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Abstract

Introduction

Segmentation of the high-need, high-cost (HNHC) population is required for reorganizing

care to accommodate person-centered, integrated care delivery. Therefore, we aimed to

identify and characterize relevant subgroups of the HNHC population in primary care by

using demographic, biomedical, and socioeconomic patient characteristics.

Methods

This was a retrospective cohort study within a Dutch primary care group, with a follow-up

period from September 1, 2014 to August 31, 2017. Chronically ill patients were included in

the HNHC population if they belonged to the top 10% of care utilizers and/or suffered from

multimorbidity and had an above-average care utilization. In a latent class analysis, forty-

one patient characteristics were initially used as potential indicators of heterogeneity in

HNHC patients’ needs.

Results

Patient data from 12 602 HNHC patients was used. A 4-class model was considered statisti-

cally and clinically superior. The classes were named according to the characteristics that

were most dominantly present and distinctive between the classes (i.e. mainly age, house-

hold position, and source of income). Class 1 (‘older adults living with partner’) included

39.3% of patients, class 2 (‘older adults living alone’) included 25.5% of patients, class 3

(‘middle-aged, employed adults with family’) included 23.3% of patients, and class 4 (‘mid-

dle-aged adults with social welfare dependency’) included 11.9% of patients. Diabetes was

the most common condition in all classes; the second most prevalent condition differed

between osteoarthritis in class 1 (21.7%) and 2 (23.8%), asthma in class 3 (25.3%), and

mood disorders in class 4 (23.1%). Furthermore, while general practitioner (GP) care utiliza-

tion increased during the follow-up period in the classes of older adults, it remained relatively

stable in the middle-aged classes.
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Conclusions

Although the HNHC population is heterogeneous, distinct subgroups with relatively homo-

geneous patterns of mainly demographic and socioeconomic characteristics can be identi-

fied. This calls for tailoring care and increased attention for social determinants of health.

Introduction

Due to increasing numbers of chronically ill patients, in particular with multimorbidity, and

rising health care costs, Western health care systems are faced with challenges to deliver high-

quality, person-centered, and sustainable care [1–3]. In response to these developments,

accountable care organizations (ACOs) were introduced in the United States several years ago

[4–6]. Within ACOs, a value-based payment system is designed to incentivize providers to

share accountability for the quality and cost of care for a defined population [6–8]. Likewise,

more than a decade ago, ‘care groups’ were first introduced in Dutch primary care. In line

with the ACOs, care groups unite providers, mostly general practitioners (GPs), with shared

responsibility for all assigned patients receiving care for a specific chronic condition from a

value-based bundled payment approach [5, 9]. These initiatives show that, similar to the US,

the Netherlands aims to achieve more value-based care.

If health systems aim to increase the value of delivered care, it is crucial to focus on the pop-

ulation with the highest care use as they offer the largest potential for achieving improved

value [10, 11]. This population with a disproportionately high care use is also referred to as the

high-need, high-cost (HNHC) population [10, 12]. The identification of the HNHC popula-

tion, as a subgroup of the total population, is embedded in the approach of population segmen-

tation, which is defined as the division of a specific population into homogeneous subgroups

with distinct needs and (health) characteristics [13–15]. A closely related concept in which

principles of segmentation are applied, pertains to the concept of ‘population (health) manage-

ment’ (PM),[16] as a way to promote ‘population health’ [17, 18]. Within population health,

the focus is on the health outcomes of subgroups rather than individuals, by taking into

account a large variety of determinants of health (i.e. physical, mental, social) [17, 18]. PM

strategies generally aim to improve health needs of defined subgroups along ‘the continuum of

health and well-being’, and aim to integrate services across multiple domains [16]. As such,

PM strategies can be used to tailor interventions to the care needs of specific subgroups of

patients, which is assumed to lead towards improving individual patients’, and providers’

experiences as well as population outcomes and cost (Quadruple Aim[19]).

