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SUMMARY

The early detection of cancers has the potential to savemany lives. A recent attempt has been demon-

strated successful. However, we note several critical limitations. Given the central importance and

broad impact of early cancer detection, we aspire to address those limitations. We explore different

supervised learning approaches for multiple cancer type detection and observe significant improve-

ments; for instance, one of our approaches (i.e., CancerA1DE) can double the existing sensitivity

from 38% to 77% for the earliest cancer detection (i.e., Stage I) at the 99% specificity level. For Stage

II, it can even reach up to about 90% across multiple cancer types. In addition, CancerA1DE can also

double the existing sensitivity from 30% to 70% for detecting breast cancers at the 99% specificity

level. Data and model analysis are conducted to reveal the underlying reasons. A website is built at

http://cancer.cs.cityu.edu.hk/.

INTRODUCTION

Cancers are prevalent across the globe (Torre et al., 2015). Millions of deaths could be found due to various

cancer types every year (Chen et al., 2016). Unfortunately, the number of deaths is still projected to be

increasing even in developed countries (Rahib et al., 2014). Therefore, it is critical to address those cancers

in a timely manner.

In particular, the works in cancer protein marker discovery have been fruitful in the past years (Stoeva et al.,

2006); for instance, four analytes (leptin, prolactin, osteopontin, and insulin-like growth factor-II) have been

discovered to be predictive in the early detection of ovarian cancers (Mor et al., 2005). Three years later,

macrophage inhibitory factor and CA-125 have been proposed on top of the previous four proteins to

improve the early detection further (Visintin et al., 2008). The combinatorial expression patterns among

HSP-27, GST, Annexin II, and L-FABP are also associated with the lymph node metastasis in colorectal can-

cer (Pei et al., 2007). Blood and fecal protein markers have also been implicated for colorectal cancer diag-

nosis (Karl et al., 2008). Multiple markers have also been reported for breast cancers (Harbeck et al., 2014),

pancreatic cancers (Takadate et al., 2013), lung cancers (Buszewski et al., 2012), gastric cancers

(Rugge et al., 2015), liver cancers (Bertino et al., 2012), esophageal cancers (Napier et al., 2014), and

others (Zheng et al., 2005). For a list of well-proved markers, one can refer to the past survey (Polanski

and Anderson, 2006).

Given the valuable marker information, it is obvious that one can harness the existing advancement in arti-

ficial intelligence to comprehend, digest, and combine those information into a comprehensive and accu-

rate early cancer prediction tool. In particular, there are two major modeling paradigms for such a cancer

prediction task under the context of binary classification in machine learning: discriminative learning and

generative modeling. For discriminative learning, we seek to explore if we can learn any high-dimensional

boundary to discriminate cancer cases from normal cases in the available marker space. For generative

modeling, we seek to explore if we can build a model to capture the marker distributions of cancer cases

and another model to capture the marker distributions of normal cases. Once the twomodels are ready, we

can compute a sample probability belonging to cancer or normal cases as the early cancer prediction.

A recent method called CancerSEEK takes advantages of multiple protein markers in blood for cancer

detection and localization across different cancer types and stages using discriminative learning (Cohen

et al., 2018). However, we notice that the CancerSEEK method has several limitations; for instance, its

front-line cancer detection component is based on logistic regression, whereby linear assumption on

different markers is hardly realistic. Its second-line cancer type localization component is based on random
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InfoG Input Features Feature Description

1.0389 TGFa (pg/mL) Circulating Transforming Growth Factor a Concentration in pg/mL

0.8301 HE4 (pg/mL) Circulating Human Epididymis Protein 4 Concentration in pg/mL

0.6135 sFas (pg/mL) Circulating soluble Fas Cell Surface Death Receptor Concentration

in pg/mL

0.5372 Thrombospondin-2

(pg/mL)

Circulating Thrombospondin-2 Concentration in pg/mL

0.5073 AFP (pg/mL) Circulating Alpha Fetoprotein Precursor Concentration in pg/mL

0.3759 G-CSF (pg/mL) Circulating Granulocyte-Colony Stimulating Factor Concentration in pg/mL

0.3633 IL-6 (pg/mL) Circulating Interleukin-6 Concentration in pg/mL

0.3597 CA-125 (U/mL) Circulating Cancer Antigen 125 Concentration in U/mL

0.2568 Sex Patient Gender Information (Male or Female)

0.2352 sHER2/sEGFR2/sErbB2

(pg/mL)

