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This study sought to perform integrative analysis of the immune/methylation/autophagy landscape on breast cancer prognosis
and single-cell genotypes. Breast Cancer Recurrence Risk Score (BCRRS) and Breast Cancer Prognostic Risk Score (BCPRS)
were determined based on 6 prognostic IMAAGs obtained from the TCGA-BRCA cohort. BCRRS and BCPRS,
respectively, were used to construct a risk prediction model of overall survival and progression-free survival. Predictive
capacity of the model was evaluated using clinical data. Analysis showed that BCRRS is associated with a high risk of
stroke. In addition, PPI and drug-ceRNA networks based on differences in BCPRS were constructed. Single cells were
genotyped through integrated scRNA-seq of the TNBC samples based on clustering results of BCPRS-related genes. The
findings of this study show the potential regulatory effects of IMAAGs on breast cancer tumor microenvironment. High
AUCs of 0.856 and 0.842 were obtained for the OS and PFS prognostic models, respectively. scRNA-seq analysis showed
high expression levels of adipocytes and adipose tissue macrophages (ATMs) in high BCPRS clusters. Moreover, analysis of
ligand-receptor interactions and potential regulatory mechanisms were performed. The LINC00276&MALAT1/miR-
206/FZD4-Wnt7b pathway was also identified which may be useful in future research on targets against breast cancer
metastasis and recurrence. Neural network-based deep learning models using BCPRS-related genes showed that these genes
can be used to map the tumor microenvironment. In summary, analysis of IMAAGs, BCPRS, and BCRRS provides
information on the breast cancer microenvironment at both the macro- and microlevels and provides a basis for
development of personalized treatment therapy.

1. Introduction

Breast cancer (BRCA) is the most common cancer in women
worldwide, accounting for about 25% of all female malignan-
cies [1]. Despite advances in diagnosis and treatment, a high
number of cases are diagnosed at distant metastatic sites pre-
senting a challenge in treatment of the cancer [2, 3]. There-
fore, molecular biomarkers for guiding individualized
treatment and for improving the overall prognosis of breast
cancer in patients are urgently needed. These biomarkers

may be useful in the development of highly effective treat-
ment options in breast cancer [4].

In the current era of precision medicine, high-
throughput technology provides an opportunity to develop
tumor prognostic biomarkers from different sources. These
markers include Immune, Methylated, and Autophagy-
Associated Genes (IMAAGs) which are potential prognostic
markers in breast cancer [5–8]. Autophagy is essential in
maintaining integrity of the cytoplasm and genome. In addi-
tion, it is implicated in the occurrence and development of
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tumors at several levels [ 3, 9]. During cancer progression,
autophagy actively degrades proteins and organelles increas-
ing the nutrient reservoir of the tumor, thus promoting
tumor proliferation and invasion [10, 11]. Moreover, previ-
ous studies report that autophagy-related genes can be used
as prognostic markers for breast cancer [5].

On the other hand, m6A-RNA methylation is an impor-
tant internal modification in eukaryotic cells. Studies report
that expression and gene changes in the m6A regulatory fac-
tors are associated with malignant tumor progression and
abnormal immune regulation [12–14]. Moreover, modifica-
tions in the pattern of individual tumor m6A can predict can-
cer stage, subtype, genetic variation, and patient prognosis.
Furthermore, m6A methylation-related genes are potential
molecular markers of breast cancer prognosis [6, 7]. In addi-
tion, immune cells are shown to be involved in tumor pro-
gression [15–18]. Previous studies report that the immune
characteristics of breast cancer are related with clinical fea-
tures. The expression profile of immune-related genes may
affect specific subtypes of breast cancer [19–21]. Evaluation
of tumor immunophenotypes is an important complemen-
tary indicator of the TNM (Primary Tumor, Regional Lymph
Nodes, and Distant Metastasis) stage, recurrence, and mor-
tality [22–27].

Recent studies report that IMAAGs play a synergistic role
in the tumor microenvironment [28, 29]. It was reported that
m6A modification may affect the stability of autophagy-
related gene transcripts andm6Amethylation-related proteins
can lead to tumor immune escape and development [29–32].
This implies that highly coordinated interaction exists
between IMAAGs. However, no specific markers based on
IMAAGs have been comprehensively applied to explore the
breast cancer microenvironment and aid in prognosis. There-
fore, a detailed analysis of the effect of IMAAGs on tumors will
provide further knowledge on TME antitumor immune
responses and guide on the development of more effective
treatment options [6, 33]. Several studies report that IMAAGs
are implicated in the malignant progression of breast cancer
[34]. However, no study has conducted a comprehensive anal-
ysis of IMAAGs to explore their clinical significance.

Malignant differentiation of BRCA cells in the tumor
microenvironment is affected by several factors [35, 36].
Single-cell transcriptomic analysis offers the opportunity to
characterize cellular states and their transitions by simulta-
neously exploring the integrated nature of the genomes of
entire tumor samples at microscopic resolution [37]. Ordering
such comprehensive tumor-constituting cells into trajectories
helps in understanding tumor cell subsets and the related
tumorigenic and malignant transgression pathways [38].
Recent advances in single-cell analysis methods provide a more
comprehensive way to exploremolecular changes at the cellular
level [39]. Moreover, cell-type-specific ligand-receptor com-
plexes can be predicted by a database of the curated complexes
(http://www.CellPhoneDB.org/) [40]. Those methods could be
used to find a series of reliable prognostic markers and reveal
new targets for the treatment of illness.

Therefore, a molecular and cellular map at microlevels
was constructed in the current study by integrating these pre-
dictions with spatial in situ analysis. The relationship

between IMAAGs and the breast cancer microenvironment
has also been systematically analyzed.

2. Materials and Methods

2.1. Data Retrieval and Processing.Data sources are presented
in Supplementary Table 1. Transcriptome, Copy Number
Variation (CNV), and Single Nucleotide Polymorphism
(SNP) data and clinical data related to breast cancer (BRCA)
were downloaded from The Cancer Genome Atlas (TCGA)
database. Transcriptome data were normalized using R
software using library-size normalization. Autophagy-related
genes were retrieved from the Human Autophagy Database
(http://www.autophagy.lu/) according to previous studies
[41]. Moreover, 16 m6A RNA methylation regulators with
available expression data were obtained from the TCGA
datasets. After that, immune-related genes were acquired
from the shared data in IMMPORT (https://www.immport
.org/shared/genelists). Besides, the mRNAsi index used for
matching to the TCGA breast cancer dataset was obtained
from a previous study [42].

The scRNA-seq data (accession number GSE118389) of a
total of 1534 cells in six fresh TNBC tumors were obtained
from the Gene Expression Omnibus (GEO, http://www
.ncbi.nlm.nih.gov/geo/) database [43]. Samples with unavail-
able clinical information were excluded. The final dataset
included 934 BRCAs from the TCGA cohort and 194 BRCAs
from the clinical cohort.

2.2. Study Participants. Clinical data were obtained from 194
breast cancer patients attending the Shanghai General Hospi-
tal. According to clinical follow-up and medical history
records, survival data and disease characteristics were
obtained. All participants provided informed consent to
participate in the study. This study was conducted in com-
pliance with the principles of the Declaration of Helsinki.
The study was approved by the Institutional Ethics Review
Board of the Shanghai General Hospital (no. 2020KY211).
Radiotherapy was prescribed for all patients undergoing
conservative surgery, and it was recommended based on
the risk of local recurrence after mastectomy following
adjuvant chemotherapy.

2.3. Identification of Autophagy, Methylation, and Immune
Associated Genes. The random forest algorithm was used to
screen out genes related to breast cancer prognosis from
IMAAGs. In addition, the randomForestSRC algorithm was
used to rank the importance of prognostic-related genes.
The random forest model was then used to screen 210 genes
potentially related to the prognosis of breast cancer. A total of
19 genes that were highly correlated with prognosis were
identified through single-factor Cox regression. All con-
founding factors were considered during the study. We have
taken into account all confounding factors as much as possi-
ble. We hope to screen the most critical IMAAGs through
this study. Thereafter, LASSO and multivariate Cox methods
were adopted to reduce the dimensions and identify indepen-
dent prognostic factors. IMAAGs that were correlated with
highest risk of death were then selected to establish a
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multivariate Cox prognosis model [44]. Training and control
group sample size was in a 7 : 3 ratio. BRCA overall survival
(OS) and progression-free survival (PFS) nomogram predic-
tion models were constructed based on the TCGA dataset
and clinical data. Nomograms were validated using receiver
operating characteristic (ROC) curves [45, 46]. The C-index
was used to evaluate the performance of the models [47].
Decision curve analysis was used to evaluate clinical applica-
tion of the nomograms [48]. Net income was calculated fol-
lowing a previously published method [49].