With the growing availability of digital patient data, studies have identified common bio-

medical characteristics of the HNHC population, such as the high prevalence of (co-occurring)

chronic conditions and mental illness [20, 21]. At the same time, studies have suggested that

the HNHC population is diverse, not only in terms of patients’ biomedical but also in their

demographic and socioeconomic profiles [10, 20, 21]. These findings underline the impor-

tance of social determinants of health within the HNHC population. Yet, population segmen-

tation studies have predominantly focused on specific populations, such as older adults [22–

24] and Medicaid beneficiaries [25], and mainly characterized the identified patient subgroups

by their biomedical characteristics (i.e., chronic diagnoses) [22–27]. Therefore, the main aim

of this study was to identify and characterize, by means of latent class analysis (LCA), clinically

relevant subgroups of the HNHC population in primary care, defined by demographic, bio-

medical, and socioeconomic patient characteristics as well as care utilization.
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Materials and methods

Setting

This retrospective cohort study was conducted at a (primary) care group in the northern

region of the Netherlands, covering 130 general practices. This care group was founded in

2009 and currently has bundled payment contracts with health insurers for the delivery of sev-

eral disease management programs, including for patients with type 2 diabetes mellitus,

COPD, and cardiovascular risks.

As this study used retrospective data and did not intervene into people’s life or impose

rules, no formal ethical approval was required (project number 164111), in line with the Dutch

Medical Research (Human Subjects) Act.

Data sources

All general practices connected to the care group were invited to extract and provide individ-

ual-level patient data from their electronic health records (EHRs). The EHR data covered 4.5

years: baseline was on September 1, 2014; the follow-up period covered three years (from Sep-

tember 1, 2014 to August 31, 2017). Furthermore, the EHR data were linked on the individual

patient level to socioeconomic data (e.g., source of income) and health care claims data (e.g.,

pharmaceutical costs). Socioeconomic data were retrieved from Statistics Netherlands, which

is involved in the collection, preparation, and publication of statistics on behalf of the Dutch

government, science and commercial sector [28]. Claims data were retrieved from the health

care information center ‘Vektis’, which collects and manages all claims under the Dutch

Healthcare Insurance Act [29]. To ensure data confidentiality and safety, a third trusted party

was involved in the provision of a pseudonymized version of the data set to the researchers.

Participants

We selected a cohort of chronically ill patients, limited to those with a full EHR registration

over the 4.5-year research period. Patients were considered chronically ill if they had registered

at least one GP consultation in the 1.5 years before baseline related to one of 28 conditions

defined as chronic (see Table 1) [30, 31]. Chronically ill patients were included in the HNHC

population if they belonged to the top 10% of care utilizers (over follow-up period) and/or suf-

fered from multimorbidity and had an above-average care utilization (over follow-up period).

The first criterion was applied as this is one of the commonly used thresholds for identifying

HNHC patients according to previous studies [20, 32, 33]. The second criterion was applied

because multimorbidity brings along a challenging complexity to the organization of care,

especially in light of the current single-disease management programs for single chronic con-

ditions [2, 3]. Furthermore, care utilization was measured as the total number of GP consulta-

tions weighted by the required time investment per type of consultation (i.e. 0.5 for telephone

or e-mail consultation, 1.0 for regular consultation, 2.0 for extended regular consultation, 1.5

for home visit, 2.5 for extended home visit), determined by the Netherlands Institute for

Health Services Research [34]. As the weighting factors based on time investment are related

to costs [35], the patients selected for this study can be considered high-need, high-cost in pri-

mary care.

Variables

Forty-one patient characteristics were initially used as potential indicators of heterogeneity in

HNHC patients’ needs in the LCA. These characteristics were included based on scientific

studies describing these characteristics as relevant in relation to (high) care utilization [12, 36].
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Table 1. Baseline characteristics of the HNHC population (n = 12 602).

