
molecules

Article

Enantioenriched Positive Allosteric Modulators Display
Distinct Pharmacology at the Dopamine D1 Receptor

Tim J. Fyfe 1, Peter J. Scammells 1, J. Robert Lane 2,3,* and Ben Capuano 1,*

����������
�������

Citation: Fyfe, T.J.; Scammells, P.J.;

Lane, J.R.; Capuano, B.

Enantioenriched Positive Allosteric

Modulators Display Distinct

Pharmacology at the Dopamine D1

Receptor. Molecules 2021, 26, 3799.

https://doi.org/10.3390/

molecules26133799

Academic Editor: Jianguo Fang

Received: 26 May 2021

Accepted: 17 June 2021

Published: 22 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade,
Parkville, VIC 3052, Australia; tim.fyfe@griffithhack.com (T.J.F.); peter.scammells@monash.edu (P.J.S.)

2 Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade,
Parkville, VIC 3052, Australia

3 School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
* Correspondence: Rob.Lane@nottingham.ac.uk (J.R.L.); ben.capuano@monash.edu (B.C.)

Abstract: (1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric
modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular,
due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise
as a starting point toward the development of small molecule allosteric modulators to ameliorate
the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we
describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and
(S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (D- and L-pantolactone, respectively); (3) Results:
We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that
the respective stereoisomers show a significant difference in their affinity and magnitude of positive
allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation
of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with
superior allosteric properties.

Keywords: dopamine D1 receptor; positive allosteric modulator; PAM; G protein-coupled recep-
tors; synthetic medicinal chemistry; pharmacological evaluation; enantioenriched; chiral auxiliary;
cAMP BRET

1. Introduction

Schizophrenia (SCZ) is a debilitating neuropsychiatric illness characterised by three
distinct symptoms domains [1,2]. Positive symptoms describe manifestations of psychosis
such as delusions, whereas negative symptoms are defined as alterations in drive and
volition [3]. Cognitive deficits are a central feature of SCZ, and include deficits in working
memory, attention, learning, and executive functioning [4]. Numerous studies have demon-
strated an association between the severity of cognitive impairment and functional, social,
and occupational outcomes in SCZ. Thus, the development of therapeutics that address
this symptom domain are desirable [5]. Unfortunately, current clinical antipsychotic drugs
(APDs) fail to address these cognitive symptoms [6,7].

Hypodopaminergic function in the dorsolateral prefrontal cortex (dlPFC), an area
associated with cognitive control and executive functions including working memory
and selective attention [8], is thought to be related to negative symptoms and cognitive
deficits [9,10]. Indeed, both dopamine receptor (DR) antagonists and dopamine (DA)
depletion in the dlPFC impair cognitive function [11–13]. There is mounting evidence
to suggest that D1R agonists can reverse these deficits [14,15], although excessive D1R
stimulation may impede cognitive function [16,17]. Many orthosteric D1R agonists that
compete with DA for the orthosteric binding site display a lack of subtype selectivity
(relative to other DRs) as well as poor pharmacokinetic properties. The benzazepine class
of D1R agonists have poor bioavailability [18] and has the propensity to lower seizure
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thresholds [19]. Similarly, the D1R agonist dihydrexidine displays poor oral bioavailability
and is rapidly metabolised in vivo [20]. Orthosteric D1R agonists have also been shown to
increase incidence of drug-induced hypotension, potentially mediated by D1Rs expressed
in the periphery [21], as well as a rapid acquisition of tolerance [22,23]. There is clearly an
unmet need for the development of selective, bioavailable small molecule D1R ligands to
further interrogate their potential utility to treat cognitive deficits associated with SCZ.

There has been tremendous recent progress in the development of novel D1R positive
allosteric modulators (PAMs) [24–29] in concert with X-ray crystal [30] and cryo-EM struc-
tures [31,32] that have revealed fascinating structural insights into the therapeutic potential
of the D1R. This has culminated in the clinical evaluation of the first D1R PAM LY3154207
(Mevidalen) [33] which is currently in phase 2 for the amelioration of cognition associated
with Lewy body dementias. PAMs represent an alternative approach to targeting the D1R
and act to modulate the affinity and/or efficacy of DA from a topographically distinct but
conformationally linked binding site. The engagement of a less conserved allosteric binding
site may confer greater subtype selectivity than orthosteric D1R agonists. A D1R PAM that
displays positive allosteric cooperativity but lacks intrinsic efficacy which, in its own right,
might maintain the temporal and spatial patterns of DA neurotransmission [34,35].

Lewis et al. recently identified two racemic D1R PAM chemotypes (Compound A, (1)
and Compound B, (rac-2), Figure 1) [36]. 1 was shown to be a D1R PAM but also acted as
an agonist at the D2R and thus was not investigated further. As D2R agonism is known to
exacerbate the positive symptoms of SCZ, achieving selectivity for the D1R versus the D2R is
paramount for the development of efficacious cognitive-enhancing therapeutics. rac-2 was
shown to have superior potency compared to 1 whilst being selective for the human D1R.
To our knowledge there is no reported chemical synthesis and biological characterisation of
optical isomers of 2. Herein, we report the synthesis and pharmacological characterisation
of (rac)-2, and enantioenriched optical isomers of 2 (herein denoted as (S)-2 and (R)-2).
These enantioenriched samples were accessed by employing various chiral auxiliaries in
an asymmetric Diels Alder (ADA) cycloaddition reaction.
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9,10-ethanoanthracene-12-carboxamide] (rac-2) reported by Lewis et al. [36]. 

To characterise their pharmacology, we applied analytical pharmacological methods 
to determine allosteric ligand affinity for the unoccupied receptor, the strength of modu-
latory effects upon DA activity as well as the magnitude of allosteric agonism [37]. We 
demonstrate that enantiomers of 2 can be accessed in moderate enantiopurity in four syn-
thetic steps. Importantly we reveal that these enantiomers display different affinities for 
the D1R as well as different levels of positive cooperativity with DA. The degree of allo-
steric cooperativity required for a ‘clinical’ D1R PAM is currently unknown. These data 
illustrate the importance of characterising optically pure analogues for future structure-
activity relationship studies of 2. 

Figure 1. High-throughput screening hits racemic Compound A [1-((rel-1S,3R,6R)-6-
(benzo[d][1,3]dioxol-5-yl)bicyclo [4.1.0]heptan-3-yl)-4-(2-bromo-5-chlorobenzyl)piperazine] (1) and
racemic Compound B [rel-(9R,10R,12S)-N-(2,6-dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-
9,10-ethanoanthracene-12-carboxamide] (rac-2) reported by Lewis et al. [36].

To characterise their pharmacology, we applied analytical pharmacological methods to
determine allosteric ligand affinity for the unoccupied receptor, the strength of modulatory
effects upon DA activity as well as the magnitude of allosteric agonism [37]. We demon-
strate that enantiomers of 2 can be accessed in moderate enantiopurity in four synthetic
steps. Importantly we reveal that these enantiomers display different affinities for the
D1R as well as different levels of positive cooperativity with DA. The degree of allosteric
cooperativity required for a ‘clinical’ D1R PAM is currently unknown. These data illustrate
the importance of characterising optically pure analogues for future structure-activity
relationship studies of 2.
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2. Results and Discussions
2.1. Chemistry

Compound rac-2 was resynthesised in three steps according to Scheme 1 [38]. Firstly,
AlCl3-catalysed Diels-Alder [4 + 2]cycloaddition of methyl methacrylate 3 with anthracene
4 afforded the 9,10 bridged ester 5 as a racemic mixture. Ester saponification was achieved
under forcing conditions with NaOH in THF/H2O at reflux, affording acid 6. Subsequent
treatment with thionyl chloride and DMF, followed by DMAP-catalysed nucleophilic
substitution with commercially available 2,6-dichloro-3-methylaniline (7) afforded rac-2.
High-performance liquid chromatography (HPLC) using an amylose chiral stationary
phase (CSP) verified the presence of two enantiomers (see Supplementary Materials).
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It is not clear from the current literature regarding the newly identified D1R PAM
scaffold whether a single enantiomer or racemic mixture is responsible for the quoted
in vitro activity. This led us to investigate methods to generate optically pure stereoisomers
of compound 2. Numerous attempts at chiral resolution of 5 (semi-preparative chiral HPLC)
and the chromatographic resolution of derivatives of 5 (diastereomeric amides/esters,
diastereomeric salts) using various resolving ligands, e.g., (R)-1-phenylethan-1-amine,
(S)-2-amino-2-phenylethan-1-ol, and (1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-ol ((−)-
menthol)), all failed. Therefore, to access enantiopure synthetic precursors, it was necessary
to develop and explore the use of chiral auxiliaries in an ADA reaction. The Diels-Alder
reaction arises from high regio- and stereoselectivity which also entails the use of various
functionalised dienes and dienophiles, and much work has been done in the last three
decades to develop ADA reactions, based on both enantiopure dienes and enantiopure
dienophiles [39]. Accordingly, the area has been extensively reviewed [40–42].

(−)-Menthol 11, a chiral molecule with three stereocentres, was initially selected as
a practical chiral auxiliary to probe the diastereoselectivity of the Diels-Alder cycload-
dition. A derivative of 11, (−)-8-phenylmenthol, has previously been shown to induce
ADA reactions with high distereoselectivity under AlCl3 catalysis [43]. As outlined in
Scheme 2, DMAP-catalysed, EDC-mediated Steglich-type [44] esterification of methacrylic
acid 12 with 11 furnished the corresponding auxiliary 13. This dienophile was subjected
to a TiCl4-catalysed [4 + 2]cycloaddition, affording cycloadduct(s) 14. 1H NMR analysis
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confirmed that the (1R,2S,5R)-menthol-acrylate chiral auxiliary conferred moderate di-
astereoselectivity in the cycloaddition as one diastereomer could be identified as the major
product (>70% d.e.). Unfortunately, hydrolytic ester cleavage of 14 using LiOH or NaOH
in refluxing THF/H2O failed to furnish the acid (6) as no reaction was evident via LC/MS
analysis. Alternative conditions for hydrolysis were sourced from work completed by
Myers et al., who reported the use of various synthetic examples and reagents and to hy-
drolyse amides and esters [45]. Such additional methods were explored, including stirring
14 at reflux in the presence H2SO4 and 1,4-dioxane, stirring 14 reflux in 2:1:1 solution of
H2O, MeOH and tert-butanol in the presence of NaOH, as well as at reflux in a 4:1 solution
of H2O/1,4-dioxane in the presence of the Lewis acid iron(III) chloride hexahydrate. These
chemistries all failed to provide the target acid.
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potential in ADA chemistry. According to Scheme 3, methacrylic acid 12 was subjected to 
a potassium tert-butoxide mediated direct amidation [46] using 15, yielding the corre-
sponding acrylamide 16. Again, the newly formed acrylamide was directly utilised in a 
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Scheme 2. Chemical synthesis of menthol-derived diastereomers using ADA chemistry. Reagents
and conditions: (a) EDCI, DMAP (cat.), anhydrous CH2Cl2, r.t. 48 h, 55%; (b) TiCl4, dry CH2Cl2, r.t.
15 h, 25%; (ci) NaOH, THF/H2O, reflux 7 d; (cii) H2SO4 (conc.), 1,4-dioxane, reflux, 3 h; (ciii) NaOH,
2:1:1 H2O, MeOH, t-butanol, reflux 72 h; (civ) FeCl3·6H2O, 1:4 1,4-dioxane/H2O, reflux.

