The Gaussian kernel function smoothes the reallocation of the pixels
marked as belonging to that region. The image generated by the Mask R-CNN is used as an input
parameter for the Parzen function. The probabilistic calculation is performed on the image of the
brain’s gray matter, more precisely in the Injured region.

Thus, with the overlay of the result generated by Mask-RCNN on the original image of the CT
scan of the lung, the new segmentation region is formed. As shown in STEP 4, this segmentation
region is stable, as it tends to grow or decrease its edges according to the results of the probability
calculations performed by the Parzen window function, found in the Equation (2), and the main
kernel function used is the Gaussian function, composed of the formula:

δ(z) =
1√

(2π)n|C|
e−

1
2 (zi−z)′C−1(zi−z) (4)

where C, is the co-variance matrix d× d where d represents the dimension, |C| is the determinant of C,
z and zi are the pixels.

The selected kernel function was Gaussian for two reasons. First, the Gaussian function is smoothed,
and therefore the estimated density function p(z) also varies smoothly. The second reason, if a special
form of the Gaussian family is assumed in which the function is radially symmetrical, the function can be
specified completely only by a variation parameter. Thus, p(z) can be expressed as a mixture of radially
symmetrical Gaussian cores with common variance δ [25].

The Equations (4) direct the expansion to the edges of the lung, indicating which direction this
movement should be in, as shown in the Figure 5.
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1 2 3

Figure 5. The Figure above shows the segmentation of the lung using our Composite Method, based on
deep learning combined with the Parzen window method through Transfer Learning.

In RESULT, after a series of expansions at the edges, the movement loses speed and energy, as the
calculations stabilize. Then after fixing the edges of the lungs, the segmented region is extracted by
concatenating the edges and their internal area, as shown in RESULT image.

The pulmonary region can be obtained by subtracting the region segmented by the original image
of the exam, as shown in the Figure 6, where it can be better analyzed visually.

1

2

3

4

Figure 6. It presents the model’s segmentation differently; inline 1, the lung’s CT images are shown
without segmentation methods. Inline 2, we offer the images already segmented by the proposed method.
Inline 3, the images were enlarged for better visualization of the results. Inline four, the segmentation
served as a basis for lung extraction for a better visual analysis of our model’s final result.
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5. Results and Discussion

The Results and Discussion Section the Experiment is divided into two Steps. In the First Stage,
the result and discussion of the experiment is presented based on the classification of lung images
using the IoT, where the API based on IoT identifies in the image shown at the entrance of the network,
whether there are pulmonary regions or not. This First Stage represents the results generated by the
classifiers in the detection of pulmonary regions through extractor combinations.

Next, the Second Stage of Results and Discussion consists of the results of the second stage of
the experiment, as presented in Section 4 of Methodology, in which it represents the results of lung
segmentation in CT images.

5.1. First Stage of the Experiment

This first stage of the experiment presents the result and discussion of the classifiers used in the
model supported in this study (First phase of the Method). In the First phase, as presented in the
Methodology Section 4, the trained and IoT-based model detects the existence of lungs in CT images.
The model identifies the existence of the lung in the image to solve the problem of no lung in some CT
images. This is because the human body’s process of inspiration and breathing of the lungs occurs
naturally, inflating, and deflating the lungs during the CT examination.

Table 1 shows the results achieved by combining the deep attribute extractors InceptionResNetV2,
Xception, NASNetMobile, DenseNet201, ResNet50, InceptionV3, VGG19, DenseNet169 and MobileNet
with the classifiers Naive Bayes, MLP, Nearest Neighbors, Random Forest, and SVM with the Linear,
Polynomial and RBF kernel. The metrics were obtained in the test set after training the classifiers to
identify a lung or not in a CT image.

Initially, we normalized the training set by zero mean and standard deviation one, and the test set was
also normalized using the same training set normalization rule. To optimize the classifier hyperparameters,
we use the random search technique with 5-fold cross-validation. 80% for the training set and 20% for
the validation set. The hyperparameters that reached the highest average of the correctness rates in the
validation sets were chosen to solve the problem.

The intervals chosen for the classifier hyperparameters were: [2, 1001] neurons for the hidden
MLP layer with the Adam optimizer, maximum of 4000 iterations or until the error reaches 1 and
10−3; 1, 3, 5, 7, 9 clusters for the KNN; the maximum number of decision trees for Random Forest
was 1500; the SVM with Linear kernel had the C hyperparameter ranging from [2−5, 215]; the degree
of the SVM polynomial with the Polynomial kernel varied in the range 3, 5, 7, 9 and C between
[2−5, 215]; lastly, SVM with RBF kernel had the C hyperparameter ranging from [2−5, 215] and the γ

hyperparameter ranging from [2−15, 23].
We used the highest achieved value of the F1-Score metric as a selection criterion for the best model.