Patient characteristics

n (%) Missing, n (%)

Demographic characteristics

Sex 0

Male 4495 (35.67)

Female 8107 (64.33)

Age, mean (SD)a 67.55 (14.80) 0

Household position 0

Child living at home 141 (1.12)

Single adult 3773 (29.94)

Partner with children at home 1515 (12.02)

Partner without children at home 6245 (49.56)

Single parent 403 (3.20)

Member of collective household 371 (2.94)

Other 154 (1.22)

Age of children living at parental home 0

�12 388 (3.08)

>12 1752 (13.90)

No children living at home 10 462 (83.02)

Biomedical characteristics

Type of chronic condition(s) 0

Only physical 10 060 (79.83)

Only mental 436 (3.46)

Combination of both 2106 (16.71)

Number of chronic conditions, mean (SD) 2.23 (0.93) 0

Prevalence of 28 chronic conditions 0

Chronic alcohol abuse 163 (1.29)

Endocardial conditions, valvular conditions 298 (2.36)

Congenital cardiovascular anomaly 25 (0.20)

HIV/AIDS 9 (0.07)

Anxiety disorders 649 (5.15)

Asthma 2142 (17.00)

Stroke (including TIA) 986 (7.82)

Chronic obstructive pulmonary disease (COPD) 2218 (17.60)

Chronic back or neck disorder 2033 (16.13)

Coronary heart diseases 1725 (13.69)

Dementia including Alzheimer’s 172 (1.36)

Diabetes mellitus 4925 (39.08)

Epilepsy 181 (1.44)

Hearing disorders 679 (5.39)

Visual disorders 1694 (13.44)

Heart failure 659 (5.23)

Heart arrhythmia 1446 (11.47)

Cancer 2032 (16.12)

Migraine 395 (3.13)

Osteoporosis 737 (5.85)

Burnout 452 (3.59)

Osteoarthritis 2360 (18.73)

(Continued)
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Demographic characteristics were measured at baseline and included patients’ sex, age (in

years), household position (child living at home, single adult, partner with children at home,

partner without children at home, single parent, member of a collective household, other), and

age of children living at parental home (�12 years, >12 years (i.e. the age that they generally

leave elementary school), no children living at home). Biomedical characteristics were also

measured at baseline and included patients’ chronic disease diagnoses based on GP care use

related to the chronic disease in the 1.5 years before baseline, type of chronic condition(s)

(only physical, only mental, or a combination of both), and number of chronic conditions (1

to 28). All socioeconomic characteristics, except for source of income, were measured over the

year 2014 and included patients’ (household) housing situation (owner-occupied, rented),

number of people in a household with an individual income (1,>1), household dependence

on social security payments as proportion of gross household income (0% to 100%), and paid

interest over debts (in euros, excluding mortgage or debts related to renovating personal prop-

erty). Source of income (paid work, social welfare or unemployment benefits, pension benefits,

Table 1. (Continued)

Patient characteristics

n (%) Missing, n (%)

Personality disorders 120 (0.95)

Rheumatoid arthritis 433 (3.44)

Schizophrenia 53 (0.42)

Mood disorders 1380 (10.95)

Mental retardation 48 (0.38)

Parkinson’s disease 136 (1.08)

Socioeconomic characteristics

Housing situation 12 (0.10)

Owner-occupied 6777 (53.78)

Rentedb 5813 (46.13)

Source of income 0

Paid workc 1974 (15.66)

Social welfare or unemployment benefits 1838 (14.58)

Pension benefits 8156 (64.72)

Without incomed 634 (5.03)

Number of people in a household with an individual income 26 (0.21)

1 4594 (36.45)

>1 7982 (63.34)

Household dependence on social security payments, mean (SD) 11.63 (25.44) 346 (2.75)

Paid interest over debts, mean (SD) 48.89 (782.63) 20 (0.16)

Care utilization

Pharmaceutical costs 16 (0.13)

�€500 4773 (37.87)

>€500 and�€1500 5122 (40.64)

>€1500 2691 (21.35)

GP care utilization before baseline, mean (SD) 29.97 (18.50) 0

a For continuous variables, mean (SD) is reported.
b Includes members of collective households.
c Includes employees, entrepreneurs, and managers.
d Includes students with and without individual income.

https://doi.org/10.1371/journal.pone.0228103.t001
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without income) was measured at baseline. Care utilization characteristics included GP care

utilization on baseline (number of registred GP consultations) and patients’ pharmaceutical

costs (�€500,>€500 and�€1500,>€1500) which were measured over 2014.