2.4. Tumor Purity Analysis and Immune Cellular Fraction
Estimates. As per the previous research, the TCGA-BRCA
RNA sequence TPM data was used as the input then the
single-sample Gene Set Enrichment Analysis (ssGSEA)
employed to score the enrichment of immune cell type meta
genes, as described in the GSVA package of the R software
[50–52]. Afterwards, z-scoring was performed on the data
based on the prediction of infiltration and enrichment of
the immune cells. The z-score of the data was determined
based on prediction of infiltration and enrichment of
immune cells. Unsupervised cluster analysis was used to
identify different modification patterns in immune cells and
for classification of samples for further investigation. The
number of clusters and their stability were determined by
the consensus clustering algorithm [53]. The ConsensusClus-
terPlus package was used to perform the cluster analysis with
1000 replicates to ensure stability of the classification [54].
Tumor purity score was estimated using the ESTIMATE
method as described previously [55, 56].

2.5. Enrichment Analysis. The Gene Set Variation Analysis
for Microarray and RNA-seq data (GSVA) and Gene Set
Enrichment Analysis (GSEA) were performed to explore
the Gene Ontology (GO) of biological processes and KEGG
pathways associated with the Breast Cancer Prognostic Risk
Score (BCPRS) [52, 57]. The “c2.cp.kegg.v6.2.-symbols” and
“c5.all.v6.2.symbols” gene sets were retrieved from the
MSigDB database for GSVA analysis. GSEA was used to
explore the potential mechanisms associated with BCPRS
using JAVA.

2.6. Quantitative Real-Time PCR (qPCR). Total RNA was
extracted from cell cultures using the Mini-BEST Universal
RNA Extraction kit (TaKaRa, Kyoto, Japan). cDNA synthesis
was then performed using Prime-Script RT Master Mix
(TaKaRa). qPCR assays were performed using SYBR Green
Master Mix (TaKaRa) in the PCR LightCycler480 system
(Roche Diagnostics, Basel, Switzerland).

2.7. Construction of WGCNA. Transcriptome data from
TCGA-BRCA was analyzed using the Weighted Gene Coex-
pression Network Analysis (WGCNA) method. Setting the
power supply at 7 ensures a higher scale independence (close
to 0.9), and lower average connectivity (close to 0) could be
guaranteed. A hierarchical clustering dendrogram of a Topo-
logical Overlap Measure (TOM) matrix was constructed
using the average distance with a minimum threshold of 30
and a merged cutting height of 0.25. Expression units of sim-
ilar genes were then grouped into different gene modules.

Cytoscope3.8 was used to visualize the coexpression network.
The “igraph” package was used to determine the degrees of
the module. DAVID (http://david-d.ncifcrf.gov) and GOplot
tools were used for the KEGG pathway enrichment and GO
function enrichment analyses of the genes screened by the
WGCNA method [58].

2.8. Identification of DEGs between BCPRS Phenotypes. To
explore BCPRS-related genes, patients were divided into
two groups with different BCPRS phenotypes based on the
BCPRS score. The Bayesian method in the limma R package
was then used to determine Differentially Expressed Genes
(DEGs) between the two groups (p < 0:05).

2.9. Construction of Drug-ceRNA Network. The miRcode
database was used to explore interactions between DE-
lncRNAs and DE-miRNAs as previously reported [59, 60].
Correlation between differentially expressed mRNAs (DEMs)
and DE-miRNAs was explored using the miRWalk3.0 database
and the miRTarBase (Version 7.0), which contains validated
miRNA target interactions from various experiments [61].
The LncMAP tool was used to determine Spearman correlation
coefficients between lncRNA expression levels and the IC50
values of 24 drugs. A possible drug-lncRNA network was then
constructed based on the prediction of the LncMAP database.

2.10. TNBC scRNA-seq Data Analysis. A total of 1535 cells in
six fresh TNBC tumors were included in this analysis.
Patients with triple-negative breast cancer have a poor prog-
nosis and are associated with a high risk of recurrence and
metastasis; therefore, studying this dataset facilitates explora-
tion of the potential role of BCPRS-related genes. The Seurat
package in R 3.6.3 was used for quality control [62]. Gene
expression levels of the remaining 1266 cells were normalized
using the Seurat package. PCA was performed to identify sig-
nificantly available dimensions with a p value < 0.05 [63].
The Uniform Manifold Approximation and Projection
(UMAP) algorithm was applied for dimensionality reduction
with 20 initial PCs and for performing cluster classification
analysis across all cells [64]. Different cell clusters were iden-
tified and annotated using the singleR package based on the
composition patterns of the marker genes and were then cor-
rected using the CellMarker tool [65, 66]. The Monocle 2
algorithm was used to construct single-cell pseudotime
trajectories of the TNBC scRNA-seq data [67]. In addition,
clustering analysis was performed based on six BCPRS genes
(HEY1, INFA13, NKX2-3, NR2F1, POU5F1, and YY1).
DEGs between clusters 2 and 3 of adipocytes were defined
as marker genes. Cell-to-cell interaction analysis was per-
formed using the CellPhoneDB database [40]. Significant
cell-to-cell interactions were determined using p value < 0.01.

2.11. Neural Network-Based Deep Learning Framework and
Statistical Analysis. Neural networks were constructed using
python (version 3.6) software to predict breast cancer cell
types [68]. All cells were randomly assigned to a training set
and a testing set with a 7 : 3 ratio. The parameter settings are
the same as in the previous article [37, 68]. All statistical anal-
yses were performed using the GraphPad Prism (version 7.0)
software and R (version 3.5.3) software. The Kaplan-Meier
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method was used to calculate the overall survival rate, as
described previously [69]. Conditional Survival (CS) was
defined as the probability that the patient would survive for
“y” years because they had survived for “x” years [69–73].

3. Results

3.1. Identification of Different Immunity, Methylation, and
Autophagy-Related Genes. The study design is presented in
Figure 1(a) and Supplementary Figure 1. Firstly, RNA-seq and
clinical data from 1109 BRCA samples were downloaded
from the TCGA database. After that, 386 immune-related
genes, 16 m6A methylation-related genes, and 222 autophagy-
related genes were obtained. Random forest analysis was used
to identify 210 genes related to the prognosis of breast cancer
(Figures 1(b) and 1(c)). Moreover, 19 genes associated with
the prognosis of breast cancer were identified using single-
factor COX regression (Figure 1(d)).

The gene regulatory network described the interaction
between immune-related, methylation-related, and autophagy-
related genes as well as their impact on the prognosis of patients
with breast cancer (Figure 1(e)). The results showed that some
of the genes related to the prognosis of breast cancer (IKBKB,
ATG16L2, CLN3, MBTPS2, TSC2, and CAPN10) had a
higher frequency of mutations (Figure 1(f)). In addition, anal-
ysis showed significant differences in the CNV of OS-related
genes including CLN3, TSC2, DAPK2, LAMP1, ATG16L2,
FADD, IKBKB, RAB24, CAPN10, CFLAR, PEX14, MBTPS2,
ST13, MAP2K7, and STK11 (Figure 1(g)). Furthermore,
LASSO analysis was used to exclude genes that could cause
overfitting of the model and to reduce variables (Figures 1(h)
and 1(i)). A multivariate Cox regression model was employed
to establish a predictive model containing 6 characteristic
genes (HEY1, IFNA13, NKX2-3, NR2F1, POU5F1, and YY1)
correlated with the prognosis of breast cancer (Figure 1(e)).
A BCPRS model was constructed based on the 6 genes. The
risk scores were calculated as follows: risk score = 0:3501
∗HEY1 + 0:2299 ∗ IFNA + 0:0735 ∗NKX2 − 3 + 0:1789 ∗
NR2F1 − 0:2976 ∗ POU5F1 − 1:574 ∗ YY1 and BCPRS =
log ðriskScoreÞ.