An additional auxiliary, (R)-2-amino-2-phenylethan-1-ol 15, was investigated for its
potential in ADA chemistry. According to Scheme 3, methacrylic acid 12 was subjected
to a potassium tert-butoxide mediated direct amidation [46] using 15, yielding the corre-
sponding acrylamide 16. Again, the newly formed acrylamide was directly utilised in a
TiCl4-cataysed [4 + 2]cycloaddition to furnish the desired ethanoanthracene derivative(s)
17 as a beige solid. HPLC analysis of the purified material indicated the presence of two
diastereomers in an approximate diastereomic ratio (3:1) and this was further confirmed
with 1H NMR spectroscopy (~37% d.e.).
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conditions: (a) dry THF, r.t., 2.5 h, 91%; (b) TiCl4, dry DCM, r.t. 7 days, 75%.

The study of ADA induction involving esters derived from achiral acrylic and methacrylic
acids, and the chiral auxiliaries (R)- and (S)-3-hydroxy-4,4-dimethyl-1-phenyl-2-pyrrolidinone
with different dienes including anthracene (which was of particular interest), catalysed by
TiCl4 has been described [39]. These studies reported adducts derived from anthracene and
the (R)-pantolactam-acrylate ester could be obtained with high facial-diasteroselectivity
where subsequent ester saponification afforded the corresponding enantiopure acid in
high optical purity. In addition, the acrylates of (R)-pantolactone have also been exten-
sively studied for their asymmetric capacity to direct cycloadditions with high facial-
diastereoselectivity for a number of diene scaffolds under TiCl4 catalysis, including an-
thracene [47–49]. Pantolactones and their use as chiral auxiliaries in ADA chemistry has
been extensively reviewed [50], as well as mechanistic models proposed to explain the
sense of asymmetric induction in TiCl4-catalysed ADA reactions of pantolactone-acrylate
derivatives [51].

Following an adapted procedure from Camps et al. [39], and as outlined in Scheme 4,
commercially available D-pantolactone ((R)-18) was reacted with methacrylic acid 12 under
modified Steglich esterification [44] conditions to give the corresponding auxiliary (R)-19
in moderate yield. Subsequent [4 + 2] cycloaddition with anthracene 4 as the diene in the
presence of TiCl4 as catalyst, followed by chromatographic purification and recrystalliza-
tion from EtOH, afforded (S)-20 as a pale white crystalline solid. 1H NMR spectroscopic
analysis confirmed high diasteroselectivity (>90% d.e.) for the asymmetric induction. Basic
ester saponification using a large excess of NaOH in refluxing THF/H2O was achieved to
eventually yield carboxylic acid (S)-21. Although the synthesis of ((S)-21) has been reported
in the literature using (R)-3-hydroxy-4,4-dimethyl-1-phenyl-2-pyrrolidinone as a chiral
auxiliary [39] our synthesis was performed to examine the asymmetric induction potential
of pantolactone chiral auxiliaries. Moreover, ((S)-21) was subsequently required to form the
corresponding amide (S)-2, so as it could be evaluated for its in vitro allosteric ligand pa-
rameters. The enantiopurity of (S)-21 was characterised using polarimetry [α]D

25 = −24.9◦

(c 1.0, CHCl3) which was in accordance with literature values [39]. Based on approxima-
tions from the preceding 1H NMR spectrum of (S)-20, an enantiomeric excess (e.e.) of
>90% was likely. Indeed, chiral HPLC (cHPLC) confirmed the presence of predominantly a
single enantiomer, supporting the high facial-diastereoselectivity of the pantolactone chiral
auxiliary in [4 + 2] cycloadditions, with e.e. calculated to be ~88%. The enantioenriched
mixture was successively activated with thionyl chloride and subjected to nucleophilic
substitution employing conditions outlined previously, yielding enantioenriched (S)-2.
CHPLC analysis of (S)-2 determined the e.e. to be ~90%.
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Interestingly, Camps et al. reported that a racemic N-phenyl pantolactam chiral auxil-
iary was unable to react with anthracene under AlCl3 catalysis [39]. In addition, the authors
did not report on the effectiveness of TiCl4 as catalyst for the cycloaddition reaction between
anthracene and their (S)-N-phenyl pantolactam chiral auxiliary, nor its racemic counterpart.
Thus, the asymmetric induction potential of using the structurally related (S)-pantolactone
acrylate ester ((S)-19) as an alternative chiral auxiliary to access the previously unreported
(R)-20 was unknown. This chemistry is illustrated in Scheme 4 commencing with Steglich
esterification [44] of 12 with commercially available L-pantolactone (S)-18) using conditions
outlined previously to afford (S)-19. Subsequent cycloaddition of the auxiliary (S)-19 with
diene 4 gave cycloadduct (R)-20 in good yield, with 1H NMR indicating a slightly lower
diastereoselectivity (d.e. ~83%). This apparent reduced asymmetry may have arisen from
a failure for (R)-20 to recrystallize, or is mechanistically inherent in the cycloaddition of
(S)-19. Hydrolytic cleavage of the auxiliary was achieved using forcing alkaline conditions,
eventually affording the free carboxylic acid (R)-21. An assessment of the enantiopurity was
again made using polarimetry ([α]D

25 = +24.1◦ (c 1.0, CHCl3)), whereby subsequent chiral
HPLC analysis determined the e.e. to be ~82%. Acyl halide formation and nucleophilic
displacement with 7 using conditions outlined previously furnished the corresponding
enantioenriched (R)-2. CHPLC analysis of (R)-2 determined the e.e. to be ~84%.

2.2. Pharmacology

Previous work by Lewis et al. [36] reported rac-2 as a PAM at the D1R with superior
potency (EC50 = 43 nM) and no agonist activity. We tested rac-2 in an assay measuring
accumulation of cyclic adenosine monophosphate (cAMP) through activation of the hD1R
stably expressed in FlpIn CHO cells using a BRET biosensor [52]. Concentration-response
curves of DA were generated in the presence of increasing concentrations of test compound.
An operational model of allostery was applied to these data, allowing us to determine
estimates of functional affinity for the unoccupied receptor (KB), a composite measure of
allosteric cooperativity (αβ) that combines cooperativity with DA affinity (α) and mod-
ulatory effect upon DA efficacy (β), as well as the intrinsic efficacy (τB) of the allosteric
ligand. Values of αβ > 1 indicate a positive modulatory effect. Functional assessment of
rac-2 in our hands showed it exhibited modest affinity for the D1R (KB = 1.6 µM, Figure 2A,
Table 1), acting to potentiate the potency of DA 100-fold (αβ = 100) as well as display
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allosteric agonism (τB = 2.1, Table 1). Lewis and colleagues observed that rac-2 did not
display agonism. This difference likely reflects a difference in the cell background (CHO
versus HEK293) and/or a higher level of D1R expression in our cell line and/or a greater
sensitivity of our cAMP assay [36]. Indeed, such effects have been observed for a PAM
of the muscarinic M1 acetylcholine receptor and such observations are consistent with
a two-state model of allostery [53]. Consistent with the above differences, the potency
of DA in our assay is also greater than that observed by Lewis and coworkers in their
experiments. Note that Lewis et al. also determined the value of potency for rac-2 as 40 nM.
This value was determined by the measuring the potency with which rac-2 causes a shift
in DA potency and cannot be directly compared with the value of KB determined in our
analysis that reflects the affinity of the PAM for the unoccupied receptor.
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biosensor. rac-2 (A), the enantioenriched S-isomer (S)-2, (B), and the enantioenriched R-isomer (R)-2, (C) act as an ago-PAMs,
potentiating DA potency and exerting allosteric agonism. These data were fitted to an operational model of agonism to
derive values of affinity, cooperativity with DA and intrinsic efficacy (see Table 1). Data are presented as mean ± S.D. from
at least four separate experiments. (D) All compounds were assessed for their activity at non-hD1R/hD2R expressing FlpIn
CHO-cells transfected with the BRET biosensor, demonstrating that compound activity is mediated through the D1/D2Rs.
Data are presented as mean ± S.D. from at least four separate experiments.

Intriguingly, the optical isomers of rac-2 ((S)-2, (R)-2) were shown to display signif-
icant differences both in their affinity for the D1R and their degree of positive allosteric
cooperativity with DA. The enantioenriched (S)-2 was determined to have comparable
functional affinity, efficacy and cooperativity as compared to rac-2 (KB = 1 µM, αβ = 125,
τB = 2.5) (Figure 2B, Table 1). Conversely, the enantioenriched (R)-2 displayed 4.8-fold
and 7.4-fold lower functional affinity (KB = 7.4 µM αβ = 31) and 3-fold and 4-fold lower
cooperativity with DA, relative to rac-2 and (S)-2 respectively (Figure 2C, Table 1). It is
interesting to note that the pharmacology of rac-2 is not significantly different from (S)-
2. This can be reconciled by the lower levels of affinity and cooperativity with DA that
(R)-2 displays. These two factors combined mean that (S)-2 would effectively display a
30-fold greater affinity for the DA occupied receptor as compared to (R)-2 even though
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their affinities for the unoccupied are a more modest 7-fold different. In the racemate,
therefore, (S)-2 would be expected to dominate meaning that the pharmacology of the
racemate reflects this enantiomer. We extended our functional characterisation of these
compounds to an assay measuring inhibition of forskolin-stimulated cAMP accumulation
in hD2LR-expressing FlpIN CHO cells. rac-2 and its respective enantiomers ((R)-2, (S)-2)
displayed no activity at the D2R up to a measured concentration of 30 µM. None of the
above compounds displayed any off-target response in FlpIn CHO cells transfected with
the BRET biosensor, but not expressing either the D1R or the D2R (Figure 2D). Together our
data indicate that the distinct structural configuration of the two enantiomers of 2 confer
differences in their ability to potentiate DA at the D1R.

Table 1. Functional parameters for PAMs derived from cAMP BRET assay at the hD1R.

CPD e.e. (%) pKB (KB, µM) 1 LogτB (τB) 2 Logαβ (αβ) 3

rac-2 0 5.80 ± 0.10 (1.6) 0.32 ± 0.06 (2.1) 2.00 ± 0.12 (100)
(S)-2 90 5.99 ± 0.09 (1.0) 0.40 ± 0.06 (2.5) 2.10 ± 0.25 (125)
(R)-2 84 5.12 ± 0.06 (7.6) *,ˆ 0.46 ± 0.08 (2.9) 1.51 ± 0.14 (31) *,ˆ

1 Estimate of the negative logarithm of the equilibrium dissociation constant determined in an cAMP functional
assay. 2 Estimate of the intrinsic efficacy of the modulator. 3 Estimate of the logarithm of the net cooperativity
factor between the modulator and DA. Values represent mean ± S.D. from at least four independent experiments
performed in duplicate. Significant differences parameter between (R)-2 and rac-2 * or (S)-2 ˆ, p < 0.05, one-way
ANOVA with Tukey’s Post-hoc test (GraphPad Prism Version 7).