The F1-Score is equivalent to a harmonic mean between the metrics of sensitivity and specificity. In the
context of lung detection in CT images, the sensitivity denotes the model’s ability to detect lung in images
that do present lungs. On the other hand, specificity indicates the model’s ability to classify images that
do not present the lung region as non-lung, functioning as a complete sensitivity. Thus, the F1-Score
metric seeks to reduce the rates of false negatives and false positives at the same time.

Thus, according to Table 1, the extractor/classifier combination that stood out in the test set was
the Xception extractor with the MLP classifier, achieving the highest rate of F1-Score with 95.35%,
demonstrating that this combination achieved the highest rates of sensitivity and specificity simultaneously.
Also, the combination achieved the highest accuracy rate, with 98.42%. This indicates that Xception
demonstrated greater capacity to extract representative characteristics to discriminate slices with lung and
without lung. Thus, to detect the pulmonary region in CT images, we selected the Xception extractor with
the MLP classifier for our approach. The purpose of this step is to reduce the exam’s full segmentation
time since images that do not have a region of interest are not sent to the segmentation step. Also, filtering
slices without lung contributes to improving the quality of the final segmentation result.
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Table 1. The Table presents results of the combinations between deep attribute extractors and the classifiers
in the test set after training for the classification of CT images in lung or non-lung. The metrics used
to validate the first stage of our approach were Accuracy (ACC), Sensitivity (SEN), Precision (PREC),
Specificity (SPE) and F1-Score. In all, 253 images representing the test set were classified.

Model Classifier ACC(%) SEN(%) PREC(%) SPE(%) F-Score(%)

InceptionResNetV2

Bayes 91.30 79.17 76.00 94.15 77.55
MLP 96.05 90.00 90.00 97.54 90.00

Nearest_Neighbors 94.07 84.31 86.00 96.53 85.15
Random_Forest 95.26 80.65 100.00 100.00 89.29

SVM_Linear 96.44 91.84 90.00 97.55 90.91
SVM_Polynomial 96.84 90.38 94.00 98.51 92.16

SVM_RBF 97.63 92.31 96.00 99.00 94.12

Xception

Bayes 85.38 53.52 90.48 97.80 67.26
MLP 98.42 93.18 97.62 99.52 95.35

Nearest_Neighbors 93.28 75.51 88.10 97.55 81.32
Random_Forest 95.26 84.09 88.10 97.61 86.05

SVM_Linear 98.02 89.36 100.00 100.00 94.38
SVM_Polynomial 97.23 87.23 97.62 99.51 92.13

SVM_RBF 97.23 85.71 100.00 100.00 92.31

NASNetMobile

Bayes 78.26 41.27 59.09 90.53 48.60
MLP 94.07 75.44 97.73 99.49 85.15

Nearest_Neighbors 95.26 83.33 90.91 98.05 86.96
Random_Forest 94.07 93.94 70.45 94.09 80.52

SVM_Linear 95.26 82.00 93.18 98.52 87.23
SVM_Polynomial 95.65 83.67 93.18 98.53 88.17

SVM_RBF 96.05 85.42 93.18 98.54 89.13

DenseNet201

Bayes 84.58 81.82 19.57 84.71 31.58
MLP 97.23 93.33 91.30 98.08 92.31

Nearest_Neighbors 95.65 84.31 93.48 98.51 88.66
Random_Forest 91.30 96.15 54.35 90.75 69.44

SVM_Linear 96.84 95.24 86.96 97.16 90.91
SVM_Polynomial 96.84 95.24 86.96 97.16 90.91

SVM_RBF 96.84 95.24 86.96 97.16 90.91

ResNet50

Bayes 83.79 59.18 58.00 89.71 58.59
MLP 94.86 83.64 92.00 97.98 87.62

Nearest_Neighbors 95.26 83.93 94.00 98.48 88.68
Random_Forest 91.70 89.19 66.00 92.13 75.86

SVM_Linear 96.84 95.65 88.00 97.10 91.67
SVM_Polynomial 96.84 93.75 90.00 97.56 91.84