Data analysis

Data were validated and checked for outliers and missing values. We employed LCA, which is

a sophisticated analysis technique to capture heterogeneity in the HNHC population’s needs

by the smallest number of unobserved homogeneous classes [37]. Furthermore, LCA is a per-

son-oriented analysis technique [37] which aims to identify classes of individuals with similar

patterns of, in the current study, (correlated) personal factors relevant to health care utiliza-

tion. Initially, the LCA was run using all 41 patient characteristics (see Table 1) in order to

explore the potential to identify clinically relevant subgroups. Furthermore, the analysis was

conducted with a maximum likelihood estimator with robust standard errors (MLR). Missing

values were handled by the default option in the Mplus software (version 8.1). To test whether

the missing values were completely at random (MCAR), a MCAR Pearson-Chi Square and

Likelihood Ratio Chi-Square test (P< .05) was computed. Additionally, the number of ran-

dom starts values was increased several times to prevent problems related to nonconvergence

or local maxima.[38] By stepwise increasing the number of classes, starting with a 1-class

model, and comparing various statistical indicators and clinical relevance, we decided on the

final model. Statistical indicators for model fit included the Akaike Information Criterion

(AIC), [39, 40] Bayesian Information Criterion (BIC), [41] bootstrapped likelihood ratio test

(BLRT), [42] and entropy score. Lower values on AIC and BIC indicated better model fit; sig-

nificant p-values on the BLRT showed dominance of the k class model, compared to the k-1

class model. The entropy score gave an indication of classification certainty, using a cutoff

score of at least 0.8, indicating high classification certainty [38]. The BIC and BLRT were con-

sidered most important in deciding on the best model as these outperform other statistical

indicators [43].

Besides statistical indicators, clinical relevance of the model was a key factor, as the model

should support daily clinical practice [15]. Also, the size of the classes within the model was

taken into account (also reffered to as substantiality) [15]. A model with classes including at

least 10% of HNHC population was considered substantial to counterbalance efforts to tailor

interventions in daily practice. Although we aimed to maintain the largest variety of patient

characteristics, the model was made more parsimonious after identifying a clinically relevant

model. Thus, we removed any variables that did not contribute to the division in clinically rele-

vant classes, significantly deteriorated the model fit, and/or were regarded as being of less

added value based on internal clinical insight. Patients in each class of the final model were

described in terms of the probability of having a given patient characteristic. In line with previ-

ous studies using LCA, probabilities of 70% to 100% were considered high, probabilities of

40% to 69% moderate, and probabilities of less than 40% low [44, 45]. The continuous vari-

ables were described by their estimated mean (SE). Furthermore, each class was described in

their top five of chronic conditions at baseline and mean GP care utilization (i.e. mean number

of weighted GP consultations) over the follow-up period.

Results

Baseline characteristics

A total of 63 general practices (48.5%) participated. The complete data set included individual-

level data from 58 551 chronically ill patients, of whom 12 602 patients (21.5%) met the inclu-

sion criteria for the study (i.e., were considered HNHC). Baseline characteristics of the HNHC
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population, including number (%) of missing values per characteristic, are shown in Table 1.

Patients’ mean (SD) GP care utilization over the follow-up period was 66.9 contacts (33.3).

Latent class analysis

A 4-class model was considered statistically and clinically superior. The 4-class model had a

low value on BIC, a significant BLRT (P< .001), high entropy score (0.973), and each class

was sufficiently substantial by including at least 10% of the HNHC population (see Table 2).