3. Experimental
3.1. General

Solvents and fine chemicals were commercially available from standard suppliers
and used where described without further purification. Davisil silica gel (40–63 µm) for
Flash column chromatography used Davisil silica gel (40–63 µm) and was supplied by
Grace Davison Discovery Sciences (Victoria, Australia). Deuterated solvents for NMR
spectroscopy were sourced by Novachem Pty. Ltd., Victoria, Australia (a distributor for
Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA). Reactions were monitored by
thin layer chromatography on commercially available precoated aluminum-backed plates
(Merck Kieselgel 60 F254). Visualization was by inspection under UV light (254 nm/366 nm).
Ninhydrin (in EtOH) was used to visualize primary and secondary amines. Anhydrous
Na2SO4 was used to dry all organic extracts collected after aqueous workup procedures
before gravity/vacuum filtration and evaporation to dryness. Organic solvents were
removed under reduced pressure at a water bath temperature of ≤40 ◦C. 1H NMR and
13C NMR spectra were recorded on a Bruker Avance Nanobay III 400 MHz Ultrashield
Plus spectrometer at 400.13 and 100.62 MHz, respectively. Chemical shifts (δ) are recorded
in parts per million (ppm) with reference to the chemical shift of the deuterated solvent.
Coupling constants (J) are recorded in Hz, and multiplicities described by singlet (s),
doublet (d), triplet (t), quadruplet (q), broad (br), multiplet (m), doublet of doublets (dd),
and doublet of triplets (dt). All NMR experiments were performed in CDCl3 for comparison
of spectra of various analogues. For analogues that displayed reduced solubility in CDCl3
then experiments were performed in CD3OD, DMSO-d6, or acetone-d6. LCMS experiments
-System A (default): an Agilent 6100 series single quad coupled to an Agilent 1200 series
HPLC instrument using the following buffers: buffer A, 0.1% HCOOH in H2O; buffer B,
0.1% HCOOH in CH3CN. The following gradient was used with a Phenomenex Luna 3 µm
C8(2) 15 × 4.6 mm column, flow rate of 0.5 mL/min, total run time of 12 min: 0–4 min
95% buffer A/5% buffer B, 4–7 min 0% buffer A/100% buffer B, 7–12 min 95% buffer
A/5% buffer B. Mass spectra were acquired in both negative & positive ion modes with
a scan range of 0–1000 m/z at 5 V. UV detection was monitored at 254 nm. System B:
an Agilent 6120 series single quad coupled to an Agilent 1260 series HPLC instrument
using the following buffers; buffer A, 0.1% HCOOH in H2O; buffer B, 0.1% HCOOH in
CH3CN. The following gradient was used with a Poroshell 120 EC-C18 50 × 3.0 mm,
2.7 µm column, flow rate of 0.5 mL/min, total run time of 5 min: 0–1 min 95% buffer
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A/5% buffer B, 1 to 2.5 min 0% buffer A/100% buffer B, held until 3.8 min, 3.8–4 min 95%
buffer A/5% buffer B, held until 5 min. Mass spectra were acquired in both negative &
positive ion modes with a scan range of 100–1000 m/z. UV detection was monitored at
214 and 254 nm. All retention times (tR) were quoted in minutes. System C: analytical
reverse-phase HPLC was performed, to verify purity, on a Waters HPLC system coupled
directly to a photodiode array detector and fitted with a Phenomenex Luna C8 (2) 100 Å
column (150 × 4.6 mm, 5 µm). A binary solvent system of buffer A, 0.1% TFA/H2O; buffer
B, 0.1% TFA/80% CH3CN/H2O was used. Gradient elution was attained using 100%
buffer A to 100% buffer B over 12 min at a flow rate of 1 mL/min. All target compounds
subjected to biological testing were >95% pure by HPLC at two wavelengths (214 and
254 nm). Analytical chiral-HPLC were conducted on an Agilent Infinity 1260 system fitted
with either one of (a) Lux 5 µm Amylose-2 150 × 4.60 mm, or (b) Lux 5 µm Cellulose-1
150 × 4.60 mm. A binary solvent system was used (solvent A: ethanol; solvent B: petroleum
spirits), with UV detection at 254 nm. The method used isocratic elution of 1–20% solvent
A and 99–80% solvent B, with a flow rate of 1 mL/min. Mass spectra were acquired in
in both negative & positive ion mode with a scan range of 100–1000 m/z. UV detection
was monitored at 214 and 254 nm with retention times (tR) expressed in minutes. All
screening compounds displayed >95% purity unless otherwise specified in the individual
monologue.

3.2. Chemistry
3.2.1. General Procedure A for Steglich Esterification

A mixture of methacrylic acid (1.0 equiv.) alcohol (1.0 equiv.), EDC (1.1 equiv.) and
DMAP (5 mol %) in dry DCM was stirred at rt until complete consumption of the starting
acid or alcohol. The reaction mixture was washed with sat. aqueous citric acid (3 × 50 mL)
and sat. aqueous NaHCO3 (3 × 50 mL), dried (Na2SO4) and concentrated in vacuo. The
residue was purified by flash column chromatography (FCC) with an appropriate eluent
as indicated.

3.2.2. General Procedure B for TiCl4-Catalysed Diels-Alder Cycloaddition

A solution of TiCl4 (2.0 equiv.) in anhydrous DCM (20 mL) was added to a solution of
the appropriate chiral auxiliary/dienophile (1.0 equiv.) in anhydrous DCM (30 mL), and
the mixture stirred at rt for 15 min. Then, a solution of the anthracene (1.0 equiv.) in dry
CH2Cl2 (20 mL) was added and the mixture stirred at r.t. for 15 h. A small amount of H2O
was added to destroy the TiCl4 complexes, the mixture was filtered and the filtrate was
dried with anhydrous Na2SO4. The filtrate was concentrated in vacuo and the residue was
purified by FCC using an appropriate eluent as indicated.

3.2.3. General Procedure C for Alkaline Ester Hydrolysis

To a solution of ester (1.0 equiv.) in a 1:1 mixture of THF/H2O was added NaOH
(3 equiv.), and the mixture stirred at reflux temperature until complete consumption of the
starting material was evident. The THF was removed in vacuo and the remaining aqueous
phase was washed with Et2O. The aqueous phase was then acidified (pH = 1), and any
precipitated carboxylic acid was collected via vacuum filtration and recrystallised from
EtOAc/PE. Similarly, the aqueous phase could be extracted with DCM and the organic
extracts dried (Na2SO4) to afford the desired carboxylic acid to maximise the yield.

3.2.4. General Procedure D for Acyl Halide Formation and Nucleophilic Substitution

The carboxylic acid (1 equiv.) was taken up in thionyl chloride (5 mL) followed by
three drops of DMF and the reaction was stirred at reflux temperature until complete
consumption of the starting material. The solvent was removed in vacuo and the residue
was taken up in dry MeCN (25 mL). To this solution was added 2,6-dichloro-3-methylaniline
(1.1 equiv.), DMAP (0.5 equiv.), DIPEA (2.0 equiv.), and stirred at reflux temperature until
complete consumption of the acyl halide was evident. The solvent was evaporated under
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reduced pressure and the residue was taken up in EtOAc, washed with 1 M aqueous
NaOH, H2O, 1 M aqueous HCl, brine, and the organic layer dried (Na2SO4). The solvent
was concentrated in vacuo and the residue purified by FCC with an appropriate eluent as
indicated.
Methyl (rel-9S,10S,12R)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxylate [38] (5)
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was added portion-wise. The resulting mixture was stirred at room temperature for 72 h or
until complete consumption of the anthracene was evident. The mixture was then poured
over ice, the organic layer separated, washed with water (40 mL), dried (Na2SO4), and the
solvent evaporated. The resulting residue was dissolved in DCM, absorbed onto silica gel
and purified by FCC (eluent, 9:1 PE/Et2O) to afford the title compound as a transparent oil
which solidified under high vacuum to give a white solid (5.67 g, 72%). LCMS (m/z): 301.1
[M + Na]+. System C HPLC: tR 8.389 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3)
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Synthesised according to general procedure C using LiOH.H2O (2.15 g, 89.8 mmol). After
acidification, the precipitated solids were washed with water and recrystallised from
EtOAc/PE, affording the compound as white needles (4.75 g, quantitative). LCMS (m/z):
263.1 [M − H]+. System C HPLC: tR 7.181 min, >95% purity (214 & 254 nm). 1H NMR
(CDCl3) δ 7.31–7.28 (m, 1H), 7.27–7.23 (m, 3H), 7.23–7.19 (m, 1H), 7.12 (ddd, J = 6.1, 5.6,
3.7 Hz, 2H), 7.08 (dd, J = 7.2, 1.5 Hz, 1H), 7.06–7.01 (m, 1H), 4.37 (s, 1H), 4.26 (t, J = 2.7 Hz,
1H), 2.62 (dd, J = 12.7, 3.0 Hz, 1H), 1.40 (dd, J = 12.7, 2.5 Hz, 1H), 1.07 (s, 3H). 13C NMR
(CDCl3) δ 181.7, 143.6, 143.3, 141.3, 140.5, 126.5, 126.3, 126.2, 125.8, 125.7, 125.2, 123.5, 123.3,
52.6, 48.5, 44.5, 38.7, 26.9. Analytical data including 1H NMR and 13C NMR spectra are in
accordance with those published [26,39].
rel-(9R,10R,12S)-N-(2,6-Dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanth
racene-12-carboxamide (rac-2)
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(dd, J = 7.0, 0.9 Hz, 3H). 13C NMR (CDCl3) δ 163.2, 135.9, 129.1, 71.7, 50.3, 45.2, 34.7, 31.8, 
25.9, 23.3, 22.3, 21.1, 16.2. Analytical data in accordance with those published [54]. 