3.2. Evaluation of BCPRS as well as Overall Survival and
Clinical Phenotype. The Kaplan-Meier (K-M) curve showed
that the 6 IMAAGs identified in the previous section were
related to the prognosis of breast cancer with good risk pre-
diction capabilities (Figure 2(a)). The low expression level
of POU5F1 and YY1 and high expression level of HEY1,
IFNA13, NKX2-3, and NR2F1 were significantly related to
poor prognosis in breast cancer. Notably, the tumor groups
showed a low expression level of HEY1 and NR2F1 com-
pared with the normal group (Supplementary Figure 2E).
This implies that HEY1 and NR2F1 may be correlated with
a malignant tumor progression phenotype rather than a
tumorigenesis phenotype. The K-M curve showed that the
risk of death in the high BCPRS group was significantly
higher compared with that in the low BCPRS group in the
TCGA cohort (Figure 2(b); p < 0:001).

The 5-year survival rate of the low-risk group ranged
from 98% to 99% and then 100% (1 year, 3 years, and 4 years,

respectively). The 5-year survival rate of the low-risk group
was better compared with that of the high-risk group (from
89% to 96%) (Figures 2(c) and (d)). Notably, the survival rate
of patients in the low-risk group was approximately 100%
after 3 years of treatment. This implies that BCPRS could effec-
tively predict the risk of death and recurrence of cancer in breast
cancer patients. In addition, the model can help ease the fear of
possible recurrence in breast cancer patients in the low-risk
group after three years of treatment. Further, it can help ensure
a more active follow-up in the high-risk group and in guiding a
more reasonable allocation of medical resources.

TNM staging shows severity of a tumor and is used for
predicting the prognosis of patients in clinical practice. Inter-
estingly, the findings of this study showed no significant cor-
relation between BCPRS and TNM staging (Supplementary
Figure 2A-2D). This implies that BCPRS is independent of
tumor staging and can be used as an alternative indicator of
tumor prognosis.

3.3. Evaluation of the Tumor Immune Microenvironment and
Association with BCPRS. Analysis showed that tumor purity
is significantly negatively correlated with ImmuneScore,
StromalScore, ESTIMATEScore, and BCPRS (Spearman’s
correlation, rho = −0:92, -0.82, -0.99, and -0.22, respectively;
Figure 3(a)). To further explore this correlation, ssGSEA was
used to predict the abundance of immune cells in each sam-
ple. Moreover, unsupervised cluster analysis was performed
to classify patients into different immune subtypes. The find-
ings showed that tumors with low immune infiltrating sub-
types in the TCGA-BRCA cohort had higher purity and
lower BCPRS scores compared with those with high immune
infiltrating subtypes (Figures 3(b) and 3(c)). These findings
indicate that the BCPRS score is highly correlated with spe-
cific tumor microenvironment characteristics (such as tumor
purity and tumor tissue immune infiltration). A heat map
was then constructed to visualize the features (Figure 3(d)).

3.4. Differences in the SNPs of Tumor Cells from Different
BCPRS Subtypes. The Maftools package was used to explore
differences in the distribution of somatic mutations between
the low and high BCPRS scores in the TCGA-BRCA cohort.
The low BCPRS score group showed a severe burden of
tumor mutations compared with the high BCPRS score
group. Incidence of the top ten most significant mutation
genes was 14.3% versus 12.1%, respectively (Supplementary
Figure 3A-3B). Analysis showed that tumor mutations in
patients with a high TMB status were correlated with a
long-lasting clinical response to immunotherapy. Therefore,
we guess that differences in tumor BCPRS scores may
mediate clinical response to immunotherapy.

3.5. Enrichment Analysis of BCPRS Subtypes. GO function
enrichment analysis was used to explore associated functions
of BCPRS. The highly enriched functions included ATPase
coupled ion transmembrane transporter activity, double-
stranded RNA binding, high voltage-gate calcium channel
activity, humoral immune response, negative regulation of
humoral immune response, NuA4 histone acetyltransferase
complex, regulation of macroautophagy, RNA modification,
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Figure 1: Continued.
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and T cell receptor complex (Figure 4(a)). In addition, KEGG
pathways associated with BCPRS were explored. Highly
enriched pathways included apoptosis, cGMP-PKG signaling
pathway, chemical carcinogenesis, drug metabolism-
cytochrome P450, endocrine and other factor-regulated
calcium reabsorption, fatty acid degradation, lysine degrada-
tion, p53 signaling pathway, and regulation of lipolysis in
adipocytes (Figure 4(b)). These findings show that BCPRS
may be associated with the immune, methylation, and
autophagy pathways. In addition, BCPRS can indirectly
indicate the overall biological function of tumor tissue.

Heat maps based on GSVA analysis and quantification
were used to visualize expression of the six key genes and
the differentially enriched KEGG pathways (Figure 4(c)).
Findings from cluster analysis showed that expression of
NR2F1 was significantly correlated with the renin angioten-
sin system, glycosaminoglycan biosynthesis, chondroitin
sulfate, complement and coagulation cascades, and ECM
receptor interaction.

3.6. Demographic, Clinicopathological, and Tumor
Microenvironment Characteristics of BRCA Patients in High
and Low BCPRS Groups. Demographic, clinicopathological,
and tumor microenvironmental characteristics of patients
with high and low BCPRS/BCRRS are presented in Tables 1
and 2. Analysis showed that the low and high BCPRS groups
were significantly heterogeneous in terms of clinicopatholog-
ical and tumor microenvironment characteristic factors
(immunity groups, StromalScore, ImmuneScore, ESTIMA-
TEScore, TumorPurity, and mRNAsi; Table 1). The high
BCPRS group showed higher immune scores with lower
tumor purity. Notably, mRNAsi was lower in the high
BCPRS group compared with the low BCPRS group, imply-
ing that the BCPRS score is negatively correlated with breast
cancer cell stemness. The findings of this study were consis-
tent with findings from previous studies that the BCRRS
score is significantly correlated with malignancy of breast
cancer (Table 2). This indicates that BCPRS is a prognostic
factor independent of cancer cell stemness characteristics.
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Figure 1: Identification and screening of different immune, methylation, and autophagy-related genes (IMAAGs). (a) The experimental
design. RNA-seq and clinical data from 1109 BRCA samples were retrieved from TCGA database. A total of immune-related genes, 16
m6A methylation-related genes, and 222 autophagy-related genes were included in this study. Breast Cancer Recurrence Risk Score
(BCRRS) and Breast Cancer Prognostic Risk Score (BCPRS) systems were constructed based on these genes. The BRCA nomogram
prediction model, potential drug-ceRNA network, PPI network, and single-cell analysis were then constructed. (b) Data error rate of the
classification tree function. (c) Important values of the genes in the random forest model. (d) A forest chart showing factors selected from
the single-factor COX regression analysis (p < 0:05). (e) Interaction of the immune, methylation, and autophagy-related genes. The size of
each cell represents the survival effect of each gene. The correlation coefficient estimated by Spearman’s correlation analysis is represented
by the thickness of each line. Red represents a positive correlation whereas blue indicates a negative correlation. (f) Waterfall plot of
tumor somatic mutations showed that genes related to the breast (IKBKB, ATG16L2, CLN3, MBTPS2, TSC2, and CAPN10) had a high
frequency of mutations. (g) Breast cancer OS-associated genes (CLN3, TSC2, DAPK2, LAMP1, ATG16L2, FADD, IKBKB, RAB24,
CAPN10, CFLAR, PEX14, MBTPS2, ST13, MAP2K7, and STK11) in the positions of CNV on 23 chromosomes based on TCGA-BRCA
dataset. (h, i) Key genes selected using the LASSO regression model using the minimum criterion of 5-fold cross-validation. Generation of
coefficient outline based on the log (lambda) sequence, where the optimal lambda acquires the characteristics of the 6 nonzero coefficients.
(j) A forest chart showing the factors selected from the multivariate COX regression analysis (p < 0:05).
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Figure 2: Evaluation of BCPRS and overall survival and clinical phenotypes. (a, b) K-M curves of BCPRS-associated genes selected using the
LASSO method (a); A K-M curve of overall survival in each BCPRS group based on the TCGA-BRCA dataset (b). (c, d) Estimated survival
rates of patients given a 0–5-year survival period in low/high BCPRS groups. Each column represents the years of survival, and each row
represents the percentage of attaining a certain total survival time from the point of survived years.
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Figure 3: Continued.
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The follow-up time in the low-risk group was longer com-
pared with that in the high-risk group (p < 0:005), indicating
that the results were valid over time. Age, race, and treatment
did not differ significantly across BCPRS groups implying that
BCPRS is a potential prognostic risk factor for breast cancer
independent of age, race, and treatment. To further validate
these findings, multifactorial COX analysis was performed
which showed that BCPRS (p < 0:001) an independent risk
factor for BRCA prognosis with better predictive power com-
pared with other tumor microenvironmental features (immu-
nity groups, StromalScore, ImmuneScore, ESTIMATEScore,
TumorPurity, and mRNAsi) (Table 3). In summary, BCPRS
is correlated with several tumor microenvironmental features
and is a prognostic factor independent of tumor cell stemness
scores (mRNAsi) and clinical TNM stage pathology.