SVM_RBF 97.23 92.16 94.00 98.51 93.07

InceptionV3

Bayes 85.38 52.54 77.50 95.36 62.63
MLP 96.44 87.80 90.00 98.11 88.89

Nearest_Neighbors 96.05 82.61 95.00 99.03 88.37
Random_Forest 94.47 90.62 72.50 95.02 80.56

SVM_Linear 96.84 86.36 95.00 99.04 90.48
SVM_Polynomial 92.49 69.81 92.50 98.50 79.57

SVM_RBF 97.63 94.74 90.00 98.14 92.31

VGG19

Bayes 85.38 50.00 5.41 85.94 9.76
MLP 96.84 87.18 91.89 98.60 89.47

Nearest_Neighbors 96.05 84.62 89.19 98.13 86.84
Random_Forest 96.05 84.62 89.19 98.13 86.84

SVM_Linear 96.84 82.22 100.00 100.00 90.24
SVM_Polynomial 96.84 83.72 97.30 99.52 90.00

SVM_RBF 96.84 96.77 81.08 96.85 88.24

DenseNet169

Bayes 83.79 0.00 0.00 83.79 0.00
MLP 96.05 84.44 92.68 98.56 88.37

Nearest_Neighbors 94.47 77.55 92.68 98.53 84.44
Random_Forest 94.47 90.91 73.17 95.00 81.08

SVM_Linear 96.84 88.37 92.68 98.57 90.48
SVM_Polynomial 96.84 88.37 92.68 98.57 90.48

SVM_RBF 96.84 88.37 92.68 98.57 90.48

MobileNet

Bayes 87.35 55.56 89.74 97.89 68.63
MLP 97.23 86.36 97.44 99.52 91.57

Nearest_Neighbors 95.26 80.00 92.31 98.56 85.71
Random_Forest 96.05 83.72 92.31 98.57 87.80

SVM_Linear 97.63 88.37 97.44 99.52 92.68
SVM_Polynomial 97.23 90.00 92.31 98.59 91.14

SVM_RBF 96.44 85.71 92.31 98.58 88.89
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5.2. Second Stage of the Experiment

The Second Stage consists of the result generated by the second phase of this study’s proposed
method, which is divided by Steps. In this second phase, the experiment aims to segmentation using
the Mask R-CNN network to detect the whole region of the lung using lung maps, followed by
fine-tuning techniques to find the edges of the lung region.

5.2.1. Result Second Stage—(Step 1: Pulmonary Segmentation Using the Proposed Method)

This section is divided into two stages; the first stage corresponds to the experiment of the method
proposed by this study. The second stage corresponds to the comparisons between other models and
validation of the proposed method.

In this first step, we used our model based on learning through fine-tuning, using the Mask
R-CNN combined with Parzen’s window method as presented in Section 4. The segmentation results
can be seen in Table 2 of this section, and presented visually by the Figure 7. The evaluation metrics
used were (MCC, ACC, SEN, JAC, HD, DICE, TIME), briefly described in Section 3.

Table 2. Metrics of the proposed method, being Matthews Correlation coefficient (Mcc), Accuracy
(Acc), Sensitivity (Se), Jaccard index (Jaccard), Hausdorff distance (HD), Dice coefficient (DICE) e Time.

Metrics R-Mask CNN Proposed Method

Mcc 58.03 ± 06.46 93.72 ± 03.99
Acc 89.96 ± 04.38 98.34 ± 01.13
Sen 88.03 ± 05.41 98.84 ± 00.97

Jaccard 87.69 ± 05.69 97.93 ± 01.64
HD 7.21 ± 0.24 7.03 ± 00.28

DICE 93.34 ± 3.38 98.95 ± 00.85

Mask Proposed
0

50

100

MCC ACC SEN JAC HD DICE

Figure 7. Illustration of the metrics obtained with the result of the Mask R-CNN against the output
generated by the proposed Method.

As can be seen, the model obtained an excellent result for segmentation of lung CT receiving ACC
values in (98.34 ± 01.13), this means that among the methods used in the comparison method was the
one that most correctly segmented the pixels as belonging to the Lung region among all the pixels in
the image. This demonstrates the effectiveness of the method proposed by this study, where the model
simplifies segmentation using the transfer learning technique to reuse the data generated by the deep
learning network.