Although the 5-class model was statistically superior to the 4-class model, it included two clas-

ses with less than 10% of the HNHC population and resulted in less relevant and distinct clas-

ses compared to the 4-class model. More specifically, a 5-class model largely maintained three

of the four classes of the 4-class model and subdivided the fourth and smallest class of the

4-class model into two smaller classes which were relatively indistinct from each other.

Table 3 shows the final model, which includes nine of the initially used 41 patient character-

istics and the probabilities of having each patient characteristic, given class membership (see

also Fig 1). This means that the following variables were excluded in the final LCA due to less

statistical relevance: age of children living at parental home, number of chronic conditions,

prevalence of 28 chronic conditions, paid interest over debts, GP care utilization on baseline.

The MCAR Pearson-Chi Square and Likelihood Ratio Chi-Square test showed that values

were missing completely at random (P<0.001). As the entropy score was high, we report the

final class counts and proportions for the latent classes that are based on their most likely latent

class membership. Class 1 (n = 4953; 39.3%) had a mean (SE) age of 74.5 years (0.10), had a

high probability (0.91) of having a partner but no children at home, and a high probability

(0.98) of receiving pension benefits. Based on these dominant characteristics, class 1 was

named ‘older adults living with partner’. Class 2 (n = 3215; 25.5%) had a mean (SE) age of 78.8

years (0.15), had a high probability (0.92) of being single, and a high probability (0.99) of

receiving pension benefits. Based on these dominant characteristics, class 2 was named ‘older

adults living alone’. Class 3 (n = 2938; 23.3%) had a mean (SE) age of 51.0 years (0.24) and had

a high probability of having a partner with or without children at home (0.82). In terms of

socioeconomic status, members of class 3 had a moderate probability (0.62) of having paid

work. Based on these dominant characteristics, class 3 was named ‘middle-aged, employed

adults with family’. Class 4 (n = 1496; 11.9%) had a mean (SE) age of 52.2 years (0.32). With

regard to household position, members of class 4 had a low probability (0.34) of being single

and a low probability (0.33) of having a partner but no children at home. In terms of socioeco-

nomic status, members of class 4 had a high probability (0.84) of receiving social welfare or

unemployment benefits. Based on these dominant characteristics, class 4 was named ‘middle-

Table 2. Statistical indicators and relative class sizes for models with increasing numbers of latent classes.

1-class model 2-class model 3-class model 4-class model 5-class model

Loglikelihood -183,726.630 -172,407.886 -164,350.740 -159,286.403 -154,427.535

AICa 367,493.259 344,893.772 328,817.480 318,726.806 309,047.071

BICb 367,642.092 345,183.995 329,249.094 319,299.810 309,761.466

Entropy n/a 0.981 0.974 0.973 0.977

BLRTc n/a P< .001 P< .001 P < .001 P< .001

Relative class size n/a 86.62/13.38 64.51/23.58/11.90 39.30/25.51/23.31/11.87 38.18/25.31/18.48/9.21/8.82

aAIC refers to Akaike Information Criterion
bBIC refers to Bayesian Information Criterion
cBLRT refers to bootstrapped likelihood ratio test

https://doi.org/10.1371/journal.pone.0228103.t002
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aged adults with social welfare dependency’. See also S1 File for a description of typical qualita-

tive personas who characterize the four classes.

In terms of the top five chronic conditions per class at baseline (see Fig 2), diabetes mellitus

was most common in each of the four classes, with prevalence ranging from 30.5% in class 3 to

43.4% in class 1. The second most prevalent condition differed between osteoarthritis in class

1 (21.7%) and 2 (23.8%), asthma in class 3 (25.3%), and mood disorders in class 4 (23.1%).

Table 3. Probabilities of having the (categorical) patient characteristic, given class membership, for each class within the final 4-class model.