3.7. Construction and Verification of a Breast Cancer OS
Nomogram Prediction Model. Characteristics of the tumor
microenvironment such as immunity groups, StromalScore,
ImmuneScore, ESTIMATEScore, TumorPurity, and mRNAsi

are often difficult to obtain in clinical work. Therefore, to
develop a more applicable predictionmodel, a BRCSOS nomo-
gram prediction model was constructed based on age, T, N, M,
stage, and BCPRS. The OS nomogram prediction model for
breast cancer included BCPRS and clinicopathological parame-
ters as shown in Figure 5(a) and Supplementary Table 2. The
calibration curve showed that the OS nomogram was highly
accurate in predicting the 5-year survival rate compared with
the ideal model (Figure 5(b)). The area under the ROC curve
(AUC) of the training cohort was 0.856 whereas the AUC of
the validation cohort was 0.726 (Figure 5(c)). Moreover, the
training group C-index of the breast cancer OS nomogram
prediction model was higher (0.802, 95% CI, 0.709-0.895)
compared with that of the validation cohort (0.747, 95% CI,
0.600-0.894; Table 4). In addition, it was higher compared
with that of the entire cohort which was 0.767 (95% CI,
0.681-0.853), indicating that the model had a good predictive
power for the prognosis of breast cancer. Furthermore,
decision curve analysis (DCA) of the nomogram showed that
the prediction model had good clinical value (Figure 5(d)).
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Figure 3: Evaluation of the tumor immune microenvironment and correlation analysis based on BCPRS. (a) Correlations among
StromalScore, ImmuneScore, ESTIMATEScore, TumorPurity, and BCPRS in the TCGA-BRCA cohort (n = 934). (b, c) Violin figures
showing that the immune type in BRCA had a significant correlation with tumor purity and BCPRS (p < 0:001). (d) Heat map plots of
immune-related functions from the TCGA-BRCA cohort calculated by ssGSEA. Macrophages were highly enriched in the high BCPRS
group. The rows represent the gene sets of the samples and the z-score values of ssGSEA.
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Figure 4: Continued.
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3.8. Construction and Verification of the Breast Cancer PFS
Nomogram Prediction Model Based on the Clinical Cohort.
Basic clinical data for 194 breast cancer patients was obtained
from the Shanghai First People’s Hospital, and the 6-gene
signature was analyzed by PCR (Table 2). Expression levels
of the genes were normalized using the z-scoring process.
The 6-gene signature was then used for multifactor COX
regression analyses (Figure 6(a)) (Supplementary Table 3).
BCRRS is calculated following a similar method as
described for BCPRS. The difference only is that the BCRRS
uses clinical data to predict risk of breast cancer recurrence,
whereas BCPRS uses TCGA data to predict risk of death in
breast cancer patients. The Kaplan-Meier curve analysis
showed that the PFS of the low BCRRS group was

significantly higher compared with that of the pRS group
(p < 0:001; Figure 6(b)). The 6-gene signature was then
curated to construct the Breast Cancer Recurrence Risk
Score (BCRRS) system (Figure 6(c)). The findings showed
that BCRRS was associated with risk of stroke (Figure 6(d)).

A PFS nomogram model for breast cancer patients was
constructed by combining the clinical characteristics of
tumor patients and BCRRS scores, to determine the risk of
tumor recurrence (Figure 6(e)). The calibration curve indi-
cated that the PFS nomogram had higher predictive value
compared with the ideal model (Figure 6(f)). The AUC of
the model in the training cohort was 0.842 whereas that of
the validation cohort was 0.726 (Figure 6(g)). The C-index
of the breast cancer PFS nomogram prediction model for
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Figure 4: GSVA and GSEA enrichment analyses of BCPRS subtypes. (a, b) GSEA analysis showing significant biological pathways and
processes associated with BCPRS (p < 0:05): (a) GO enrichment analysis; (b) KEGG enrichment analysis. (c) Heat map plots of BCPRS
component genes (IKBKB, ATG16L2, CLN3, MBTPS2, TSC2, and CAPN10) and enrichment analysis by GSVA. Note: Fustat: survival
status; Futime: follow-up time.
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Table 1: Demographics and clinicopathological characteristics of BRCA patients in the TCGA cohort in the high and low BCPRS groups.

Variable
BRCA TCGA cohort

High BCPRS (n = 467) Low BCPRS (n = 467) p value

Survival state p ≤ 0:001∗∗

Alive 434(92.93) 457(97.86)

Dead 33(7.07) 10(2.14)

Follow-up time (day) 1081:78 ± 967:10 1317:78 ± 1371:82 0.002∗∗

Age (year) 58:43 ± 13:10 57:39 ± 12:69 0.216

T 0.034∗

T1 118(25.27) 125(26.77)

T2 266(56.96) 284(60.81)

T3 71(15.20) 42(8.99)

T4 12(2.57) 14(3.00)

NA 0(0.00) 2(0.43)

N 0.007∗∗

N0 220(47.11) 232(49.68)

N1 150(32.12) 154(32.98)

N2 45(9.64) 58(12.42)

N3 43(9.21) 21(4.50)

NA 9(1.93) 2(0.43)

M 0.007∗∗

M0 371(79.44) 406(86.94)

M1 6(1.28) 6(1.28)

NA 90(19.27) 55(11.78)

Stage 0.699

Stage I 76(16.27) 83(17.77)

Stage II 268(57.39) 276(59.10)

Stage III 111(23.77) 96(20.56)

Stage IV 6(1.28) 4(0.86)

Stage X 6(1.28) 8(1.71)

Race 0.151

Asian 33(7.07) 23(4.93)

Black or African American 86(18.42) 67(14.35)

White 305(65.31) 331(70.88)

NA 43(9.21) 46(9.85)

Treatment 0.556

Pharmaceutical 225(48.18) 234(50.11)

Radiation 242(51.82) 233(49.89)

Immunity groups 0.001∗∗

High immunity group 131(28.05) 110(23.55)

Medium immunity group 285(61.03) 267(57.17)

Low immunity group 51(10.92) 90(19.27)

StromalScore 710:16 ± 621:54 271:26 ± 651:71 p ≤ 0:001∗∗

ImmuneScore 887:00 ± 819:86 647:32 ± 861:61 p ≤ 0:001∗∗

ESTIMATEScore 1597:16 ± 1287:73 918:58 ± 1307:58 p ≤ 0:001∗∗

TumorPurity 0:66 ± 0:14 0:73 ± 0:13 p ≤ 0:001∗∗

mRNAsi 0:31 ± 0:09 0:38 ± 0:09 p ≤ 0:001∗∗

EREG.mRNAsi 0:66 ± 0:10 0:67 ± 0:11 0.126
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the training group was higher (0.864, 95% CI, 0.784-0.944)
compared with that of the validation cohort, 0.793 (95% CI,
0.672-0.914), and the entire cohort, 0.843 (95% CI, 0.776-
0.909) (Table 4). These findings indicate that the model had

a good predictive value for the prognosis of breast cancer.
Analysis of the DCA curve of the breast cancer PFS nomo-
gram prediction model further showed that the prediction
model had good clinical value (Figure 6(h)).

Table 1: Continued.

Variable
BRCA TCGA cohort

High BCPRS (n = 467) Low BCPRS (n = 467) p value

Relative expression of BCRRS-related genes

HEY1 16:33 ± 0:89 15:63 ± 1:00 p ≤ 0:001∗∗

IFNA13 0:59 ± 2:22 0:02 ± 0:37 p ≤ 0:001∗∗

NKX2.3 5:42 ± 5:10 2:70 ± 4:56 p ≤ 0:001∗∗

NR2F1 16:59 ± 1:53 15:22 ± 1:42 p ≤ 0:001∗∗

POU5F1 11:46 ± 1:30 12:42 ± 1:61 p ≤ 0:001∗∗

YY1 18:18 ± 0:27 18:47 ± 0:31 p ≤ 0:001∗∗
∗p < 0:05; ∗∗p < 0:01.