Bearing in mind that Mask R-CNN without transfer learning achieved in our experiments metric
values of results lower than the model proposed with Accuracy (89.96 ± 04.38). It demonstrated that
using the transfer of learning provides a better result for lung CT image segmentation. The model
based on the transfer of the weights generated by the Mask R-CNN network adjusted to the Parzen
method was superior in all the evaluation metrics presented in Table 2. With Mcc of (93.72 ± 03.99)
against (58.03± 06.46), it is shown to be efficiently superior in the other metrics. This is due to the Mask
R-CNN operation that detects the region of interest in the examination in a generalized way (bounding
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box) and then trims the edges. However, the Mask’s focus is not to segment but to detect the region of
pulmonary interest. For a better result, it was necessary to use fine-tuning techniques based mainly
on Parzen windows. The results were satisfactory because the Parzen window when receiving the
detected Mask as an input image can calculate the edges of the region of interest effectively through its
probabilistic estimation. Thus, the process of detection and segmentation of pulmonary areas through
the transfer of learning demonstrated effectiveness in the results. The model was able to identify
regions that are genuinely belonging to the lung effectively. This can be checked according to the
effects of Accuracy and Sensitivity presented in the Table 2.

The proposed model’s notorious effectiveness can be seen in (Sen) and (Jaccard). Both were similar
among the models, however, with a difference of approximately 10%. This directly influenced the better
segmentation of the detected region, considering that the respective metrics; Sensitivity indicates a
system’s ability to demonstrate the Injured area genuinely, and the Jaccard Index represents a system’s
ability to accuse an Injured region as close to the real one as possible.

Visually it is possible to analyze the result of the segmented image represented by Figure 5. The “seed”
is planted in the image (1) using our fully automatic method, using the Mask R model output-CNN
adjusted to the Parzen window until the growth of the lung border in the image (3) Figure 5.

5.2.2. Result Second Stage—(Step 2: Comparison with Literature Methods)

In this subsection, the Proposed Method results are presented compared to the literature methods
already consolidated. Tables 3–5 shows the comparisons between classic works with excellent performances
in different evaluation metrics. Tables 7 and 8 show comparisons with different current and innovative
consolidated models in the literature, using deep learning and transfer learning-based methods with
excellent results. All works used the same database, thus consolidating the experiments’ results in this study.

Table 3. Comparison of the method proposed by this study between models in the literature; VFC,
GVF, RHT mod, and RHT multi.

Methods Mcc Acc Sen

Proposed Method 93.72 ± 03.99 98.34 ± 01.13 98.84 ± 00.97
VFC 92.13 ± 03.20 97.88 ± 01.29 98.26 ± 00.66
GVF 90.00 ± 06.45 96.79 ± 03.61 96.75 ± 05.10

RHT mod 91.34 ± 03.09 97.56 ± 01.63 98.22 ± 01.28
RHT multi 85.38 ± 11.85 95.77 ± 03.96 97.68 ± 03.45

Table 4. Overlap and Distance metrics for different compared methods. Comparison between proposed
method and literature works.

Methods Jaccard HD DICE

Proposed Method 97.93 ± 01.64 7.03 ± 00.28 98.95 ± 00.85
VFC 87.62 ± 04.81 6.92 ± 01.50 93.33 ± 02.82
GVF 85.11 ± 07.71 7.55 ± 02.29 91.76 ± 04.84

RHT mod 86.65 ± 03.79 6.93 ± 01.79 92.81 ± 02.21
RHT multi 78.82 ± 14.43 8.23 ± 02.91 87.29 ± 11.18

Table 5. Time average and standard deviation of the methods.

Methods Average Time (s)

GVF 240.000 ± 3.05
VFC 030.00 ± 2.67
OPS 008.27 ± 2.63

OPS Euclidean 005.86 ± 1.96
SISDEP 004.90 ± 2.02
CRAD 002.00 ± 0.16

Proposed Method 005.43 ± 0.21
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In Step 2, Table 3 presents the evaluation metrics, along with the methods in the literature in
comparison to the model shown in this work, with the objective of segmentation in pulmonary CT
images. Both works used the same database, containing 36 separate images from the data-set presented
in this Section 4.1.

It can be seen that our model achieved better performance in all metrics. In the first column,
we present the comparison methods, including the method proposed by this study. In the second,
third, and fourth columns, the metrics are presented; Mcc, Acc, and Se. The proposed method surpassed
all the methods presented in Table 3, reaching (98.34 ± 01.13) Accuracy (Acc), against HRV methods
with (97.88 ± 01.29), GVF (96.79 ± 03.61) RHT mod (97.88 ± 01.29) and RHT multi com (95.77 ± 03.96).
Accuracy is responsible for measuring the proportion of pixels that are correctly targeted. This means
that the method with the greatest accuracy has the greatest ability to target a larger proportion of
pixels in the lung region. The gain was also higher among the Mcc metrics reaching (93.72 ± 03.99),
and Sen with (98.84 ± 00.97). This denotes that the metrics used, our model demonstrated superiority.
The high result of the Mcc metric corresponds to greater efficiency, incorrectly predicting the lung
region. Bearing in mind that the coefficient analyzes the association between the region indicated and
the region given as true. In this way, both the non-pulmonary regions and the regions detected as
pulmonary regions obtained satisfactory values in the evaluation metrics presented in the experiment.