Patient characteristics Probability (SE)

Class 1 Class 2 Class 3 Class 4

(n = 4953) (n = 3215) (n = 2938) (n = 1496)

Demographic characteristics

Sex

Male 0.481 (0.01) 0.202 (0.01) 0.290 (0.01) 0.404 (0.01)

Female 0.519 (0.01) 0.798 (0.01) 0.710 (0.01) 0.596 (0.01)

Age, mean (SE)a 74.47 (0.10) 78.78 (0.15) 51.01 (0.24) 52.22 (0.32)

Household position

Child living at home 0.001 (0.00) 0.000 (0.00) 0.034 (0.00) 0.027 (0.00)

Single adult 0.010 (0.00) 0.917 (0.08) 0.092 (0.01) 0.341 (0.01)

Partner with children at home 0.034 (0.00) 0.000 (0.00) 0.391 (0.01) 0.144 (0.01)

Partner without children at home 0.905 (0.01) 0.000 (0.00) 0.424 (0.01) 0.332 (0.01)

Single parent 0.022 (0.00) 0.002 (0.00) 0.044 (0.00) 0.105 (0.01)

Member of a collective household 0.010 (0.00) 0.080 (0.07) 0.002 (0.00) 0.039 (0.01)

Other 0.019 (0.00) 0.001 (0.00) 0.013 (0.00) 0.012 (0.00)

Biomedical characteristics

Type of chronic condition

Only physical 0.891 (0.00) 0.863 (0.01) 0.664 (0.01) 0.610 (0.01)

Only mental 0.008 (0.00) 0.014 (0.00) 0.077 (0.01) 0.085 (0.01)

Combination of both 0.101 (0.00) 0.123 (0.01) 0.259 (0.01) 0.306 (0.01)

Socioeconomic characteristics

Housing situation

Owner-occupied 0.637 (0.01) 0.343 (0.01) 0.723 (0.01) 0.272 (0.01)

Rented 0.363 (0.01) 0.657 (0.01) 0.277 (0.01) 0.728 (0.01)

Source of income

Paid work 0.018 (0.00) 0.007 (0.00) 0.621 (0.01) 0.047 (0.01)

Social welfare or unemployment benefits 0.002 (0.00) 0.002 (0.00) 0.195 (0.01) 0.844 (0.01)

Pension benefits 0.981 (0.00) 0.990 (0.00) 0.000 (0.00) 0.042 (0.01)

Without income 0.000 (0.00) 0.001 (0.00) 0.184 (0.01) 0.068 (0.01)

Number of people with an individual income in a household

1 0.026 (0.00) 0.969 (0.01) 0.218 (0.01) 0.483 (0.01)

>1 0.974 (0.00) 0.031 (0.01) 0.782 (0.01) 0.517 (0.01)

Household dependence

on social security payments, mean (SE)a 1.28 (0.09) 0.35 (0.06) 9.28 (0.33) 75.81 (0.64)

Care utilization

Pharmaceutical costs

�€500 0.353 (0.01) 0.318 (0.01) 0.513 (0.01) 0.340 (0.01)

>€500 and�€1500 0.439 (0.01) 0.423 (0.01) 0.349 (0.01) 0.378 (0.01)

>€1500 0.208 (0.01) 0.259 (0.01) 0.138 (0.01) 0.282 (0.01)

a For continuous variables, mean (SE) is reported

https://doi.org/10.1371/journal.pone.0228103.t003
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With regard to GP care utilization of the classes over the follow-up period (see Fig 3), class

2 showed the highest mean care utilization. Both classes with the older adults showed the larg-

est mean (SD) increase in care utilization over time—from 9.8 (6.9) in the first to 11.7 (8.7) in

the sixth half year and from 11.5 (8.3) in the first to 14.0 (10.5) in the sixth half year—while the

classes with the middle-aged adults were more stable over time—from 10.1 (7.1) in the first to

10.7 (8.2) in the sixth half year and from 11.3 (8.0) in the first to 12.1 (9.5) in the sixth half

year.