Table 2: Demographics and clinicopathological characteristics of BRCA patients in the clinical cohort in the high and low BCRRS groups.

Variable
BRCA clinical cohort

High BCRRS (n = 467) Low BCRRS (n = 467) p value

Tumor recurrence p ≤ 0:001∗∗

No 57(58.76) 87(89.69)

Yes 40(41.24) 10(10.31)

Follow-up time (day) 1804:67 ± 755:72 2314:40 ± 514:56 p ≤ 0:001∗∗

Age (year) 52:97 ± 13:54 51:76 ± 10:77 0.493

T 0.415

T1 33(34.02) 42(43.30)

T2 57(58.76) 49(50.52)

T3 7(7.22) 6(6.19)

N 0.015∗

N0 46(47.42) 60(61.86)

N1 21(21.65) 23(23.71)

N2 23(23.71) 7(7.22)

N3 7(7.22) 7(7.22)

Grade 0.032∗

G1 1(1.03) 6(6.19)

G2 51(52.58) 60(61.86)

G3 45(46.39) 31(31.96)

Pausimenia 0.885

No 44(45.36) 45(46.39)

Yes 53(54.64) 52(53.61)

Relative expression of BCRRS-related genes (normalized with z-score)

HEY1 0:34 ± 0:88 −0:34 ± 1:00 p ≤ 0:001∗∗

IFNA13 0:22 ± 1:38 −0:22 ± 0:02 0.003∗∗

NKX2-3 0:22 ± 0:99 −0:22 ± 0:97 0.002∗∗

NR2F1 0:43 ± 0:95 −0:43 ± 0:85 p ≤ 0:001∗∗

POU5F1 −0:38 ± 0:68 0:38 ± 1:12 p ≤ 0:001∗∗

YY1 −0:43 ± 0:86 0:43 ± 0:94 p ≤ 0:001∗∗
∗p < 0:05; ∗∗p < 0:01.
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3.9. WGCNA Shows Module Relationships. Genes selected
from the 936 breast cancer patient samples from the
TCGA-BRCA database were used forWGCNA network con-
struction. The maximum expression difference threshold was
25%. In this study, high-scale independence (near 0.9) and
low average connectivity (near 0) were attained by setting
the power at 5. The combined threshold was set at 0.25 and
15 modules and was represented as various colors
(Figure 7(a)). The black module (cor = 0:3, p < 0:0001) repre-
sented genes positively correlated with BCPRS, whereas the
blue module (cor = −0:22, p < 0:0001) represented genes neg-
atively associated with BCPRS (Figure 7(b)). A total of 87
genes were grouped into the black module. Analysis showed
that the genes in the black module were highly correlated
with their corresponding module and were significantly
correlated with the traits of BCPRS (Figure 7(c)). This find-
ing shows that the genes in the black module should be
explored further.

3.10. GO Function and KEGG Pathway Enrichment Analyses
of Core Genes. GO function (BP, CC, and MF) and KEGG
pathway enrichment analyses of the core genes in the black
module were performed. These core genes were implicated
in several biological processes including positive regulation
of wound healing, positive regulation of response to wound-
ing, response to steroid hormone, negative regulation of pro-
tein phosphorylation, regulation of response to wounding,
positive regulation of vasculature development, positive
regulation of blood coagulation, positive regulation of
hemostasis, regulation of coagulation, and negative regulation
of phosphorylation (Figure 7(d)). In addition, the core genes
were associated with cellular components including
collagen-containing extracellular matrix, extracellularmatrix,
external side of plasma membrane, membrane raft, mem-
brane microdomain, caveola, lipid droplet, membrane
region, platelet alpha granule, and plasma membrane raft.
Further, the core genes were implicated in various molecular
functions including transcription factor activity, RNA poly-
merase II proximal promoter sequence-specific DNA bind-
ing, DNA-binding transcription activator activity, RNA

polymerase II-specific, transforming growth factor beta bind-
ing, cytokine binding, growth factor binding, glycosamino-
glycan binding, type I transforming growth factor beta
receptor binding, lipid phosphatase activity, and phosphati-
date phosphatase activity.

In addition, KEGG pathway analysis showed that these
genes were mainly involved in complement and coagulation
cascades, fluid shear stress and atherosclerosis, AGE-RAGE
signaling pathway in diabetic complications, osteoclast dif-
ferentiation, malaria, glycerolipid metabolism, apelin signal-
ing pathway, colorectal cancer, fat digestion and absorption,
MAPK signaling pathway, human T-cell leukemia virus 1
infection, choline metabolism in cancer, Chagas disease,
and TNF signaling pathway (p < 0:05; Figure 7(e)). KEGG
and GO enrichment analyses showed that the black module
genes correlated with BCPRS may be involved in tumor pro-
liferation, invasion, and metastasis. In addition, these genes
may be the key genes implicated in the poor prognosis of
breast cancer.

3.11. Construction and Validation of the PPI Network Based
on WGCNA Analysis. A total of 86 nodes and 266 edges were
identified in the core genes of the black module using the
STRING database with a PPI enrichment p value of 1.0e-16
(Supplementary Figure 4A). Modules were identified, and
33 hub genes screened using the PPI network (Figure 7(f)).
Notably, EGR1, BTG2, FOSB, JUN, FOS, JUNB, NR4A1,
DUSP1, GADD45B, and ATF1 played important roles in
the network. The overall survival data showed that the
prognosis of breast cancer patients was poorer when two
genes (FOS and FOSB) were highly expressed or when four
genes (JUN, GADD45B, NR4A1, and BTG2) showed low
expression levels (Supplementary Figure 4B). The findings
showed that BCPRS was correlated with the expression of
JUNB, DUSP1, JUN, FOS, EGR1, FOSB, ATF1, GADD45B,
NR4A1, and BTG2 (Spearman’s correlation, rho = 0:19, 0:26,
0:12, 0:17, 0:16, 0:2, −0:08, 0:18, 0:12, and 0:21, respectively;
Supplementary Figure 4C). These findings show that BCPRS
can be used to effectively identify genes and related pathways
correlated with the high risk of poor prognosis in breast cancer.

3.12. Construction of a Drug-ceRNA Network Based on
BCPRS. All BCPRS-related lncRNAs, miRNAs, and mRNAs
were retrieved using the R software. A drug-lncRNA network
was then constructed based on the prediction results of the
LncMAP database (Supplementary Figure 5). The relationship
between BCPRS-related lncRNAs, BCPRS-related miRNAs,
and BCPRS-related mRNAs was explored using miRTarBase
and miRWalk databases (Supplementary Figure 5). A potential
regulatory drug-ceRNA network was then constructed.

3.13. Identification of Cell Clusters in Human TNBC Cells
Shows High Cell Heterogeneity. A total of 1266 cells were
included for analysis after quality control of 1535 cells in
the tumor core of six human TNBC samples (Supplementary
Figure 6A). ANOVA plots showed 1783 corresponding genes
in all TNBC cells, and the top 20 marker genes for each cell
cluster were labeled (Supplementary Figure 6B). The
number of detected genes was significantly correlated with

Table 3: Comprehensive multifactorial COX analysis of BRCA
demographics, pathological characteristics, and microenvironment.

Variables
Overall survival (OS)

HR(95% CI) p value

BCPRS 7.34(3.627~14.853) p ≤ 0:001
Age 1.046(1.018~1.075) 0.001

mRNAsi 137.5(0:411 ~ 4:60 × 104) 0.097

3.484(0.120~101.498) 0.468

T 1.377(0.950~1.997) 0.092

N 1.414(1.045~1.914) 0.025

M 1.101(0.726~1.669) 0.651

Race 1.073(0.746~1.542) 0.705

StromalScore 1.002(0.999~1.004) 0.162

TumorPurity 97.67(0:000 ~ 4:56 × 1012) 0.715

ImmuneScore 1(0.997~1.003) 0.982
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Figure 5: Construction and verification of a breast cancer OS nomogram prediction model. (a) A nomogram prediction model for the
prognosis of OS in breast cancer. Age, T, N, M, stage, and BCPRS were included. (b) Plots showing the calibration of nomograms based
on the breast cancer OS nomogram prediction model. (c) ROC analysis showing the predictive ability of the breast cancer OS nomogram
model based on the TCGA-BRCA cohort and validated by the clinical cohort. (d) Decision curve analyses of the breast cancer OS
nomogram model based on the TCGA-BRCA cohort and validated by the clinical cohort.