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-
carboxylate (14) 

 
Synthesised according to general procedure B using TiCl4 (4.38 µL, 3.93 mmol), (1R,2S,5R)-
2-isopropyl-5-methylcyclohexyl methacrylate (13) (440 mg, 1.96 mmol) and anthracene 
(350 mg, 1.96 mmol). Purification by FCC (eluent, 10:1 PE/EtOAc] gave the anthracene 
ester derivative as a light-yellow oil (400 mg, 51%, d.e. >70%). LCMS (m/z): 401.1 [M − H]‒
. System C HPLC: tR 2.204 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 7.30–7.27 
(m, 1H), 7.25–7.18 (m, 3H), 7.11–7.07 (m, 2H), 7.07–6.98 (m, 2H, H3), 4.48 (td, J = 10.8, 4.3 
Hz, 1H), 4.38 (s, 1H), 4.23 (t, J = 2.6 Hz, 1H), 2.70 (dd, J = 12.7, 3.0 Hz, 1H), 1.86 (tt, J = 11.3, 
3.5 Hz, 1H), 1.67–1.57 (m, 3H), 1.41–1.36 (m, 2H), 1.36–1.32 (m, 1H), 1.02 (s, 3H), 0.98 (dd, 

Synthesised according to general procedure D using oxalyl chloride (243 µL, 2.84 mmol), rel-
(9S,10S,12R)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxylic acid (6) (375 mg,
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1.42 mmol), DMAP (4.32 mg, 35.4 mmol), DIPEA (120 µL, 707 µmol) and 2,6-dichloro-3-
methylaniline (65.4 mg, 371 µmol). Purification by FCC (eluent, 10:1 PE/EtOAc) afforded
the racemic compound as a white solid (75 mg, 50%). LCMS (m/z): 446.1 [M + Na]+,
423.1 [M + H]+

. System C HPLC: tR 8.496 min, >95% purity (214 & 254 nm). HRMS (m/z):
C25H21Cl2NO: requires 422.1083 [M + H]+; found 422.1073. 1H NMR (CDCl3) δ 7.40–7.37
(m, 1H), 7.34–7.31 (m, 1H), 7.30–7.25 (m, 2H), 7.18–7.11 (m, 3H), 7.08–7.01 (m, 3H), 6.89 (s,
1H), 4.52 (s, 1H), 4.34 (t, J = 2.6 Hz, 1H), 2.64 (dd, J = 12.5, 2.8 Hz, 1H), 2.29 (s, 3H), 1.66
(dd, J = 12.4, 2.7 Hz, 1H), 1.18 (s, 3H). 13C NMR (CDCl3) δ 174.7, 143.3, 143.2, 141.5, 141.4,
136.1, 133.8, 132.2, 130.8, 129.6, 127.4, 126.5, 126.4, 126.2, 125.9, 125.9, 125.7, 123.5, 123.2,
52.7, 49.2, 44.7, 40.3, 28.3, 20.5. Analytical data including 1H NMR and 13C NMR spectra
are in accordance with those published [26].
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl methacrylate (13)
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Synthesised according to general procedure A using methacrylic acid (1.62 mL, 19.2
mmol), (1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-ol (3.00 g, 19.2 mmol), EDC (4.05 g,
21.2 mmol) and DMAP (117 mg, 960 µmol). Purification by FCC (eluent, DCM) gave the
title compound as a transparent oil (3.20 g, 74%). LCMS (m/z): 225.2 [M + H]+. System C
HPLC: tR 9.042 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.23–6.20 (m, 1H),
5.81 (dd, J = 2.0, 1.2 Hz, 1H), 3.39 (td, J = 10.4, 4.3 Hz, 1H), 2.16 (dtd, J = 14.0, 7.0, 2.7 Hz,
1H), 1.99 (dt, J = 1.5, 0.9 Hz, 3H), 1.95–1.91 (m, 1H), 1.61 (ddd, J = 16.1, 14.6, 7.9 Hz, 2H),
1.45–1.37 (m, 2H), 1.14–1.05 (m, 1H), 0.96 (dd, J = 12.1, 4.1 Hz, 1H), 0.94–0.88 (m, 6H), 0.80
(dd, J = 7.0, 0.9 Hz, 3H). 13C NMR (CDCl3) δ 163.2, 135.9, 129.1, 71.7, 50.3, 45.2, 34.7, 31.8,
25.9, 23.3, 22.3, 21.1, 16.2. Analytical data in accordance with those published [54].
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-car
boxylate (14)

Molecules 2021, 26, x FOR PEER REVIEW 11 of 19 
 

 

rel-(9R,10R,12S)-N-(2,6-Dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthra-
cene-12-carboxamide (rac-2) 

 
Synthesised according to general procedure D using oxalyl chloride (243 µL, 2.84 mmol), 
rel-(9S,10S,12R)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxylic acid (6) 
(375 mg, 1.42 mmol), DMAP (4.32 mg, 35.4 mmol), DIPEA (120 µL, 707 µmol) and 2,6-
dichloro-3-methylaniline (65.4 mg, 371 µmol). Purification by FCC (eluent, 10:1 
PE/EtOAc) afforded the racemic compound as a white solid (75 mg, 50%). LCMS (m/z): 
446.1 [M + Na]+, 423.1 [M + H]+. System C HPLC: tR 8.496 min, >95% purity (214 & 254 nm). 
HRMS (m/z): C25H21Cl2NO: requires 422.1083 [M + H]+; found 422.1073. 1H NMR (CDCl3) δ 
7.40–7.37 (m, 1H), 7.34–7.31 (m, 1H), 7.30–7.25 (m, 2H), 7.18–7.11 (m, 3H), 7.08–7.01 (m, 
3H), 6.89 (s, 1H), 4.52 (s, 1H), 4.34 (t, J = 2.6 Hz, 1H), 2.64 (dd, J = 12.5, 2.8 Hz, 1H), 2.29 (s, 
3H), 1.66 (dd, J = 12.4, 2.7 Hz, 1H), 1.18 (s, 3H). 13C NMR (CDCl3) δ 174.7, 143.3, 143.2, 141.5, 
141.4, 136.1, 133.8, 132.2, 130.8, 129.6, 127.4, 126.5, 126.4, 126.2, 125.9, 125.9, 125.7, 123.5, 
123.2, 52.7, 49.2, 44.7, 40.3, 28.3, 20.5. Analytical data including 1H NMR and 13C NMR 
spectra are in accordance with those published [26]. 

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl methacrylate (13) 

 
Synthesised according to general procedure A using methacrylic acid (1.62 mL, 19.2 
mmol), (1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-ol (3.00 g, 19.2 mmol), EDC (4.05 g, 
21.2 mmol) and DMAP (117 mg, 960 µmol). Purification by FCC (eluent, DCM) gave the 
title compound as a transparent oil (3.20 g, 74%). LCMS (m/z): 225.2 [M + H]+. System C 
HPLC: tR 9.042 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.23–6.20 (m, 1H), 
5.81 (dd, J = 2.0, 1.2 Hz, 1H), 3.39 (td, J = 10.4, 4.3 Hz, 1H), 2.16 (dtd, J = 14.0, 7.0, 2.7 Hz, 
1H), 1.99 (dt, J = 1.5, 0.9 Hz, 3H), 1.95–1.91 (m, 1H), 1.61 (ddd, J = 16.1, 14.6, 7.9 Hz, 2H), 
1.45–1.37 (m, 2H), 1.14–1.05 (m, 1H), 0.96 (dd, J = 12.1, 4.1 Hz, 1H), 0.94–0.88 (m, 6H), 0.80 
(dd, J = 7.0, 0.9 Hz, 3H). 13C NMR (CDCl3) δ 163.2, 135.9, 129.1, 71.7, 50.3, 45.2, 34.7, 31.8, 
25.9, 23.3, 22.3, 21.1, 16.2. Analytical data in accordance with those published [54]. 

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-
carboxylate (14) 
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2-isopropyl-5-methylcyclohexyl methacrylate (13) (440 mg, 1.96 mmol) and anthracene 
(350 mg, 1.96 mmol). Purification by FCC (eluent, 10:1 PE/EtOAc] gave the anthracene 
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Hz, 1H), 4.38 (s, 1H), 4.23 (t, J = 2.6 Hz, 1H), 2.70 (dd, J = 12.7, 3.0 Hz, 1H), 1.86 (tt, J = 11.3, 
3.5 Hz, 1H), 1.67–1.57 (m, 3H), 1.41–1.36 (m, 2H), 1.36–1.32 (m, 1H), 1.02 (s, 3H), 0.98 (dd, 

Synthesised according to general procedure B using TiCl4 (4.38 µL, 3.93 mmol), (1R,2S,5R)-
2-isopropyl-5-methylcyclohexyl methacrylate (13) (440 mg, 1.96 mmol) and anthracene
(350 mg, 1.96 mmol). Purification by FCC (eluent, 10:1 PE/EtOAc] gave the anthracene
ester derivative as a light-yellow oil (400 mg, 51%, d.e. >70%). LCMS (m/z): 401.1 [M
− H]-. System C HPLC: tR 2.204 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ
7.30–7.27 (m, 1H), 7.25–7.18 (m, 3H), 7.11–7.07 (m, 2H), 7.07–6.98 (m, 2H, H3), 4.48 (td,
J = 10.8, 4.3 Hz, 1H), 4.38 (s, 1H), 4.23 (t, J = 2.6 Hz, 1H), 2.70 (dd, J = 12.7, 3.0 Hz, 1H),
1.86 (tt, J = 11.3, 3.5 Hz, 1H), 1.67–1.57 (m, 3H), 1.41–1.36 (m, 2H), 1.36–1.32 (m, 1H), 1.02
(s, 3H), 0.98 (dd, J = 13.1, 3.2 Hz, 1H), 0.91 (d, J = 7.0 Hz, 3H), 0.88–0.85 (m, 2H), 0.82 (d,
J = 6.5 Hz, 3H), 0.68 (d, J = 6.9 Hz, 3H). 13C NMR (CDCl3) δ 176.3, 143.9, 143.4, 141.5, 141.0,
126.3, 126.1, 126.0, 125.5, 125.5, 125.2, 123.4, 123.2, 74.7, 52.9, 47.1, 44.6, 40.6, 38.8, 34.3, 31.4,
27.3, 26.0, 23.2, 22.1, 21.1, 16.1.
(R)-N-(2-Hydroxy-1-phenylethyl)methacrylamide [55] (16)
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KOt-Bu (3.27 g, 29.2 mmol) was dissolved in THF (100 mL; technical grade, containing ca. 
0.2% H2O) with stirring in air at rt for 1 min. Methyl methacrylate (1.55 mL, 14.6 mmol) 
and (R)-2-amino-2-phenylethan-1-ol (2.00 g, 14.6 mmol) were added immediately and the 
mixture was stirred at rt for 1 h. After evaporating the THF under reduced pressure, H2O 
(75 mL) and DCM (75 mL) were added and the organic layer was separated and dried 
(Na2SO4). The solvent was evaporated under reduced pressure and residue was purified 
by FCC (eluent, 1:10 DCM/MeOH) to give the corresponding amide as a yellow/orange 
solid (2.45 g, 89%). LCMS (m/z): 206.1 [M + H]+. System C HPLC: tR 4.465 min, >95% purity 
(214 & 254 nm). 1H NMR (CDCl3) δ 7.38–7.33 (m, 2H), 7.32–7.28 (m, 3H), 6.57 (d, J = 5.6 Hz, 
1H), 5.75 (s, 1H), 5.37–5.36 (m, 1H), 5.10 (dt, J = 7.0, 5.0 Hz, 1H), 3.89 (d, J = 4.9 Hz, 2H), 
2.96 (s, 1H), 1.98–1.97 (m, 3H). 13C NMR (CDCl3) δ 168.9, 139.8, 139.2, 129.0, 128.0, 126.8, 
120.3, 66.6, 56.1, 18.8. Analytical data in accordance with those published [55]. 