Circulating sHER2/sEGFR2/sErbB2 Concentration in pg/mL

0.2259 TIMP-2 (pg/mL) Circulating Tissue Inhibitor of Metalloproteinases 2 Concentration in pg/mL

0.2231 CD44 (ng/mL) Circulating CD44 Concentration in pg/mL

0.183 CA19-9 (U/mL) Circulating Cancer Antigen 19-9 Concentration in U/mL

0.1805 IL-8 (pg/mL) Circulating Interleukin-8 Concentration in pg/mL

0.164 CA 15-3 (U/mL) Circulating Cancer Antigen 15-3 Concentration in U/mL

0.1448 HGF (pg/mL) Circulating Hepatocyte Growth Factor Concentration in pg/mL

0.1431 OPG (ng/mL) Circulating Osteopontin Concentration in pg/mL

0.1414 GDF15 (ng/mL) Circulating Growth Differentiation Factor 15 Concentration in ng/mL

0.1384 Leptin (pg/mL) Circulating Leptin Concentration in pg/mL

0.1271 Myeloperoxidase (ng/mL) Circulating Myeloperoxidase Concentration in ng/mL

0.125 Kallikrein-6 (pg/mL) Circulating Kallikrein-6 Concentration in pg/mL

0.1173 TIMP-1 (pg/mL) Circulating Tissue Inhibitor of Metalloproteinases 1 Concentration in pg/mL

0.1122 Midkine (pg/mL) Circulating Midkine Concentration in pg/mL

0.1095 Prolactin (pg/mL) Circulating Prolactin Concentration in pg/mL

0.1032 Mesothelin (ng/mL) Circulating Mesothelin Concentration in ng/mL

0.103 Galectin-3 (ng/mL) Circulating Galectin-3 Concentration in ng/mL

0.096 OPN (pg/mL) Circulating Osteopontin Concentration in pg/mL

0.0956 NSE (ng/mL) Circulating Neuron-Specific Enolase Concentration in ng/mL

0.0901 sEGFR (pg/mL) Circulating Soluble Epidermal Growth Factor Receptor Concentration

in pg/mL

0.0901 CEA (pg/mL) Circulating Carcinoembryonic Antigen Concentration in pg/mL

0.085 AXL (pg/mL) Circulating AXL Receptor Tyrosine Kinase Concentration in pg/mL

0.0771 sPECAM-1 (pg/mL) Circulating Soluble Platelet and Endothelial Cell Adhesion Molecule 1

Concentration in pg/mL

Table 1. Feature List for Cancer Type Localization ranked by Information Gain (InfoG)

(Continued on next page)
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InfoG Input Features Feature Description

0.0637 SHBG (nM) Circulating Sex Hormone-Binding Globulin Concentration in nM

0.0635 OmegaScore Omega Score for Mutations in Circulating Cell-Free DNA [Cohen et al. (2018)]

0 Angiopoietin-2 (pg/mL) Circulating Angiopoietin-2 Concentration in pg/mL

0 DKK1 (ng/mL) Circulating Dickkopf WNT Signaling Pathway Inhibitor 1 Concentration in

ng/mL

0 CYFRA 21-1 (pg/mL) Circulating Cytokeratin-19 Fragment Concentration in pg/mL

0 PAR (pg/mL) Circulating Protease-Activated Receptor Concentration in pg/mL

0 Endoglin (pg/mL) Circulating Endoglin Concentration in pg/mL

0 FGF2 (pg/mL) Circulating Fibroblast Growth Factor 2 Concentration in pg/mL

0 Follistatin (pg/mL) Circulating Follistatin Concentration in pg/mL

Table 1. Continued
forest, a modeling known to be difficult for interpretations. From the user perspective, its lack of public

Web service also limits its potential impacts.

To address those limitations altogether, we seek to explore different approaches to solve the multiple can-

cer type detection problem. A public Web server with open programs is also provided for scientific repro-

ducibility and impact at http://cancer.cs.cityu.edu.hk/.

RESULTS

Data Collection

We have collected the multianalyte blood test data from Cohen et al. (2018). Those data have been pro-

cessed according to the supplementary guideline provided, resulting in two datasets.

The first dataset has 1,817 patient blood test records, which are designed and adopted to build models to

detect cancers as the front-line detector in a binary manner (i.e., cancer or normal). Therefore, to be scal-

able and economical, it has theminimal number of input feature information involving eight circulating pro-

tein marker concentrations and one cell-free DNA mutation score (OmegaScore) as listed in Table S1.

The second dataset has 626 patient blood test records, which are designed and adopted to buildmodels to

localize cancer types as the second-line diagnosis (i.e., Breast, Colorectum, Upper GI, Liver, Lung, Ovary, or

Pancreas). Therefore, its input feature set covers the previous nine features and includes additional 31 pro-

tein markers and patient gender as listed in Table 1.