The Table 4 shows metrics related to the distance and overlap between images. The proposed
method surpassed all models. We surpassed all models with values above (10.00) points of difference
in the metric; Jaccard compared to the runner-up: Our offer (97.93± 01.64) against HRV (87.62± 04.81)
This means that the region segmented by the model proposed in this study is more similar to the
region of ground truth than the model in comparison. Furthermore, about the HD metric, our value
reached (7.03 ± 00.28), indicating greater stability given the good values of approximation at zero and
its deviation stoner. Figure 8 illustrates a 3D image of a pulmonary CT image segmentation with the
proposed model. After the image is normalized to 0–255, the gray levels are shown as altitude in the
image (axis h).

Figure 8. The Figure above shows the lung segmentation in 3D using our Proposed Method, based on
deep learning in conjunction with the Parzen window method through transfer learning.
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This can be seen and better contextualized in Figure 9, represented according to Tables 3 and 4.
As can be seen in Figure 10, except for Hausdorff Distance, the metrics oscillate between 0 to 100%.
The closer to 100, the better the method’s efficiency. However, with the Hausdorff metrics, the closer to
0, the more efficient the result.

Proposed Bayes K-means EM SVM

60

80

100

ACC SEN DICE

Figure 9. Illustration between metric values obtained, comparing the Proposed Method to other
methods in the literature based on transfer learning presented by Table 7, with the combined models;
Mask + Bayes, Mask + Kmeans, Mask + EM and Mask + SVM from the study of [13].

Proposed VFV GVF RHT mod RHT multi

0

50

100

MCC ACC SEN JAC HD DICE

Figure 10. Illustration between metric values obtained compares the proposed method to other methods
in the literature presented in Table 4.

As can be seen in Table 5, our proposed model achieved significantly good performance to the
processing time compared to the models of the literature-based only on region growth. Despite using
training with the convolution model, our application reached 5.43 s in time, surpassing and assimilating
to methods already consolidated in state of the art such as GVF, VFC, OPS, and OPS Euclidean, Since all
models have the same database in common in their experiments. Our method stands out among the
models because it is a completely automatic method for segmenting the lung. This can be seen in
Figure 11 the contrast between the segmentation time values between models found in the literature.

The statistical test, presented in the Table 6, was performed comparing the results of the proposed
method to the other methods mentioned in work in the Tables 3 and 4. The test obtained the result
revealing itself to be statistically different between the other methods, thus proving their effectiveness
and divergent characteristics. The symbol© represents the difference, and4 represents equality.
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Figure 11. This Figure shows the segmentation time between models in the literature, compared to the
method proposed by this study, the visual data refer to the Table 5.

The Table 7 was added to validate our model among the methods using Mask R-CNN based on
fine-tuning and transfer learning. As you can see, our best model surpassed all the models presented
in [13], showing its effectiveness and better performance based on the results.

Combinations of methods for lung segmentation; Mask + SVM, Mask + Bayes, Mask + Kmeans,
Mask + EM and Mask + SVM, contained in the work of Qinhua HU [13], were inferior to the
results obtained by our method (Proposed Method), as shown in the Table through metrics; Acc com
(98.34 ± 01.13), Sen (98.84 ± 00.97) and Dice reaching (98.95 ± 0.85). Compared to the best model
proposed by Qinhua Hu Model (Mask + Kmeans) reached Acc (97.68 ± 3.42), Sen (96.58 ± 08.58) and
(97.33 ± 3.24). Although the model had a satisfactory performance, standard deviation values among
the three metrics of Qinhua Hu vary above 3%, reaching oscillate in 8.58%. In their worst model,
the metrics oscillate with a difference above 12%, as is the case of the Mask + Bayes model for the
Accuracy metric and its proportionality to the lung’s demarcation border.

According to the Table 8, our model outperformed (5.43 ± 00.21) s, against (11.24 ± 02.57) its
best model, decreasing efficiently targeting time in half. The Proposed Model was superior in the
process of classification and segmentation of the pulmonary region. Unlike the Mask + Kmeans model,
our model used an IoT-based network to identify lung images in the CT scan image. This process was
performed manually by the method performed in the work of [13]. This process is performed because,
in some CT slices, no images of the lungs are found. This process identifies pulmonary regions to be
segmented at CT images.