N-((R)-2-Hydroxy-1-phenylethyl)-11-methyl-9,10-dihydro-9,10-ethanoanthracene-11-carbox-
amide (17) 

 
Synthesised according to general procedure B using TiCl4 (1.45 mL, 13.0 mmol), (R)-N-(2-
hydroxy-1-phenylethyl)methacrylamide (1.34 g, 6.51 mmol) (16) and anthracene (1.16 g, 
6.51 mmol). Residue chromatographed with 5:1 PE/EtOAc to afford a pair of diastere-
omers (2:1 ratio) as a transparent oil (2.00 g, 80%). LCMS (m/z): 384.2 [M + H]+. System C 
HPLC: tR 7.254min, >95% purity (214 & 254 nm). 1H NMR (401 MHz, CDCl3) δ 7.36–7.25 
(m, 12H), 7.20–7.11 (m, 6H), 7.08–6.99 (m, 4H), 6.04 (s, 0.5H), 5.75 (s, 1H), 4.86 (dt, J = 12.5, 
5.8 Hz, 1.7H), 4.34 (d, J = 2.2 Hz, 3H), 3.80 (dd, J = 4.6, 2.4 Hz, 1H), 3.68 (dd, J = 11.3, 5.6 Hz, 
1H), 3.59 (dd, J = 11.3, 3.9 Hz, 1H), 2.58 (dd, J = 12.8, 3.0 Hz, 0.7H), 2.38 (dd, J = 13.1, 3.0 Hz, 
1H), 1.59 (dd, J = 13.2, 2.5 Hz, 1H), 1.55 (dd, J = 13.4, 3.0 Hz, 0.6H), 1.10 (s, J = 2.6 Hz, 1.4H), 
1.09 (s, 3H). 

(R)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((R)-19) 

 
Synthesised according to general procedure A using methacrylic acid (1.49 g, 17.3 mmol), 
(R)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (2.25 g, 17.3 mmol), EDC (3.31 g, 17.3 
mmol) and DMAP (106 mg, 864 µmol). Purification by FCC (eluent, DCM) gave the title 
compound as a transparent oil (3.55 g, 67%). LCMS (m/z): 221.1 [M + Na]+. System C HPLC: 
tR 6.010 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.26–6.15 (m, 1H), 5.68 (dd, 
J = 2.6, 1.2 Hz, 1H), 5.41 (d, J = 0.8 Hz, 1H), 4.09–4.01 (m, 2H), 1.98 (dd, J = 1.7, 0.8 Hz, 3H), 

KOt-Bu (3.27 g, 29.2 mmol) was dissolved in THF (100 mL; technical grade, containing ca.
0.2% H2O) with stirring in air at rt for 1 min. Methyl methacrylate (1.55 mL, 14.6 mmol)
and (R)-2-amino-2-phenylethan-1-ol (2.00 g, 14.6 mmol) were added immediately and the
mixture was stirred at rt for 1 h. After evaporating the THF under reduced pressure, H2O
(75 mL) and DCM (75 mL) were added and the organic layer was separated and dried
(Na2SO4). The solvent was evaporated under reduced pressure and residue was purified
by FCC (eluent, 1:10 DCM/MeOH) to give the corresponding amide as a yellow/orange
solid (2.45 g, 89%). LCMS (m/z): 206.1 [M + H]+. System C HPLC: tR 4.465 min, >95%
purity (214 & 254 nm). 1H NMR (CDCl3) δ 7.38–7.33 (m, 2H), 7.32–7.28 (m, 3H), 6.57 (d,
J = 5.6 Hz, 1H), 5.75 (s, 1H), 5.37–5.36 (m, 1H), 5.10 (dt, J = 7.0, 5.0 Hz, 1H), 3.89 (d, J = 4.9
Hz, 2H), 2.96 (s, 1H), 1.98–1.97 (m, 3H). 13C NMR (CDCl3) δ 168.9, 139.8, 139.2, 129.0, 128.0,
126.8, 120.3, 66.6, 56.1, 18.8. Analytical data in accordance with those published [55].
N-((R)-2-Hydroxy-1-phenylethyl)-11-methyl-9,10-dihydro-9,10-ethanoanthracene-11-carboxamide (17)
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J = 13.1, 3.2 Hz, 1H), 0.91 (d, J = 7.0 Hz, 3H), 0.88–0.85 (m, 2H), 0.82 (d, J = 6.5 Hz, 3H), 0.68 
(d, J = 6.9 Hz, 3H). 13C NMR (CDCl3) δ 176.3, 143.9, 143.4, 141.5, 141.0, 126.3, 126.1, 126.0, 
125.5, 125.5, 125.2, 123.4, 123.2, 74.7, 52.9, 47.1, 44.6, 40.6, 38.8, 34.3, 31.4, 27.3, 26.0, 23.2, 
22.1, 21.1, 16.1. 

(R)-N-(2-Hydroxy-1-phenylethyl)methacrylamide [55] (16) 

 
KOt-Bu (3.27 g, 29.2 mmol) was dissolved in THF (100 mL; technical grade, containing ca. 
0.2% H2O) with stirring in air at rt for 1 min. Methyl methacrylate (1.55 mL, 14.6 mmol) 
and (R)-2-amino-2-phenylethan-1-ol (2.00 g, 14.6 mmol) were added immediately and the 
mixture was stirred at rt for 1 h. After evaporating the THF under reduced pressure, H2O 
(75 mL) and DCM (75 mL) were added and the organic layer was separated and dried 
(Na2SO4). The solvent was evaporated under reduced pressure and residue was purified 
by FCC (eluent, 1:10 DCM/MeOH) to give the corresponding amide as a yellow/orange 
solid (2.45 g, 89%). LCMS (m/z): 206.1 [M + H]+. System C HPLC: tR 4.465 min, >95% purity 
(214 & 254 nm). 1H NMR (CDCl3) δ 7.38–7.33 (m, 2H), 7.32–7.28 (m, 3H), 6.57 (d, J = 5.6 Hz, 
1H), 5.75 (s, 1H), 5.37–5.36 (m, 1H), 5.10 (dt, J = 7.0, 5.0 Hz, 1H), 3.89 (d, J = 4.9 Hz, 2H), 
2.96 (s, 1H), 1.98–1.97 (m, 3H). 13C NMR (CDCl3) δ 168.9, 139.8, 139.2, 129.0, 128.0, 126.8, 
120.3, 66.6, 56.1, 18.8. Analytical data in accordance with those published [55]. 

N-((R)-2-Hydroxy-1-phenylethyl)-11-methyl-9,10-dihydro-9,10-ethanoanthracene-11-carbox-
amide (17) 

 
Synthesised according to general procedure B using TiCl4 (1.45 mL, 13.0 mmol), (R)-N-(2-
hydroxy-1-phenylethyl)methacrylamide (1.34 g, 6.51 mmol) (16) and anthracene (1.16 g, 
6.51 mmol). Residue chromatographed with 5:1 PE/EtOAc to afford a pair of diastere-
omers (2:1 ratio) as a transparent oil (2.00 g, 80%). LCMS (m/z): 384.2 [M + H]+. System C 
HPLC: tR 7.254min, >95% purity (214 & 254 nm). 1H NMR (401 MHz, CDCl3) δ 7.36–7.25 
(m, 12H), 7.20–7.11 (m, 6H), 7.08–6.99 (m, 4H), 6.04 (s, 0.5H), 5.75 (s, 1H), 4.86 (dt, J = 12.5, 
5.8 Hz, 1.7H), 4.34 (d, J = 2.2 Hz, 3H), 3.80 (dd, J = 4.6, 2.4 Hz, 1H), 3.68 (dd, J = 11.3, 5.6 Hz, 
1H), 3.59 (dd, J = 11.3, 3.9 Hz, 1H), 2.58 (dd, J = 12.8, 3.0 Hz, 0.7H), 2.38 (dd, J = 13.1, 3.0 Hz, 
1H), 1.59 (dd, J = 13.2, 2.5 Hz, 1H), 1.55 (dd, J = 13.4, 3.0 Hz, 0.6H), 1.10 (s, J = 2.6 Hz, 1.4H), 
1.09 (s, 3H). 

(R)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((R)-19) 

 
Synthesised according to general procedure A using methacrylic acid (1.49 g, 17.3 mmol), 
(R)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (2.25 g, 17.3 mmol), EDC (3.31 g, 17.3 
mmol) and DMAP (106 mg, 864 µmol). Purification by FCC (eluent, DCM) gave the title 
compound as a transparent oil (3.55 g, 67%). LCMS (m/z): 221.1 [M + Na]+. System C HPLC: 
tR 6.010 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.26–6.15 (m, 1H), 5.68 (dd, 
J = 2.6, 1.2 Hz, 1H), 5.41 (d, J = 0.8 Hz, 1H), 4.09–4.01 (m, 2H), 1.98 (dd, J = 1.7, 0.8 Hz, 3H), 

Synthesised according to general procedure B using TiCl4 (1.45 mL, 13.0 mmol), (R)-N-(2-
hydroxy-1-phenylethyl)methacrylamide (1.34 g, 6.51 mmol) (16) and anthracene (1.16 g,
6.51 mmol). Residue chromatographed with 5:1 PE/EtOAc to afford a pair of diastereomers
(2:1 ratio) as a transparent oil (2.00 g, 80%). LCMS (m/z): 384.2 [M + H]+. System C HPLC:
tR 7.254min, >95% purity (214 & 254 nm). 1H NMR (401 MHz, CDCl3) δ 7.36–7.25 (m, 12H),
7.20–7.11 (m, 6H), 7.08–6.99 (m, 4H), 6.04 (s, 0.5H), 5.75 (s, 1H), 4.86 (dt, J = 12.5, 5.8 Hz,
1.7H), 4.34 (d, J = 2.2 Hz, 3H), 3.80 (dd, J = 4.6, 2.4 Hz, 1H), 3.68 (dd, J = 11.3, 5.6 Hz, 1H),
3.59 (dd, J = 11.3, 3.9 Hz, 1H), 2.58 (dd, J = 12.8, 3.0 Hz, 0.7H), 2.38 (dd, J = 13.1, 3.0 Hz, 1H),
1.59 (dd, J = 13.2, 2.5 Hz, 1H), 1.55 (dd, J = 13.4, 3.0 Hz, 0.6H), 1.10 (s, J = 2.6 Hz, 1.4H), 1.09
(s, 3H).
(R)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((R)-19)
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J = 13.1, 3.2 Hz, 1H), 0.91 (d, J = 7.0 Hz, 3H), 0.88–0.85 (m, 2H), 0.82 (d, J = 6.5 Hz, 3H), 0.68 
(d, J = 6.9 Hz, 3H). 13C NMR (CDCl3) δ 176.3, 143.9, 143.4, 141.5, 141.0, 126.3, 126.1, 126.0, 
125.5, 125.5, 125.2, 123.4, 123.2, 74.7, 52.9, 47.1, 44.6, 40.6, 38.8, 34.3, 31.4, 27.3, 26.0, 23.2, 
22.1, 21.1, 16.1. 