15Oxidative Medicine and Cellular Longevity



the sequencing depth, with a Pearson correlation coefficient of
0.63 (Supplementary Figure 6C). Principal component analysis
(PCA) showed no significant separation of these TNBC cells,
and 20 PCs were identified (estimated p value < 0.05;
Supplementary Figure 6D-6F). The Uniform Manifold
Approximation and Projection (UMAP) algorithm was used
to accurately group human TNBC cells into 14 individual
clusters (Figure 8(a)). The top 20 marker genes for each cell
cluster and clustering of different cell clusters were identified
(Supplementary Figure 6G and 6H). The clusters were then
annotated with singleR and CellMarker tools based on the
expression pattern of the marker genes (Figure 8(b)).
Expression of six BCPRS-related genes (YY1, POU5F1,
NKX2-3, NR2F1, HEY1, and IFNA13) was determined using
scRNA-seq (Figure 8(c) and Supplementary Figure 7A).
Tabula Muris is a compendium of single cell transcriptome
data from the model organism Mus musculus, containing
nearly 100,000 cells from 20 organs and tissues [74].
Expression of the six BCPRS genes (IFNA13, HEY1, NKX2-3,
NR2F1, POU5F1, and YY1) in breast cancer tissues was
analyzed using Tabula Muris’s FACS and droplet methods
(Supplementary Figure 8). NKX2-3 and IFNA13 showed low
expression levels in normal breast tissues, however, were
highly expressed in breast cancer tissues. POU5F1 was
mainly expressed in adipocytes.

Trajectory analysis was used to explore TNBC cells with
distinct differentiation patterns (Figure 8(d)). TNBC adipo-
cytes cells were mainly located in the root (a much early pseu-
dotime), whereas epithelial cells and macrophages and others
were located in either the branch or root (Figure 8(e)). Fur-
thermore, trajectory analysis showed differential expression
of genes (POU5F1, YY1, HEY1, and NR2F1) at different pseu-
dotimes (Figures 8(e)–8(f)).

3.14. Adipocytes and Adipose Tissue Macrophages (ATMs)
Are Enriched in High BCPRS Cluster. Clustering analysis of
six BCPRS-related genes (IMAAGs) grouped cells into three
clusters (Figure 9(a)). Cluster 3 was defined as a low BCPRS
cluster whereas cluster 2 was defined as a high BCPRS group.
Notably, adipocytes were mainly located in cluster 3
(Figure 9(b) and Supplementary Figure 7B). This finding
indicates that a high degree of adipocyte infiltration may be
correlated with the poor prognosis of high BCPRS in breast
cancer. The UMAP algorithm was used to successfully
group human TNBC adipocytes into 3 individual clusters.
The clusters were then annotated with the CellMarker tool
based on the expression pattern of the marker genes
(Figure 9(c)). Trajectory analysis showed that TNBC
adipocytes had distinct differentiation patterns (Figure 9(d)
and Supplementary Figure 9A, 9B). Analysis only showed a

few cells of cluster 1 in the adipose tissue, and the difference
of DEGs between clusters 2 and 3 was highly significant.
Adipocytes were mainly located in cluster 2 (Figures 9(e)
and 9(f)). Adipose tissue macrophages (ATMs) (CD68+)
were highly enriched in high BRPRS clusters (p < 0:05)
(Figures 9(f)–9(h)). Analysis showed that macrophages were
highly enriched in the high BCPRS group, whereas the
relative level of mRNAsi was lower in the high BCPRS group
compared with the lower BCPRS group (Figure 9(i)).
Therefore, high infiltration of ATMs (CD68+) may be
correlated with induction of BCPRS upregulation. High
BCPRS characteristics may present malignant characteristics
different from the stem cellularity of BRCA cells.

3.15. Ligand-Receptor Interaction Analysis and Identification
of Hub Genes. CellPhoneDB was used to infer cell-to-cell
communication to explore differences and commonalities
between each subtype in the information exchange.
Receptor-ligand interactions within each subtype of each
cluster of adipocytes were analyzed (Figure 10(a)). A high
expression of Wnt7b was associated with poor breast cancer
prognosis (Figure 10(b)). This implies that the interaction of
Wnt7b and FZD4 between ATMs (CD68+) and adipocytes
(FCs) may contribute to the poor prognosis of breast cancer,
mainly in the form of a high BCPRS profile.

Hub genes between ATMs (CD68+) and adipocytes
(FCs) were identified by getting the intersection in BCPRS-
related DEGs. A Venn diagram was constructed to show
the intersection of genes in BCPRS-related DEGs and DEGs
between clusters 2 and 3 in adipocytes. MALAT1 and
PRICKLE2-AS3 were defined as common Differentially
Expressed Genes (Figure 10(c)). MALAT1 was highly
expressed in cluster 3 and in the high BCPRS group. Expression
of MALAT1 and PRICKLE-AS3 using scRNA-seq of TNBC
adipocytes is presented in Figure 10(d) and Supplementary
Figure 9C. Correlation analysis showed that the expression
level of MALAT1 was significantly correlated with the
expression of other genes (YY1, POU5F1, NR2F1, IFNA13,
and HEY1) in the TCGA BRCA dataset (Supplementary
Figure 7C). Similar to BRPRS, the expression level of
MALAT1 was negatively correlated with mRNAsi and
EREG.mRNAsi (Figure 10(e)). Trajectory analysis showed
that MALAT1, FZD4, and Wnt7b were highly expressed in
state 1 similar to POU5F1 and adipocytes (Figure 10(f)).
Therefore, MALAT1, FZD4, and Wnt7b were defined as hub
genes related with BCPRS.

3.16. LINC00276&MALAT1/miR-206/FZD4-Wnt7b Pathway
Was Predicted. Survival analysis was performed to identify
potential MALAT1-related lncRNAs/miRNAs from BCPRS-

Table 4: C-index of breast OS and PFS prediction models.

Dataset group
C-index of the OS prediction model C-index of the PFS prediction model

C-index The C-index (95% CI) C-index The C-index (95% CI)

Training cohort 0.802 0.709-0.895 0.864 0.784-0.944

Validation cohort 0.747 0.600-0.894 0.793 0.672-0.914

Entire cohort 0.767 0.681-0.853 0.843 0.776-0.909
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Figure 6: Continued.
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related lncRNAs and miRNAs (Figure 11(a) and Supplemen-
tary Figure 5). The low expression of miR-206 and high
expression of LINC00276 and MALAT1 were significantly
correlated with the poor prognosis in breast cancer.
Bioinformatics analysis using RNAhybrid 2.12 showed that
miR-206 is the potential target miRNA of LINC00276 (mfe:
-62.5 kcal/mol), MALAT1 (mfe: -71.7 kcal/mol), and FZD4
(mfe: -72.3 kcal/mol) (Supplementary Figure 9D).
Correlation analysis using TCGA data showed that
MALAT1 was positively correlated with LINC00276 and
FZD4 expression and negatively correlated with miR-206
expression. In addition, previous studies report that
MALAT1 can act as a miR-206 sponge (Figures 11(b) and
11(c)) [31, 32, 75]. THPA (https://www.proteinatlas.org/)
was used to explore the expression of FZD4 in normal and
cancer breast tissues. Analysis showed that FZD4 was highly
expressed in breast cancer tissues compared with normal

breast tissues (Figure 11(d)). These findings show that
MALAT1 and LINC00276 (regulated by L-685458) act as
sponges for miR-206, thus promoting FZD4 transcription,
and upregulate the Wnt signaling pathway in the presence of
Wnt7b secreted by ATMs (CD68+). This process may be
interrupted by L-685458 (Figure 11(e)).