To visualize the first and seconddatasets, we have adopted a series of dimensional reduction techniques to proj-

ect the datasets onto two-dimensional spaces as visualized in Figures S1 andS9, respectively. Linear discriminant

analysis was also conducted as depicted in Figure S2. Unfortunately, it can be observed that the datasets are not

easily separated evenon the full datasets, necessitating advanced algorithmic development under the cross-val-

idations with isolated separations of training and testing data in subsequent sections.

Model Descriptions

To build cancer detection models from the aforementioned datasets, we consider it as a supervised

learning task from the machine learning perspective. Therefore, we have selected a range of multiclass su-

pervised learning algorithms: AODE (Webb et al., 2005), deep learning (Angermueller et al., 2016), decision

tree (Bhargava et al., 2013), and naive Bayes (NB) (Lewis, 1998). We note that logistic regression and random

forest have already been adopted and encapsulated in CancerSEEK (Cohen et al., 2018).

Model Parameter Setting

For AODE, we have adopted A1DE (Webb et al., 2005) and A2DE (Webb et al., 2012) as our classifiers

(namely, CancerA1DE and CancerA2DE). The minimum description length (MDL) principle is adopted
334 iScience 15, 332–341, May 31, 2019
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for continuous marker feature discretization (see the Supplemental Information). For deep learning, since

the problem here is a very standard supervised learning task with well-crafted input features, we do not

need to increase any model complexity for deep feature learning. Therefore, we have adopted the deep

feedforward neural networks with one hidden layer, two hidden layers, and three hidden layers (namely,

DeepLearning1, DeepLearning2, and DeepLearning3, respectively) (Angermueller et al., 2016). The re-

maining training setting follows the default settings of WEKA (Hall et al., 2009). For decision tree, J48

tree building method is adopted (Bhargava et al., 2013). For NB, a Gaussian distribution is assumed for

each continuous feature under each class (Lewis, 1998). The remaining parameter setting follows the

default parameter values of WEKA (Hall et al., 2009).

CancerA1DE Modeling

CancerA1DE has demonstrated the best performance in the subsequent sections. Therefore, we briefly

describe CancerA1DE in this section. CancerA1DE is based on the A1DE framework (Webb et al., 2005),

which is a variant of NB.Weakening the attribute (or feature) independence assumption on theNB classifier

has been proved to achieve significant improvement by various approaches. Nevertheless, the techniques

such as the Lazy Bayesian Rules and Tree Augmented Naive Bayes weaken the assumption with the cost of

intensive computational power because the optimal subset selection procedure from all attributes or

parent attributes could be computationally intensive. In addition, the model selection tends to over-fit

the training data and thus increase the estimation variance. To speed it up, AggregatingOne-Dependence

Estimators (A1DE) was developed; A1DE is designed to avoid any model selection by enumerating all

possible 1-dependence classifiers in each of which there is an attribute as the parent of all others (Webb

et al., 2005). The mathematical details can be found in the Supplemental Information.

The advantage of A1DE is its relatively low complexities as tabulated in Table S2. We can observe that,

although A1DE has significant performance gain over the original NB, its training time complexity is nether

quadratic to the number of samples nor cubic to the number of feature attributes. Its training time complexity

is justO(tn2) where t is the number of samples and n is the number of feature attributes. Such a property gua-

rantees that it can scale with the number of samples in a linearmanner. Its quadratic complexity to the number

of feature attributes (i.e., markers here) should not be a big problem since the number of blood test markers is

usually finite and limited. In addition, its model formulation is incremental; it means that the CancerA1DE

model can be easily updated with new blood marker samples, unlike random forest (i.e. CancerSEEK).

Cancer Detection Results

As ranked in Table S1, it is not surprising that the cancer antigen markers are the most informative features

for cancer detection. To act as a control, we have also trained random forests on the features using the Py-

thon scikit-learn package (Pedregosa et al., 2011) and explored the feature ranking based on three different

measurements: decrease in purity, decrease in accuracy, and recursive feature elimination. The feature

ranking results are illustrated in Figure S3. Contrary to the information gain ranking on Table S1, the cancer

antigen markers are no longer the top predictive features. Instead, we observe the opposite trend for the

purity and accuracy measurements; such a phenomenon exemplifies the underlying complex behavior for

cancer detection. It also necessitates our subsequent machine learning approaches.