(R)-N-(2-Hydroxy-1-phenylethyl)methacrylamide [55] (16) 

 
KOt-Bu (3.27 g, 29.2 mmol) was dissolved in THF (100 mL; technical grade, containing ca. 
0.2% H2O) with stirring in air at rt for 1 min. Methyl methacrylate (1.55 mL, 14.6 mmol) 
and (R)-2-amino-2-phenylethan-1-ol (2.00 g, 14.6 mmol) were added immediately and the 
mixture was stirred at rt for 1 h. After evaporating the THF under reduced pressure, H2O 
(75 mL) and DCM (75 mL) were added and the organic layer was separated and dried 
(Na2SO4). The solvent was evaporated under reduced pressure and residue was purified 
by FCC (eluent, 1:10 DCM/MeOH) to give the corresponding amide as a yellow/orange 
solid (2.45 g, 89%). LCMS (m/z): 206.1 [M + H]+. System C HPLC: tR 4.465 min, >95% purity 
(214 & 254 nm). 1H NMR (CDCl3) δ 7.38–7.33 (m, 2H), 7.32–7.28 (m, 3H), 6.57 (d, J = 5.6 Hz, 
1H), 5.75 (s, 1H), 5.37–5.36 (m, 1H), 5.10 (dt, J = 7.0, 5.0 Hz, 1H), 3.89 (d, J = 4.9 Hz, 2H), 
2.96 (s, 1H), 1.98–1.97 (m, 3H). 13C NMR (CDCl3) δ 168.9, 139.8, 139.2, 129.0, 128.0, 126.8, 
120.3, 66.6, 56.1, 18.8. Analytical data in accordance with those published [55]. 

N-((R)-2-Hydroxy-1-phenylethyl)-11-methyl-9,10-dihydro-9,10-ethanoanthracene-11-carbox-
amide (17) 

 
Synthesised according to general procedure B using TiCl4 (1.45 mL, 13.0 mmol), (R)-N-(2-
hydroxy-1-phenylethyl)methacrylamide (1.34 g, 6.51 mmol) (16) and anthracene (1.16 g, 
6.51 mmol). Residue chromatographed with 5:1 PE/EtOAc to afford a pair of diastere-
omers (2:1 ratio) as a transparent oil (2.00 g, 80%). LCMS (m/z): 384.2 [M + H]+. System C 
HPLC: tR 7.254min, >95% purity (214 & 254 nm). 1H NMR (401 MHz, CDCl3) δ 7.36–7.25 
(m, 12H), 7.20–7.11 (m, 6H), 7.08–6.99 (m, 4H), 6.04 (s, 0.5H), 5.75 (s, 1H), 4.86 (dt, J = 12.5, 
5.8 Hz, 1.7H), 4.34 (d, J = 2.2 Hz, 3H), 3.80 (dd, J = 4.6, 2.4 Hz, 1H), 3.68 (dd, J = 11.3, 5.6 Hz, 
1H), 3.59 (dd, J = 11.3, 3.9 Hz, 1H), 2.58 (dd, J = 12.8, 3.0 Hz, 0.7H), 2.38 (dd, J = 13.1, 3.0 Hz, 
1H), 1.59 (dd, J = 13.2, 2.5 Hz, 1H), 1.55 (dd, J = 13.4, 3.0 Hz, 0.6H), 1.10 (s, J = 2.6 Hz, 1.4H), 
1.09 (s, 3H). 

(R)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((R)-19) 

 
Synthesised according to general procedure A using methacrylic acid (1.49 g, 17.3 mmol), 
(R)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (2.25 g, 17.3 mmol), EDC (3.31 g, 17.3 
mmol) and DMAP (106 mg, 864 µmol). Purification by FCC (eluent, DCM) gave the title 
compound as a transparent oil (3.55 g, 67%). LCMS (m/z): 221.1 [M + Na]+. System C HPLC: 
tR 6.010 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.26–6.15 (m, 1H), 5.68 (dd, 
J = 2.6, 1.2 Hz, 1H), 5.41 (d, J = 0.8 Hz, 1H), 4.09–4.01 (m, 2H), 1.98 (dd, J = 1.7, 0.8 Hz, 3H), 

Synthesised according to general procedure A using methacrylic acid (1.49 g, 17.3 mmol),
(R)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (2.25 g, 17.3 mmol), EDC (3.31 g,
17.3 mmol) and DMAP (106 mg, 864 µmol). Purification by FCC (eluent, DCM) gave
the title compound as a transparent oil (3.55 g, 67%). LCMS (m/z): 221.1 [M + Na]+. System
C HPLC: tR 6.010 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.26–6.15 (m, 1H),
5.68 (dd, J = 2.6, 1.2 Hz, 1H), 5.41 (d, J = 0.8 Hz, 1H), 4.09–4.01 (m, 2H), 1.98 (dd, J = 1.7,
0.8 Hz, 3H), 1.21 (s, 3H), 1.13 (s, 3H). 13C NMR (CDCl3) δ 172.4, 165.9, 135.1, 127.5, 76.2,
75.2, 23.1, 19.9, 18.2.
(S)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((S)-19)
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1.21 (s, 3H), 1.13 (s, 3H). 13C NMR (CDCl3) δ 172.4, 165.9, 135.1, 127.5, 76.2, 75.2, 23.1, 19.9, 
18.2. 

(S)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((S)-19) 

 
Synthesised according to general procedure A using methacrylic acid (2.32 g, 26.9 mmol), 
(S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (3.50 g, 26.9 mmol), EDC (5.16 g, 26.9 
mmol), and DMAP (164 mg, 1.34 mmol). Purification by FCC (eluent, DCM) gave the title 
compound as a transparent oil (1.05 g, 69%). LCMS (m/z): 221.1 [M + Na]+. System C HPLC: 
tR 6.010 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.26–6.15 (m, 1H), 5.68 (dd, 
J = 2.6, 1.2 Hz, 1H), 5.41 (d, J = 0.8 Hz, 1H), 4.09–4.01 (m, 2H), 1.98 (dd, J = 1.7, 0.8 Hz, 3H), 
1.21 (s, 3H), 1.13 (s, 3H). 13C NMR (CDCl3) δ 172.4, 165.9, 135.1, 127.5, 76.2, 75.2, 23.1, 19.9, 
18.2. 

(R)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl-(S)-12-methyl-9,10-dihydro-9,10-ethanoanthra-
cene-12-carboxylate ((S)-20) 

 
Synthesised according to general procedure B using TiCl4 (2.39 mL, 21.8 mmol), (R)-4,4-
dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((R)-19) (2.06 g, 10.4 mmol) and anthra-
cene (1.85 g, 10.4 mmol). Purification by FCC (eluent, DCM) afforded the title compound 
as a brown solid. Recrystallization from EtOH gave white crystals (3.25 g, 83%, d.e. ~90%). 
LCMS (m/z): 399.1 [M+Na]+. System C HPLC: tR 8.320 min, >95% purity (214 & 254 nm). 1H 
NMR (401 MHz, CDCl3) δ 7.33 (dt, J = 5.4, 3.3 Hz, 1H), 7.30–7.26 (m, 2H), 7.24–7.21 (m, 
1H), 7.16–7.10 (m, 2H), 7.10–7.02 (m, 2H), 5.18 (s, 1H), 4.40 (s, 1H), 4.30 (t, J = 2.7 Hz, 1H), 
4.04 (d, J = 9.0 Hz, 1H), 3.97 (d, J = 9.0 Hz, 1H), 2.76 (dd, J = 12.8, 3.0 Hz, 1H), 1.50 (dd, J = 
12.8, 2.6 Hz, 1H), 1.25 (s, 3H), 1.18 (s, 3H), 1.17 (s, 3H). 13C NMR (CDCl3) δ 175.6, 172.1, 
143.7, 143.5, 141.2, 140.4, 126.6, 126.6, 125.7, 125.5, 124.8, 123.9, 123.4, 76.2, 75.5, 52.6, 49.0, 
44.4, 39.2, 27.2, 23.0, 20.3. 

(S)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl-(R)-12-methyl-9,10-dihydro-9,10-ethanoanthra-
cene-12-carboxylate ((R)-20) 

 
Synthesised according to general procedure B using TiCl4 (1.61 mL, 14.7 mmol), (S)-4,4-
dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((S)-19) (1.39 g, 7.01 mmol) and anthra-
cene (1.25 g, 7.01 mmol). Purification by FCC (eluent, DCM) afforded the title compound 
as a beige solid (2.15 g, 82%, d.e. ~83%) LCMS (m/z): 399.1 [M + Na]+. System C HPLC: tR 
8.320 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 7.33 (dt, J = 5.4, 3.3 Hz, 1H), 
7.30–7.26 (m, 2H), 7.24–7.21 (m, 1H), 7.16–7.10 (m, 2H), 7.10–7.02 (m, 2H), 5.18 (s, 1H), 4.40 
(s, 1H), 4.30 (t, J = 2.7 Hz, 1H), 4.04 (d, J = 9.0 Hz, 1H), 3.97 (d, J = 9.0 Hz, 1H), 2.76 (dd, J = 
12.8, 3.0 Hz, 1H), 1.50 (dd, J = 12.8, 2.6 Hz, 1H), 1.25 (s, 3H), 1.18 (s, 3H), 1.17 (s, 3H). 13C 
NMR (CDCl3) δ 175.6, 172.1, 143.7, 143.5, 141.2, 140.4, 126.6, 126.6, 125.7, 125.5, 124.8, 123.9, 
123.4, 76.2, 75.5, 52.6, 49.0, 44.4, 39.2, 27.2, 23.0, 20.3. 
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Synthesised according to general procedure A using methacrylic acid (2.32 g, 26.9 mmol),
(S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (3.50 g, 26.9 mmol), EDC (5.16 g,
26.9 mmol), and DMAP (164 mg, 1.34 mmol). Purification by FCC (eluent, DCM) gave the
title compound as a transparent oil (1.05 g, 69%). LCMS (m/z): 221.1 [M + Na]+. System C
HPLC: tR 6.010 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.26–6.15 (m, 1H),
5.68 (dd, J = 2.6, 1.2 Hz, 1H), 5.41 (d, J = 0.8 Hz, 1H), 4.09–4.01 (m, 2H), 1.98 (dd, J = 1.7,
0.8 Hz, 3H), 1.21 (s, 3H), 1.13 (s, 3H). 13C NMR (CDCl3) δ 172.4, 165.9, 135.1, 127.5, 76.2,
75.2, 23.1, 19.9, 18.2.
(R)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl-(S)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-car
boxylate ((S)-20)
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1.21 (s, 3H), 1.13 (s, 3H). 13C NMR (CDCl3) δ 172.4, 165.9, 135.1, 127.5, 76.2, 75.2, 23.1, 19.9, 
18.2. 