Thus, all the results presented and discussed were compared in different approaches. The steps
discussed showed the Proposed Model’s excellent performance, contrasting other comparisons
between classic and current models found in the literature for pulmonary segmentation.

Table 6. Table with the result of Friedman’s non parametric statistical test.

Methods Mcc Acc Sen Jaccard HD DICE

VFC © © © © © ©
GVF © © © © © ©

RHT mod © © © © © ©
RHT multi © © © © © ©
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Table 7. Comparisons between methods in the literature that use the Mask R-CNN network based on
transfer learning.

Methods Metrics

Acc Sen DICE

Proposed Method 98.34 ± 01.13 98.84 ± 00.97 98.95 ± 00.85
Mask + Bayes 86.42 ± 11.11 91.06 ± 14.66 76.10 ± 16.49

Mask + K-means 97.68 ± 03.42 96.58 ± 08.58 97.33 ± 03.24
Mask + EM 97.28 ± 03.85 95.86 ± 08.67 87.63 ± 09.39

Mask + SVM 95.78 ± 02.62 96.69 ± 10.24 86.05 ± 11.21

Table 8. The segmentation time of our proposed model has compared to the [13] method.

Method Second

Proposed Method 05.43 ± 00.21
Mask + K-means 11.24 ± 02.57

6. Conclusions and Future Works

This work has as the premise, an innovative model based on excellent results. They were the results
obtained discussed and compared to the current literature, thus presenting an excellent performance.
We propose to this study a new approach with excellent results using deep learning for automatic
segmentation of lung images in CT using IoT and Mask R-CNN deep learning methods combined
with fine-tuning. The proposed model used API through the application (Lapisco Image Interface for
the Development of Applications—LINDA), an IoT-based platform for the classification of medical
images. The [52] model classified and segmented lung images with excellent results. Among the various
classifiers, the Xception MLP model was the most effective among the other models used, reaching
98.42% accuracy, 99.52% Specificity.

Our model demonstrated better performance and robustness in all metrics. This means that the
transfer learning process with results from Mask R-CNN along with the Parzen method provided
excellent results for lung segmentation in CT images using fine-tuning. The difference between them
to Accuracy reached more than 9%, (98.84%) against (89.96) of Mask R-CNN without transfer learning)
demonstrating that our model surpassed Mark R-CNN itself. The method showed efficiency using the
deep learning model with Parzen’s windowing method through transfer learning and fine-tuning using
the Mask R-CNN result as a starting point for the Parzen method’s input image. The model adjusted to
the edges of the lung, as we used the fine-tuning process (with the weights generated by Mask R-CNN),
achieving excellent segmentation results with (98.34 ± 01.13) Accuracy and segmentation time in just
5.43 s, optimizing the time in half, against 11 s to the method with transfer learning, thus presenting
excellent performance.

Also, our fully automatic method differs from many leading models that required the use of
pre-processing methods, based on DIP, among other ways, to improve the quality of their results or to
use semi-automatic models for the segmentation of lungs. Our model based on deep learning produced
the best values based on the metrics: (Mcc, Acc, Sen, Jaccard, and DC) surpassing works consolidated
by transfer learning techniques presented in this study. Thus, based on the results acquired in Section 5
Results and Discussion, it is possible to compare and conclude the effectiveness of the composite model
presented by this study. The results support the conclusions at different stages of testing. Our model
successfully surpassed the results generated by Mask R-CNN, as shown in the textual discussion of the
analysis about Table 2. Followed by the results of comparison with works in the literature, presented
and discussed in Section 5.2.2 Result Second Stage—(Step 2: Comparison with Literature Methods),
where our model performed better the different methods; innovative methods, current methods,
and classics methods.



Sensors 2020, 20, 6711 20 of 24

Thus, as a contribution to this study, considering the need for fast and accurate pre-diagnoses,
a high performance and speed tool was developed, whose main application is to assist in the detection
and segmentation of pulmonary images in CT exams. The application uses an innovative tool based
on IoT to transfer learning and fine-tuning in the computational process.

For future work, we intend to use other lung databases as further experiments and use to segment
different types of CT images, such as; melanoma, mammograms, heart, using premise through fine-tuning
and transfer learning. Future work will also aim to assess the model’s generalizability for different types
of medical images.
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