Discussion

The present study suggests that the HNHC population in primary care is a heterogeneous pop-

ulation, which can be divided into four subgroups with distinct patterns of particularly demo-

graphic and socioeconomic characteristics. Main differences between the subgroups were

found in demographic and socioeconomic factors (i.e. age, household position, and source of

income). In terms of chronic conditions, the subgroups with older adults most frequently suf-

fered from physical and age-related conditions (e.g. osteoarthritis, cancer), while the middle-

aged subgroups most frequently had conditions more typically found in relatively younger

people (i.e., asthma and mood disorders). Furthermore, while the subgroups with older adults

showed an increase in mean care utilization over time, the middle-aged subgroups showed a

Fig 1. Probabilities of having the (categorical) patient characteristic, given class membership, for each class within the final 4-class model.

https://doi.org/10.1371/journal.pone.0228103.g001
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more stable pattern over time. In addition, class 2 (‘older adults living alone’) showed the high-

est mean care utilization over time. This finding corresponds with a study of Dreyer, Steventon

[36] who showed that living alone is associated with higher care utilization in older adults.

The current study indicates that the sex distribution within the HNHC population, as well

as in three of the four identified subgroups, is unbalanced: more than 64% of the HNHC popu-

lation is female. In the current person-oriented analysis, unlike in a variable-oriented analysis,

there is no assessment of relations between variables including corrections for confounders.

Rather, the current analysis has focused on identifying subgroups based on patterns of vari-

ables within individual patients. One possible explanation for the unbalanced population in

terms of sex is that women typically get older and, as a result, are overrepresented among the

older aged HNHC patients compared to men. In addition, scientific studies have found that

women have significantly higher consultation rates compared to men, but particularly during

working years [46, 47].

Fig 2. Top five of chronic conditions (%) per class within the final 4-class model.

https://doi.org/10.1371/journal.pone.0228103.g002
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Our findings show that the HNHC population is a demographically and socioeconomically

diverse population and includes not only older adults but also many middle-aged people. To

date, studies have predominantly focused on (biomedical) segmentation in populations of

older adults: an example is the recent Embrace study,[48] which identified three risk profiles

for older adults. In line with the demographic heterogeneity found in our study, a study by

Wammes, Tanke [12] found that many high-cost patients (in the Dutch curative health sys-

tem) are not older than 65 years of age. Supporting our approach, the authors [12] emphasized

the need for studying the general population with extensive data and targeting interventions

toward high-cost patients of various ages. Furthermore, our findings suggest that middle-aged

HNHC patients are generally characterized by more socioeconomic vulnerability (e.g., depen-

dence on social welfare) and a higher prevalence of mental conditions (e.g., mood disorders)

than are older HNHC patients. These findings add to an increasing awareness about the

importance of social and context-related determinants of health [25, 49, 50]. First, Shadmi [51]

suggests broadening the understanding and measurement of multimorbidity by including a

large variety of health and health-related aspects (e.g., social, cultural, and economic back-

ground of populations) that correlate with multimorbidity. In addition, corresponding to our

finding that current segmentation often lacks inclusion of relevant demographic and socioeco-

nomic characteristics, the study by Chin-Yee, Subramanian [52] and Khoury, Iademarco [53]

also argued that adding environmental and social characteristics (a rather “population per-

spective”) to the genetic profiling in precision medicine can be of added value to public health.

With the growing recognition of the effectiveness of segmentation for patient-centered

interventions, [54] the segmentation conducted in the present study can guide clinical practice

toward more integrated and person-centered care. By gathering insight into demographic

characteristics other than age and gender (e.g., household position) as well as the socioeco-

nomic context of patients (e.g., main source of income), clinical practice in primary care can

be attuned to a more holistic view of patients. This view can suggest potentially relevant goals,

Fig 3. GP care utilization measured over the follow-up period for each class within the final 4-class model.

https://doi.org/10.1371/journal.pone.0228103.g003
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interventions, and professionals (within primary care and in cooperation with other disci-

plines), which can be further discussed in a shared decision-making process with the patient.

Such an approach can be inspired by the ‘Bridges to Health’ model, [55] which aims to system-

atically connect priority concerns, major components of health care, and goals for health care

within identified population segments [56]. Thus, while older adults living alone might benefit

from increased social support, middle-aged adults with social welfare dependency might rather

benefit from financial and mental support. As such, this segmentation approach can serve as a

starting point for more biopsychosocial attention and can inform the discussion of tailored

interventions with the patient [56]. However, the individual consultation is still key to assess

personal needs and preferences with a patient during a consultation, and agree on an individ-

ual treatment course.