(S)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((S)-19) 

 
Synthesised according to general procedure A using methacrylic acid (2.32 g, 26.9 mmol), 
(S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (3.50 g, 26.9 mmol), EDC (5.16 g, 26.9 
mmol), and DMAP (164 mg, 1.34 mmol). Purification by FCC (eluent, DCM) gave the title 
compound as a transparent oil (1.05 g, 69%). LCMS (m/z): 221.1 [M + Na]+. System C HPLC: 
tR 6.010 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 6.26–6.15 (m, 1H), 5.68 (dd, 
J = 2.6, 1.2 Hz, 1H), 5.41 (d, J = 0.8 Hz, 1H), 4.09–4.01 (m, 2H), 1.98 (dd, J = 1.7, 0.8 Hz, 3H), 
1.21 (s, 3H), 1.13 (s, 3H). 13C NMR (CDCl3) δ 172.4, 165.9, 135.1, 127.5, 76.2, 75.2, 23.1, 19.9, 
18.2. 

(R)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl-(S)-12-methyl-9,10-dihydro-9,10-ethanoanthra-
cene-12-carboxylate ((S)-20) 

 
Synthesised according to general procedure B using TiCl4 (2.39 mL, 21.8 mmol), (R)-4,4-
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4,4-dimethyl-2-oxotetrahydrofuran-3-yl methacrylate ((S)-19) (1.39 g, 7.01 mmol) and
anthracene (1.25 g, 7.01 mmol). Purification by FCC (eluent, DCM) afforded the title
compound as a beige solid (2.15 g, 82%, d.e. ~83%) LCMS (m/z): 399.1 [M + Na]+. System
C HPLC: tR 8.320 min, >95% purity (214 & 254 nm). 1H NMR (CDCl3) δ 7.33 (dt, J = 5.4,
3.3 Hz, 1H), 7.30–7.26 (m, 2H), 7.24–7.21 (m, 1H), 7.16–7.10 (m, 2H), 7.10–7.02 (m, 2H), 5.18
(s, 1H), 4.40 (s, 1H), 4.30 (t, J = 2.7 Hz, 1H), 4.04 (d, J = 9.0 Hz, 1H), 3.97 (d, J = 9.0 Hz, 1H),
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(S)-12-Methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxylic acid ((S)-21)
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Synthesised according to general procedure C using (S)-4,4-Dimethyl-2-oxotetrahydrofu-
ran-3-yl-(S)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxylate ((R)-20) (1.40 
g, 3.72 mmol) and NaOH (446 mg, 11.2 mmol). The aqueous phase was extracted with 
DCM, and the organic extracts were dried (Na2SO4) and evaporated to dryness to afford 
the desired acid as a white solid (956 mg, 98%, e.e. ~83%). [α]D25 = +24.1° (c 1.0, CHCl3), 
LCMS (m/z): 263.1 [M − H]‒. System C HPLC: tR 7.181 min, >95% purity (214 & 254 nm). 1H 
NMR (CDCl3) δ 7.31–7.28 (m, 1H), 7.27–7.23 (m, 3H), 7.23–7.19 (m, 1H), 7.12 (ddd, J = 6.1, 
5.6, 3.7 Hz, 2H), 7.08 (dd, J = 7.2, 1.5 Hz, 1H) 7.06–7.01 (m, 1H), 4.37 (s, 1H), 4.26 (t, J = 2.7 
Hz, 1H), 2.62 (dd, J = 12.7, 3.0 Hz, 1H), 1.40 (dd, J = 12.7, 2.5 Hz, 1H), 1.07 (s, 3H). 13C NMR 
(CDCl3) δ 181.7, 143.6, 143.3, 141.3, 140.5, 126.5, 126.3, 126.2, 125.8, 125.7, 125.2, 123.5, 123.3, 
52.6, 48.5, 44.5, 38.7, 26.9. 

(9S,10R,12R)-N-(2,6-Dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-
12-carboxamide ((S)-2) 

 
Synthesised according to general procedure D using (S)-12-methyl-9,10-dihydro-9,10-eth-
anoanthracene-11-carbonyl chloride ((S)-21) (260 mg, 919 µmol), 2,6-dichloro-3-methyl-
aniline (162 mg, 920 µmol), and DMAP (56.2 mg, 460 µmol). Purification by FCC (eluent, 
1:10 EtOAc/PE) afforded the title compound as a white solid (75 mg, 19%, e.e. 90%). LCMS 
(m/z): 446.1 [M + Na]+, 423.1 [M + H]+. System C HPLC: tR 8.496 min, >95% purity (214 & 
254 nm). HRMS (m/z): C25H21Cl2NO: requires 422.1083 [M + H]+; found 422.1073. 1H NMR 
(CDCl3) δ 7.40–7.37 (m, 1H), 7.34–7.31 (m, 1H), 7.30–7.25 (m, 2H), 7.18–7.11 (m, 3H), 7.08–
7.01 (m, 3H), 6.89 (s, 1H), 4.52 (s, 1H), 4.34 (t, J = 2.6 Hz, 1H), 2.64 (dd, J = 12.5, 2.8 Hz, 1H), 
2.29 (s, 3H), 1.66 (dd, J = 12.4, 2.7 Hz, 1H), 1.18 (s, 3H). 13C NMR (CDCl3) δ 174.7, 143.3, 
143.2, 141.5, 141.4, 136.1, 133.8, 132.2, 130.8, 129.6, 127.4, 126.5, 126.4, 126.2, 125.9, 125.9, 
125.7, 123.5, 123.2, 52.7, 49.2, 44.7, 40.3, 28.3, 20.5. 

  



Molecules 2021, 26, 3799 14 of 19

Synthesised according to general procedure C using (R)-4,4-Dimethyl-2-oxotetrahydrofuran-
3-yl-(S)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxylate ((S)-20) (3.00 g,
7.97 mmol) and NaOH (956 mg, 23.9 mmol). The aqueous phase was extracted with
DCM, and the organic extracts were dried (Na2SO4) and evaporated to dryness to afford
the desired acid as a white foam (2.05 g, 95%, e.e. ~88%). [α]D

25 = −24.9◦ (c 1.0, CHCl3),
lit[α]D

20 = −26.7◦ (c 1.08, CHCl3) [39], LCMS (m/z): 263.1 [M − H]-. System C HPLC: tR
7.181 min, >95% purity (214 & 254 nm). Analytical data including 1H NMR and 13C NMR
spectra are in accordance with those reported by Camps et al. [39]
(R)-12-Methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxylic acid ((R)-21)
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NMR (CDCl3) δ 7.31–7.28 (m, 1H), 7.27–7.23 (m, 3H), 7.23–7.19 (m, 1H), 7.12 (ddd, J = 6.1, 
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Synthesised according to general procedure C using (S)-4,4-Dimethyl-2-oxotetrahydrofuran-
3-yl-(S)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxylate ((R)-20) (1.40 g,
3.72 mmol) and NaOH (446 mg, 11.2 mmol). The aqueous phase was extracted with
DCM, and the organic extracts were dried (Na2SO4) and evaporated to dryness to afford
the desired acid as a white solid (956 mg, 98%, e.e. ~83%). [α]D

25 = +24.1◦ (c 1.0, CHCl3),
LCMS (m/z): 263.1 [M − H]-. System C HPLC: tR 7.181 min, >95% purity (214 & 254
nm). 1H NMR (CDCl3) δ 7.31–7.28 (m, 1H), 7.27–7.23 (m, 3H), 7.23–7.19 (m, 1H), 7.12 (ddd,
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g, 3.72 mmol) and NaOH (446 mg, 11.2 mmol). The aqueous phase was extracted with 
DCM, and the organic extracts were dried (Na2SO4) and evaporated to dryness to afford 
the desired acid as a white solid (956 mg, 98%, e.e. ~83%). [α]D25 = +24.1° (c 1.0, CHCl3), 
LCMS (m/z): 263.1 [M − H]‒. System C HPLC: tR 7.181 min, >95% purity (214 & 254 nm). 1H 
NMR (CDCl3) δ 7.31–7.28 (m, 1H), 7.27–7.23 (m, 3H), 7.23–7.19 (m, 1H), 7.12 (ddd, J = 6.1, 
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(CDCl3) δ 181.7, 143.6, 143.3, 141.3, 140.5, 126.5, 126.3, 126.2, 125.8, 125.7, 125.2, 123.5, 123.3, 
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Synthesised according to general procedure D using (S)-12-methyl-9,10-dihydro-9,10-
ethanoanthracene-11-carbonyl chloride ((S)-21) (260 mg, 919 µmol), 2,6-dichloro-3-methyl
aniline (162 mg, 920 µmol), and DMAP (56.2 mg, 460 µmol). Purification by FCC (eluent,
1:10 EtOAc/PE) afforded the title compound as a white solid (75 mg, 19%, e.e. 90%). LCMS
(m/z): 446.1 [M + Na]+, 423.1 [M + H]+

. System C HPLC: tR 8.496 min, >95% purity (214
& 254 nm). HRMS (m/z): C25H21Cl2NO: requires 422.1083 [M + H]+; found 422.1073. 1H
NMR (CDCl3) δ 7.40–7.37 (m, 1H), 7.34–7.31 (m, 1H), 7.30–7.25 (m, 2H), 7.18–7.11 (m, 3H),
7.08–7.01 (m, 3H), 6.89 (s, 1H), 4.52 (s, 1H), 4.34 (t, J = 2.6 Hz, 1H), 2.64 (dd, J = 12.5, 2.8 Hz,
1H), 2.29 (s, 3H), 1.66 (dd, J = 12.4, 2.7 Hz, 1H), 1.18 (s, 3H). 13C NMR (CDCl3) δ 174.7, 143.3,
143.2, 141.5, 141.4, 136.1, 133.8, 132.2, 130.8, 129.6, 127.4, 126.5, 126.4, 126.2, 125.9, 125.9,
125.7, 123.5, 123.2, 52.7, 49.2, 44.7, 40.3, 28.3, 20.5.
(9R,10S,12S)-N-(2,6-Dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-car
boxamide ((R)-2)
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anoanthracene-11-carbonyl chloride ((R)-21) (135 mg, 477 µmol), 2,6-dichloro-3-methyl-
aniline (84. 1 mg, 477 µmol), and DMAP (29.1 mg, 239 µmol). Purification by FCC (eluent, 
1:10 EtOAc/PE) afforded the title compound as a white solid (50 mg, 25%, e.e. 84%). LCMS 
(m/z): 446.1 [M + Na]+, 423.1 [M + H]+. System C HPLC: tR 8.496 min, >95% purity (214 & 
254 nm). HRMS (m/z): C25H21Cl2NO: requires 422.1083 [M + H]+; found 422.1073. 1H NMR 
(CDCl3) δ 7.40–7.37 (m, 1H), 7.34–7.31 (m, 1H), 7.30–7.25 (m, 2H), 7.18–7.11 (m, 3H), 7.08–
7.01 (m, 3H), 6.89 (s, 1H), 4.52 (s, 1H), 4.34 (t, J = 2.6 Hz, 1H), 2.64 (dd, J = 12.5, 2.8 Hz, 1H), 
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3.3. Pharmacological Characterisation 
3.3.1. Materials 

Dulbecco’s modified Eagle’s medium, Flp-In CHO cells, and hygromycin B (Invitro-
gen, Carlsbad, CA, USA). Fetal bovine serum (FBS) (ThermoTrace, Melbourne, VIC, Aus-
tralia). All other reagents (Sigma Aldrich, St. Louis, MO, USA). 