To explore those features (also known as protein biomarkers) further, we have computed their correlation

matrix as visualized in Figure S4. Congruent with our general belief, the cancer antigen markers are posi-

tively correlated with statistical significance (p < 0.001). Interestingly, it can be observed that TIMP-1, Mye-

loperoxidase (or MPO), OPN (or SPP1), and HGF form a positively correlated feature cluster. To explore

their relationships, we have mapped the protein markers into STRING network analysis (Szklarczyk et al.,

2016) as demonstrated in Figure S5. From the figure, it is now clear that those four proteins did demon-

strate different levels of evidences for their interactions; it justifies their positive correlations. On the other

hand, we also observe an enriched pathway from the STRING results: PI3K-Akt signaling pathway

(ID: 04151) with the supporting proteins (HGF, PRL, and SPP1) at FPR = 0.0243; it indicates that such a

feature subset serves as proxy measurements for that pathway in the following cancer detection tasks.

Given those features, we have benchmarked different supervised learning models on the 1,817-patient

dataset for cancer detection (i.e., cancer or normal) under 10-fold cross-validations (i.e., 10 randomly

divided held-out data subsets for testing, whereas the remaining are for training in 10 rounds) as visualized

in Figure 1.
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Figure 1. Receiver Operating Characteristic (ROC) curves for Cancer Detection

Different methods have different colors and line styles. The curves are generated under 10-fold cross-validations. The vertical black line on the right panel is

drawn at the 99% specificity level.

(A) Full Scale ROC Curves.

(B) ROC Curves Zoomed to FPR<=0.1.
Interestingly, it can be observed that our proposed CancerA1DE and CancerA2DE outperformed

CancerSEEK by a significant margin in terms of the Area Under Curve (AUC) values (0.99 vs 0.93). If the

figure is zoomed to the regions with false-positive rates less than 0.1, such a performance gain is even pro-

nounced. At the 99% specificity level, our CancerA1DE and CancerA2DE can even achieve around 80%

sensitivity, which is higher than that of CancerSEEK by 20% (Cohen et al., 2018). We attribute such a

performance gain to two reasons: (1) the generative modeling approach undertaken by CancerA1DE

and CancerA2DE and (2) the feature discretization of CancerA1DE and CancerA2DE based on the MDL

principle (Kononenko, 1995). Reason (1) is obvious in that generative modeling can generalize itself well

over the discriminative modeling, which is prone to over-fitting, whereas reason (2) is not intuitive but

insightful. Its feature discretization performance suggests that we should focus on the protein marker con-

centration intervals rather than on the actual protein marker concentration magnitudes. As depicted in Fig-

ure S6, we can observe that the input features are well separated into different groups based on MDL. In

particular, it is interesting that the feature groups are associated with different levels of misclassification

risks, which can well inform CancerA1DE and CancerA2DE to make cancer detection decisions in a prob-

abilistically generative manner.

To confirm its performance further, we have conducted a performance sensitivity analysis based on

different withheld data amount settings. Specifically, we randomly divided the dataset into two subsets:

training set and testing set in different proportions as tabulated in the Table S3. From the table, we can

observe that our CancerA1DE and CancerA2DE models can reach the AUC performance of 0.98 as soon

as it has about 20% data for model training (i.e., 363 patient samples). Such a rapid learning characteristic

is important as patient sample costs are substantial. Its underlying Bayesian generative modeling also pre-

vents it from over-fitting.

In the context of cancer detection, its early detection performance is the most important task in the clinical

setting. Therefore, we proceed to wonder how early different methods can detect cancers for timely follow-

ups. On the other hand, we would also like to ensure that the false-positive rate can be minimized. There-

fore, we limit our cancer detections to the 99% specificity level where the detected proportions of cancers

with different stages are depicted in Figure 2.
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Figure 2. Proportion of Detected Cancers with Different Stages at the 99% Specificity Level

Each color represents a method, and the horizontal axis has been ordered by cancer stages. Each bar represents the median sensitivity of each method

on each cancer stage with standard errors.
We can observe that our CancerA1DE and CancerA2DE can detect close to 77% of the early-stage cancers

(i.e., Stage I), whereas the others are well below 50%. Such a phenomenon is clinically critical since early

cancer treatment intervention can often lead to increased patient survival rates (Miller et al., 2016).

To investigate whether any of the methods is biased to specific cancer types, we have also plotted the

detected proportion of different cancer types at the 99% specificity level in Figure 3.

Clearly, it can be observed that both CancerA1DE and CancerA2DE have broadly competitive edges over

the other state-of-the-art methods across different cancer types. It can achieve at least 60% sensitivity for all

tested cancer types at the 99% specificity level. In particular, CancerA1DE and CancerA2DE can double the

detected proportions of breast cancer, which is the second most common cancer diagnosed among

women in the United States (DeSantis et al., 2014).