Further research, in particular qualitative inquiry, is necessary to identify the most impor-

tant concerns and components of health care per HNHC subgroup. In addition, the current

study has focused on HNHC patients in primary care, which is widely considered the most

suitable medical home for chronically ill patients [57]. Although as a result, our findings are

mainly useful for improvement of primary care management, there is some evidence that

patients with a disproportionately high use of primary care resources also account for signifi-

cantly high(er) costs in specialist care [58, 59]. For policy making, the subgroups can also help

to give insight into the distribution of the patient population over the identified subgroups

within certain geographical areas and help to efficiently target resources. In more urban areas,

for example, the middle-aged subgroups might be larger than in rural areas.

One of the most important strengths of the current study is the relatively large set of indi-

vidual-level patient data, with a variety of patient characteristics. A second strength is the use

of the model-based analysis technique LCA, which offers a large set of statistical indicators to

decide on the best-fitting model and ways to cope with issues of local maxima and nonconver-

gence [38]. The study also has some limitations. First, individual level data of the non-partici-

pating practices were not available in this study. This hampered a direct comparison of

participating practices (n = 63; 48.5% of care group) with non-participating practices in order

to assess representativeness of the sample. However, particular patient characteristics (i.e. sex,

age, household position, and source of income) of the sample were compared to the patient

characteristics of the general population in the northern region of the Netherlands that is cov-

ered by the primary care group. This comparison showed that the sample is largely similar in

patient characteristics to the general population. For example, 50.8% of the sample is female;

50.5% of the general population is female, 20.1% of the sample receives pension benefits;

22.1% of the general population receives pension benefits. Second, EHRs typically include

incomplete registrations and may have limited data quality. Nevertheless, the quality of regis-

trations was checked and validated, and the (categorical) missing values were found to be

MCAR. Third, the data set included patients who can be considered dependent, as they

belonged to the same household. A sensitivity analysis with only completely independent

observations showed the same division among classes, implying a negligible effect of the

dependent observations on the identification of subgroups. Fourth, only patients with a full

EHR registration over the research period were included. This has excluded specific types of

patients, such as patients who died before the end of the follow-up period. It is possible that

the excluded patients would have been identified as a separate ‘near end of life’ HNHC sub-

group, as identified by some previous population segmentation studies as well [24, 55, 60].

Nevertheless, specific payments arrangements are already in place in Dutch primary care for

this patient population who is near the end of life and needs (expensive) palliative care. Fifth,

generalizability of the subgroups may be limited, as the data set was retrieved from a specific

Dutch region with limited ethnic/cultural diversity and a relatively aged population, compared
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to the Dutch average. In future research, the generalizability of the subgroups needs to be

determined.

Conclusions

Despite the heterogeneity of the HNHC population, distinct subgroups with relatively homo-

geneous patterns of particularly demographic and socioeconomic characteristics can be identi-

fied. This study adds to the increasing awareness of the demographic and socioeconomic

heterogeneity of the HNHC population, in addition to biomedical diversity. To accommodate

person-centered, integrated care delivery, the identified classes need to be connected to tai-

lored care (i.e. concerns, components, goals). This connection can be inspired by the proposed

strategies within the ‘Bridges to Health’ model [55].
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Niels Hameleers, Dirk Ruwaard.

Data curation: Rowan G. M. Smeets, Niels Hameleers.

Formal analysis: Rowan G. M. Smeets, Niels Hameleers.

Investigation: Rowan G. M. Smeets, Niels Hameleers.

Methodology: Rowan G. M. Smeets, Arianne M. J. Elissen, Niels Hameleers.

Supervision: Arianne M. J. Elissen, Mariëlle E. A. L. Kroese, Dirk Ruwaard.
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