3.3.2. General Cell Culture 
FlpIn Chinese Hamster Ovary (CHO) cells (Invitrogen, Carlsbad, CA, USA) were 

grown in DMEM supplemented with 10% FBS and maintained at 37 °C in a humidified 
incubator (5% CO2). The Flp-In-CHO cells were transfected with the pOG44 vector encod-
ing Flp recombinase and the pDEST vector encoding the D2LR or the hD1R at a ratio of 9:1 
using PEI as transfection reagent. Following transfection (24 h), cells were subcultured 
and the medium supplemented with 700 mg/mL HygroGold (Invivogen) as selection 
agent, to obtain cells stably expressing the D1R or D2LR. FlpIn Chinese Hamster Ovary 
CHO cells stably expressing the hD1R or hD2LR were grown and maintained in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 10% FBS, and 200 µg/mL of Hy-
gromycin-B, and maintained at 37 °C in a humidified incubator (5% CO2). 

Cell Culture and Transfection for cAMP Assay 
FlpIn CHO cells stably expressing the hD1R were maintained in DMEM supple-

mented with 5% fetal calf serum and 0.2 mg/mL hygromycin at 37 °C in a humidified 
incubator (5% CO2). For transfection, the cells were grown in 10 cm culture dishes until 
60% confluent. A mixture of 4 µg plasmid DNA containing BRET-based cAMP (CAMYEL) 
biosensor construct [52] and 25 µg 20 kDa linear PEI in 500 µL 150 mM NaCl was added 
into a dish of cells. 

3.3.3. cAMP Assay Measurement 
Cellular cAMP levels were measured with the CAMYEL BRET-based biosensor for 

cAMP [52]. One day following transfection, cells were trypsinised and seeded in white 96-
well microplates, cultured for an additional day, rinsed (×2) with Hank’s Balanced Salt 
Solution (HBSS), then incubated in fresh HBSS. For the D1R functional assay, the cells were 
stimulated with DA together with addition of the modulators. The BRET signals were 
measured using a BMG Lumistar counter 30 min after stimulation. For the D2R functional 



Molecules 2021, 26, 3799 15 of 19

Synthesised according to general procedure D using (R)-12-methyl-9,10-dihydro-9,10-
ethanoanthracene-11-carbonyl chloride ((R)-21) (135 mg, 477 µmol), 2,6-dichloro-3-methy
laniline (84. 1 mg, 477 µmol), and DMAP (29.1 mg, 239 µmol). Purification by FCC (eluent,
1:10 EtOAc/PE) afforded the title compound as a white solid (50 mg, 25%, e.e. 84%). LCMS
(m/z): 446.1 [M + Na]+, 423.1 [M + H]+

. System C HPLC: tR 8.496 min, >95% purity (214
& 254 nm). HRMS (m/z): C25H21Cl2NO: requires 422.1083 [M + H]+; found 422.1073. 1H
NMR (CDCl3) δ 7.40–7.37 (m, 1H), 7.34–7.31 (m, 1H), 7.30–7.25 (m, 2H), 7.18–7.11 (m, 3H),
7.08–7.01 (m, 3H), 6.89 (s, 1H), 4.52 (s, 1H), 4.34 (t, J = 2.6 Hz, 1H), 2.64 (dd, J = 12.5, 2.8 Hz,
1H), 2.29 (s, 3H), 1.66 (dd, J = 12.4, 2.7 Hz, 1H), 1.18 (s, 3H). 13C NMR (CDCl3) δ 174.7, 143.3,
143.2, 141.5, 141.4, 136.1, 133.8, 132.2, 130.8, 129.6, 127.4, 126.5, 126.4, 126.2, 125.9, 125.9,
125.7, 123.5, 123.2, 52.7, 49.2, 44.7, 40.3, 28.3, 20.5.

3.3. Pharmacological Characterisation
3.3.1. Materials

Dulbecco’s modified Eagle’s medium, Flp-In CHO cells, and hygromycin B (Invitrogen,
Carlsbad, CA, USA). Fetal bovine serum (FBS) (ThermoTrace, Melbourne, VIC, Australia).
All other reagents (Sigma Aldrich, St. Louis, MO, USA).

3.3.2. General Cell Culture

FlpIn Chinese Hamster Ovary (CHO) cells (Invitrogen, Carlsbad, CA, USA) were
grown in DMEM supplemented with 10% FBS and maintained at 37 ◦C in a humidified
incubator (5% CO2). The Flp-In-CHO cells were transfected with the pOG44 vector encod-
ing Flp recombinase and the pDEST vector encoding the D2LR or the hD1R at a ratio of 9:1
using PEI as transfection reagent. Following transfection (24 h), cells were subcultured and
the medium supplemented with 700 mg/mL HygroGold (Invivogen) as selection agent, to
obtain cells stably expressing the D1R or D2LR. FlpIn Chinese Hamster Ovary CHO cells
stably expressing the hD1R or hD2LR were grown and maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% FBS, and 200 µg/mL of Hygromycin-B,
and maintained at 37 ◦C in a humidified incubator (5% CO2).

Cell Culture and Transfection for cAMP Assay

FlpIn CHO cells stably expressing the hD1R were maintained in DMEM supplemented
with 5% fetal calf serum and 0.2 mg/mL hygromycin at 37 ◦C in a humidified incubator (5%
CO2). For transfection, the cells were grown in 10 cm culture dishes until 60% confluent.
A mixture of 4 µg plasmid DNA containing BRET-based cAMP (CAMYEL) biosensor
construct [52] and 25 µg 20 kDa linear PEI in 500 µL 150 mM NaCl was added into a dish
of cells.

3.3.3. cAMP Assay Measurement

Cellular cAMP levels were measured with the CAMYEL BRET-based biosensor for
cAMP [52]. One day following transfection, cells were trypsinised and seeded in white
96-well microplates, cultured for an additional day, rinsed (×2) with Hank’s Balanced
Salt Solution (HBSS), then incubated in fresh HBSS. For the D1R functional assay, the cells
were stimulated with DA together with addition of the modulators. The BRET signals
were measured using a BMG Lumistar counter 30 min after stimulation. For the D2R
functional assay, cells were stimulated with DA in the presence of 10 µM forskolin (final
concentration). DA and modulators were added 15 min prior to stimulation and BRET
signals were measured using a BMG Lumistar counter 30 min after stimulation. The BRET
signal (BRET ratio) was detected at 445–505 nm and 505–565 nm using a LUMIstar Omega
instrument (BMG LabTech, Offenburg, Germany), and quantified by calculating the ratio
of light emitted at 535 ± 30 nm (YFP) to light emitted at 475 ± 30 nm (RLuc).
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3.3.4. Data Analysis of Allsotery

Simulations, statistical analyses and computerized nonlinear regression were per-
formed using Prism 6.0 (GraphPad Prism 6.0b Software, San Diego, CA, USA).

Analysis of functional data. All concentration-response data were fitted to the follow-
ing modified four-parameter Hill equation in order to derive potency estimates [56].

E = Basal +
(Emax − Basal)·[A]nH

[AnH ] + ECnH
50

(1)

where E = the effect of the system; nH = Hill slope; EC50 = [A] (concentration of agonist)
that provides the midpoint response between basal and maximal effect of DA or other
agonists (Emax), which are the lower and upper asymptotes of the response, respectively.

To determine the mode of interaction of compounds 2, and optical isomers of 2 at the
D1R in relation to the agonist DA, all data were analyzed using a complete operational
model of allosterism and agonism according to Equation (2) [34]

E =
Em(τA[A](KB + αβ[B]) + τB[B]K A)

nH

([A]KB + KAKB + KA[B] + α[A][B])nH + (τA[A](KB + αβ[B]) + τB[B]KA)
nH (2)

where Em = maximum possible cellular response, [A] & [B] = concentrations of orthosteric
and allosteric ligands, respectively, KA & KB = equilibrium dissociation constants of orthos-
teric and allosteric ligands, respectively, τA & τB = operational measures of orthosteric and
allosteric ligand efficacy (which incorporate both signal efficiency and receptor density),
respectively, α = binding cooperativity parameter between orthosteric and allosteric ligand,
and β = magnitude of the allosteric effect of modulator on efficacy of orthosteric agonist.

The KA for DA was determined through receptor depletion by phenoxybenzamine
alkylation as the proportional relationship of RT to measured τ whilst KA is invariant with
receptor depletion. Thus, unique estimates of KA could be measured by direct fitting of
the operational model to the family of concentration-response curve for DA [57,58]. A
series of cAMP inhibition assays were conducted in cells which were pre-treated with
phenoxybenzamine (an alkylating agent which is used to inhibit high affinity orthosteric
interactions at the D2R) [59]. The data for DA evaluated in the presence of the alkylating
agent were then fit to an operational model of receptor depletion in order to determine
values of KA and τA (log KA = −5.78 ± 0.16, log τA = 1.84 ± 0.16). These data were used to
constrain values of KA and τA when we fitted the operational model of allostery (Equation
(2)) to functional data. The value of the Hill slope (nH) was fixed to unity. The logarithms
of affinity and cooperativity values are normally distributed, whereas the absolute values
(antilogarithms) are not, and therefore all statistical analyses were performed on the
logarithmic values. However, for ease of interpretation, allosteric parameter antilogarithms
are highlighted in the main text [60].

4. Conclusions

In this study, we describe the first reported enantioenrichment of optical isomers of rac-
2 using chiral auxiliaries derived from enantiomers of 3-hydroxy-4,4-dimethyldihydrofuran-
2(3H)-one and their pharmacological characterisation. Interestingly, (R)-2 was shown to
display 4-fold lower positive cooperativity with DA as compared to (S)-2 and a 7-fold
lower affinity for the D1R. Our findings illustrate the importance of further investigation
into asymmetric syntheses of analogues of 2 and/or isolation of optically pure analogues as
part of future SAR efforts aimed at developing enhanced D1R PAMs based on this scaffold.

Supplementary Materials: The following are available online. Figure S1: Chiral HPLC chro-
matogram for Compound 5, Figure S2: Chiral HPLC chromatogram for Compound (S)-21, Figure S3:
Chiral HPLC chromatogram for Compound (R)-21, Figures S4–S7: HPLC & chiral HPLC chro-
matograms, 1H & 13C NMR spectra for 2, Figure S8: HPLC chromatogram (MeOH blank), Figures S9–S12:



Molecules 2021, 26, 3799 17 of 19

HPLC & chiral HPLC chromatograms, 1H & 13C NMR spectra for (S)-2, Figures S13–S16: HPLC &
chiral HPLC chromatograms, 1H & 13C NMR spectra for (R)-2.
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