3.17. Prediction of Breast Cancer Cell Types with BCPRS-
Related Gene Signatures. The BCPRS-related genes (YY1,
POU5F1, NKX2-3, NR2F1, HEY1, and IFNA13) showed high
heterogeneity in different cells; thus, the genes can indepen-
dently predict cellular composition to reflect themicroenviron-
ment of tumor tissues. Therefore, a neural network-based
model was constructed to predict cell types in breast cancer tis-
sues based on genes YY1, POU5F1, NKX2-3, NR2F1, HEY1,
and IFNA13 (Figure 12(a)). The area under the curve (AUC)
of ROCs was high (Figures 12(b)–12(i)). This finding indicates
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Figure 6: Construction and verification of a breast cancer PFS nomogram prediction model based on the clinical cohort. (a) Forest plot of
multivariate Cox regression analysis showing the PFS-related values of BCRRS. (b) K-M curves of PFS survival as per BCRRS groups in
the clinical cohort. (c) Distribution of BCRRS in the clinical cohort. Top panel: classification of patients into different groups based on the
BCRRS scores. Bottom panel: distribution of patients’ status and PFS time. (d) Relative level of BCRRS in patients with and without stroke
history after breast cancer. Significant differences were observed (p = 0:0014). (e) A nomogram prediction model for the prognosis of PFS
in breast cancer. Age, T, N, grade, and log_riskScore (BCRRS) were included. (f) Plots showing the calibration of nomograms based on
the breast cancer OS nomogram prediction model. (g) ROC analysis was used to validate the predictive ability of the breast cancer PFS
nomogram model based on the clinical cohort. (h) Decision curve analyses of the breast cancer PFS nomogram model based on the
clinical cohort.
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that these models had good predictive power, especially in pre-
dicting adipocytes (AUC ≈ 0:96), fibroblasts (AUC ≈ 0:95),
and endothelial cells (AUC ≈ 0:98). This implies that these
genes can be used to map the tumor microenvironment.

4. Discussion

The current study was conducted based on immune, methyl-
ation, and autophagy perspectives. A total of 6 prognostic
IMAAGs were screened and identified to comprehensively
analyze genes associated with the prognosis of OS and PFS
in breast cancer. The findings of this study showed that the
BCPRS and BCRRS scoring systems based on 6 IMAAGs
accurately stratified the prognosis of breast cancer patients.
OS and PFS nomogram prediction models were constructed
with satisfactory clinical values. Notably, BCRRS was associ-
ated with the risk of stroke. Adipocytes and adipose tissue
macrophages (ATMs) were highly enriched in the high
BCPRS cluster and were associated with poor prognosis.
Ligand-receptor interactions and potential regulatory
mechanisms were explored. The LINC00276&MALAT1/-
miR-206/FZD4-Wnt7b pathway was identified which may
be useful in future research on targets against breast cancer
metastasis and recurrence. Neural network-based deep learn-
ing modes based on the BCPRS-related gene signatures were
established and showed high accuracy in cell type prediction.

Overall survival analysis using the BCPRS score showed
that the survival rate of patients in the low BCPRS group
within 5 years of treatment was as high as 98%. This rate
was significantly higher compared with the survival rate in
the high BCPRS group (90%). However, after 3 years of treat-
ment, the survival rates in the two groups were almost simi-
lar. This finding showed that the CS rate gradually increased
as the survival rate of patients in both groups gradually stabi-
lized. Patients prefer individualized prediction of survival
probability; therefore, this information may help in coping
with the fear of recurrence or death and can be used in the
design of personalized follow-up plans [76–78].

Malta et al. reported that mRNAsi can be used to deter-
mine stem cell differentiation levels [42]. Previous studies
report that T4 and stage IV have a relatively higher mRNAsi
value [34], whereas the mRNAsi value was negatively corre-
lated with BCPRS in the current study. In addition, studies
report that BCPRS are not significantly correlated with
TNM staging, as the TNM stage does not reveal the biological
characteristics of the tumor [79]. This implies that the TNM
stage is not sufficient in reflecting prognosis and predicting
the efficacy of tumor treatment. Therefore, TNM staging
should be combined with other predictors to form a compre-
hensive risk assessment model for breast cancer prognosis
[79]. In the current study, BCPRS was a prognosis factor
independent of TNM staging. Analysis of the nomogram
showed that the predictive ability of BCPRS was superior
compared with that of TNM staging alone. Therefore, the
findings of the current study show that BCPRS is a predictive
factor independent from tumor cell stemness scores
(mRNAsi) and clinical TNM stage pathology. A comprehen-
sive evaluation of the BCPRS, mRNAsi, and TNM scoring
systems in this study therefore provides beneficial insights
on the prognosis of breast cancer.

The findings of this study showed a significant associa-
tion between IMAAG genes. The six genes used in the
BCPRS and BCRRS scoring systems were highly correlated
with the prognosis of OS and PFS in breast cancer. Higher
BCPRS and BCRRS scores of breast cancer patients were cor-
related with worse prognosis. Moreover, GSEA and GEVA
enrichment analyses showed that the BCPRS score was sig-
nificantly correlated with the differences in the biological
pathways involved in immune infiltration, autophagy, and
methylation. Notably, WGCNA analysis showed consistent
findings as enrichment analyses. KEGG and GO enrichment
analyses of BCPRS-related genes derived from WGCNA
analysis indicated that the BCPRS-related genes are involved
in tumor proliferation, invasion, and metastasis. Therefore,
BCPRS-related genes may significantly contribute to the poor
prognosis of breast cancer. In addition, BCPRS can be used to
comprehensively determine the status of autophagy,
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Figure 7: WGCNA-related analysis based on BCPRS groups. (a) Identification of weighted gene coexpression network modules in the
TCGA-BRCA dataset. (b) A heat map of the correlation between module eigengenes and the BCPRS phenotype in breast cancer. (c)
Correlation analysis of black module gene members and gene significance (cor = 0:74, p < 0:001). (d, e) GO and KEGG enrichment
analyses of black module genes: (d) GO enrichment analysis; (e) KEGG pathway analysis. Note: X-axis label represents the FDR. (f)
Protein-protein interaction (PPI) network of genes from the black module. Red represents a strong correlation. FOSB, JUNB, EGR1,
GADD45B, JUN, NR4A1, BTG2, ATF3, FOS, and DUSP1 were used as the hub genes of this network.
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methylation, and immune enrichment, thus enhancing
knowledge of the tumor microenvironment in breast cancer
cells [6].

The identified IMAAGs are potential prognosis factors of
OS and PFS in breast cancer patients. Notably, most of these
genes have been reported in previous studies to be closely
correlated with the prognosis of cancer patients, including
breast cancer. BRCA1 is the key molecule in breast cancer
and is mainly expressed at low levels in breast cancer. Its
expression is positively correlated with that of YY1. Previous
studies report that YY1 binds to the BRCA1 promoter, and
overexpression of YY1 leads to increased expression of
BRCA and several genes downstream of BRCA1 [80]. In
addition, several studies report that a high expression of
YY1 may be beneficial in the prognosis of breast cancer
[81–83]. Borgen et al. reported that NR2F1 is a potential dis-
seminated tumor cell arousal factor that promotes bone
metastasis in breast cancer [84]. Moreover, NKX2-3 modu-
lates the development of colorectal cancer by regulating the
Wnt signaling pathway [85]. NKX2-3 can also be used as a
diagnostic marker for prostate cancer [86]. Previous studies

report that IFNA13 may be a potential molecular marker
for the prognosis of colon cancer [87]. In addition, HEY1-
related pathways modulate the cellular plasticity of liver can-
cer tumors, which is one of the risk factors for the disease
[88]. Furthermore, the NOTCH4-HEY1 pathway induces
epithelial-mesenchymal transition in head and neck squa-
mous cell carcinoma [89]. POU5F1 plays an important role
in lung and colon cancers [90–92]. In breast cancer, POU5F1
is associated with the ERα’s tumor suppressor function [93].

In the current study, adipocytes were mainly located in
high BCPRS clusters. Studies report that adipocytes have a
complex function in BRCA [94–97]. Previous studies report
that adipose tissue macrophages may accumulate in the
mammary adipose tissue as a mechanism for promoting
TNBC stemness and tumorigenesis during obesity [98].
Notably, adipose tissue macrophages (ATMs) were enriched
in high BCPRS clusters in the current study. This finding
indicates that macrophages do not always play a role in pro-
moting the health of the organism and are sometimes
responsible for the malignant transformation of the tumor
in breast cancer consistent with previous studies [99].
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However, further studies should explore the initial bidirec-
tional signaling between BRCA microenvironment cell sig-
naling and adipocytes [100]. The findings imply that cells
that clustered together were from the same anatomical region
and the same clonal expansion [101].

The findings also showed that Wnt7b secreted by ATMs
may activate the Wnt signaling pathway in the tumor
immune microenvironment through interactions with
FZD4, ultimately causing malignant transformation of breast
cancer. Studies report that upregulation of Wnt7b is neces-
sary for invasion, growth, and metastasis of BRCA through
activation of the Wnt signaling pathway [102, 103]. FZD4
acts as a receptor for Wnt7b and plays an essential role in
the activation of the Wnt signaling pathway [104]. Wnt sig-
naling is important in stem cell biology and regenerative
medicine. Bioinformatics and correlation analysis showed
that mRNA of FZD4 has a strong minimal free energy with
miR-206, and transcription of FZD4 in adipocytes may be
inhibited by miR-206. Previous studies report that MALAT1
can act as a miR-206 sponge [31, 32, 75]. MALAT1 induces
cancer cell proliferation, invasion, and migration in mice
[105]. However, oncogenic and tumor-suppressive functions
of MALAT1 in breast cancer cells are controversial [105].
Similar to BRPRS, the expression level of MALAT1 was neg-
atively correlated with mRNAsi and EREG.mRNAsi. This
finding implies that MALAT1 may be a double-edged sword
whose oncogenic effects may be correlated with the BCPRS-
associated tumor microenvironment, which is negatively cor-
related with tumor cell stemness. The findings of the current
study showed that LINC00276 acts as a miR-206 sponge to
upregulate FZD4 transcription. MALAT1 and LINC00276
(regulated by L-685458) thus act synergistically as sponges
for miR-206, which in turn promotes FZD4 transcription

and upregulates the Wnt signaling pathway in the presence
of Wnt7b secreted by ATMs. This process may be inter-
rupted by L-685458.

The aim of the current study was to explore the relation-
ship between IMAAGs and the BRCA tumor microenviron-
ment. The findings showed that the BCPRS and BCRRS
scoring systems can be used to comprehensively evaluate
the prognosis of OS and PFS in breast cancer patients. Their
predictive powers were confirmed using clinical samples. The
BCPRS scoring system was independent of the traditional
TNM staging, implying that it can be used as a supplemen-
tary scoring system for the prognosis of breast cancer. In
addition, the findings of this study provide information on
the oncogenic and tumor-suppressive functions of MALAT1
in breast cancer cells. In summary, BCPRS and BCPRS-
related genes (HEY1, IFNA13, NKX2-3, NR2F1, POU5F1,
and YY1) can be used to evaluate the immune microenviron-
ment and tumor purity in breast cancer patients.

Furthermore, neural network-based deep learning
models were established to predict breast cancer cell types
using BCPRS-related genes (HEY1, IFNA13, NKX2-3,
NR2F1, POU5F1, and YY1). A BCPRS-related gene-based
neural network showed high accuracy using the training set
and the testing set. Therefore, these findings show the impor-
tance of BCPRS-related genes in exploring the tumor
microenvironment.

Although genetic changes may affect the level of
mRNA expression, the findings of this study showed no
significant variation in tumor copy number and nucleotide
mutations of the six IMAAG genes (HEY1, IFNA13,
NKX2-3, NR2F1, POU5F1, and YY1). BCRRS was surpris-
ingly found to be associated with the risk of stroke. These
findings show that changes in expression levels of the six
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Figure 9: Clustering analysis of six BCPRS-related genes and cell annotation of TNBC adipocyte subsets. (a) Six-clustering analysis of
BCPRS-related genes groups TNBC cells into three clusters; cluster 3 was defined as low BCPRS whereas cluster 2 was defined as the high
BCPRS group. (b) Line chart of cell classification percentage in each BCPRS-related cluster. (c) All 3 clusters of adipocytes in TNBC were
annotated by CellMarker. (d) Trajectory analysis showed differential distribution of cells (macrophages, adipose-derived stem cells, and fat
cells) at different pseudotimes. (e) Distribution of cluster 2 (low BCPRS cluster) and cluster 1 (high BCPRS cluster) in adipocytes. (f, g)
Line chart of adipocyte percentage in BCPRS-related clusters 2 and 3 (f); trajectory analysis showed the differential distribution of
high/low BCPRS cluster at different pseudotimes (g). (h) Relative level of macrophages in low and high BCPRS groups. Significant
differences were observed (p < 0:0001). (i) Relative level of miRNAsi in low and high BCPRS groups. Significant differences were observed
(p < 0:0001).
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Figure 10: Ligand-receptor interaction analysis and identification of hub genes. (a) Receptor-ligand interaction within each subtype of each
cluster of adipocytes. (b) K-M curves for Wnt7b in the TCGA BRCA cohort. (c) Venn diagram showing intersection of genes in BCPRS-
related DEGs and DEGs between clusters 2 & 3 in adipocytes. (d) Expression levels of MALAT1 and PRICKLE-AS3 in scRNA-seq from
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IMAAG genes were more likely to arise due to alterations
in the tumor microenvironment rather than variations in
CNV or SNPs. scRNA-seq and bulk RNA-seq data analy-

sis showed that TNBC cells follow a two-dimensional dif-
ferentiation trajectory and that their differentiation states
are correlated with BCPRS. Adipocytes and adipose tissue
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Figure 11: Prediction of LINC00276&MALAT1/miR-206/FZD4-Wnt7b pathway. (a) Survival analysis curve of LINC00276, has-miR-206,
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macrophages (ATMs) were highly enriched in the high
BCPRS cluster. Moreover, drug-ceRNA and ligand-receptor
interaction analysis predicted that the LINC00276&MA-
LAT1/miR-206/FZD4-Wnt7b pathway based on BCPRS
may help in exploring the mechanism of tumors that lead to
mortalities and can provide insights on the development of
new drug combinations. BCPRS-related gene-based neural
network-based deep learning models showed that these genes
have great potential in mapping the tumor microenvironment.
These findings provide novel ideas for the identification of
high-risk breast cancer and the development of individualized
treatment options against the disease in the future.

The BCPRS and BCRRS scoring systems used in the cur-
rent study showed a potential relationship between the 6
IMAAG genes and the microenvironment of breast cancer.
However, further functional experiments should be performed
to explore the potential mechanism of action of IMAAG

genes. This model should be verified further using indepen-
dent cohorts to ensure that it is highly robust. In addition,
future experiments are needed to explore the underlying
mechanisms of the drug-ceRNA network and the potential
LINC00276&MALAT1/miR-206/FZD4-Wnt7b pathway.

5. Conclusion

In this study, BCPRS and BCRRS scoring systems were estab-
lished based on six IMAAGs with satisfactory clinical utility.
The finding showed that adipocytes and ATMs were highly
enriched in the high BCPRS cluster and were associated with
poor prognosis. Moreover, ligand-receptor interactions and
potential regulatory mechanisms showed that LINC00276&-
MALAT1/miR-206/FZD4-Wnt7b is a potential pathway in
the functions of IMAAGs in breast cancer metastasis and recur-
rence. In summary, comprehensive evaluation of individual
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Figure 12: Hub BCPRS-related gene signature for prediction of breast cancer cell types. (a) A schematic diagram of the neural network. (b–h)
The ROC plot in the training set and the validation set used to validate the accuracy of the network’s prediction capacity.
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IMAAGs, BCPRS, and BCRRS provides a better understanding
of the tumor microenvironment in breast cancer and insights
on development of personalized treatment options.
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Additional Points

Study Summary. Although a highly coordinated interaction
between Immune, Methylated, and Autophagy-Associated
Genes (IMAAGs) exists, their comprehensive application as
specific markers for analysis of the tumor microenvironment
and prediction of the prognosis of breast cancer has not been
explored. Six prognostic IMAAGs were identified to compre-
hensively explore prognosis of OS and PFS in breast cancer.
The findings showed that the BCPRS and BCRRS scoring sys-
tems based on 6 IMAAGs can accurately stratify the prognosis

of breast cancer patients. OS and PFS nomogram prediction
models were constructed with high clinical value. Analysis
showed that BCRRS was associated with the risk of stroke.
Protein-protein interaction (PPI) and drug-ceRNA networks
based on the differences in the Breast Cancer Prognostic Risk
Score (BCPRS) were constructed. Moreover, adipocytes and
adipose tissue macrophages (ATMs) were highly enriched in
the high BCPRS cluster and were associated with poor prog-
nosis. Ligand-receptor interactions and potential regulatory
mechanisms were explored and the LINC00276&MALAT1/-
miR-206/FZD4-Wnt7b pathway was identified to play an
important role in the functions of these genes and can be used
to explore targets against breast cancer metastasis and recur-
rence. Furthermore, neural network-based deep learning
models were established to predict cell composition using
BCPRS gene signatures.
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