To provide further insights, we have plotted the conditional probabilities bPðxj jy; xiÞ of CancerA1DE for all

possible combinations. An example is depicted in Figure S7, whereas the others are exhaustively enumer-

ated in Figure S8. From those figures, it can be observed that the conditional probabilities are highly spe-

cific to normal samples (see the spikes and the monotonically decreasing trends in the figures). This implies

that the CancerA1DE modeling places strong pattern recognition emphasis on filtering out the normal

samples; therefore, it explains why the CancerA1DE can achieve the highly sensitive detection perfor-

mance at the 99% specificity level as previously demonstrated.

Cancer Type Localization Results

As ranked in Table 1 and Figure S10, it is interesting to observe that the previous nine features in cancer

detection are no longer the top features for cancer type localization. This necessitates our motivation

that we have to include additional features (i.e., additional 31 protein markers and patient gender) for can-

cer type localization.

However, we also need to ensure the nonredundancy of those features. Therefore, we have computed the

feature correlation matrix as heatmap in Figure S11. It can be observed that the protein marker features are

not highly correlated to each other. Nonetheless, if we zoom in specific regions, we did observe a few weak

feature communities here. Therefore, similar to the previous section, we have mapped the protein marker

names into STRING network analysis (Szklarczyk et al., 2016) in Figure S12. Unfortunately, most of the in-

teractions are based on text mining, which is not conclusive. Nonetheless, based on the evidence strength,
iScience 15, 332–341, May 31, 2019 337



Figure 3. Detected Proportions of Different Cancer Types at the 99% Specificity Level

Different colors represent different methods. The horizontal axis is ordered by cancer types. Each bar represents the sensitivity of each method on each

cancer type with 95% confidence intervals.
we can still observe few existing communities that are congruent with our observations from the correlation

heatmap. Different from the previous cancer detection task, several pathways are enriched as listed in

Table S4; this indicates the comprehensiveness and diversity of the proteinmarkers for the following cancer

type localization tasks.

The previous methods are also adopted here for fair benchmark comparisons. In particular, the multiclass

supervised learning setting is experimented on the 626-patient dataset for cancer type localization

(i.e., Breast, Colorectum, Upper GI, Liver, Lung, Ovary, and Pancreas) under 10-fold cross-validations as

visualized in Figure S13.

It can be observed that both CancerA1DE and CancerA2DE can well maintain the receiver operating char-

acteristic curves above the diagonal baseline, whereas the others suffer from several drawbacks; for

instance, CancerSEEK appears to be polarized into two extreme performance groups; this indicates that

CancerSEEK, which is based on random forest, could have bias towards specific cancer type differentia-

tions, consistent with the observation to be made from Figure 4. On the other hand, the deep learning

methods cannot scale to full performance once the specificity level is relaxed. Interestingly, the NB classi-

fier demonstrates surprising classification performance across few cancer types. Congruent with Cancer-

A1DE and CancerA2DE, such a phenomenon reflects that multiclass generative modeling is more suitable

than multiclass discriminative modeling for the cancer type localization here.

To compare the methods in a more realistic setting than the previous curves, we seek to validate the

methods for the top-one predictions. In other words, for each patient record, we allow each method to pre-

dict and localize its cancer type once only. Under the 10-fold cross-validation, the results are visualized in

Figure 4.

Congruent with the ROC curves, CancerA1DE and CancerA2DE demonstrate stable performance across

different cancer types. Although CancerSEEK can score well on colorectal and ovarian cancers, its random

forest has sacrificed its performance on other cancer types. In addition, we also observe that most methods

cannot perform well on the liver cancer localization. Such a performance deviation can be attributed to the

scarce data availability issue here.

To investigate the reasons further, we have adopted Learning Vector Quantization to perform feature

importance ranking under the one-class-versus-all setting with 10-fold cross-validations. The complete
338 iScience 15, 332–341, May 31, 2019



Figure 4. Localized Proportions of Different Cancer Types using the Top One Prediction Approach

Different colors represent different methods. The horizontal axis is ordered by cancer types. Each bar represents the sensitivity of each method on each

cancer type with 95% confidence intervals.
results are listed in Figure S14. To summarize the results, we have performed hierarchical clustering and

heatmap visualization on the feature importance results as depicted in Figure 5. Interestingly, we observe

that the cancer types can be clustered into three groups. The ovarian cancers and pancreatic cancers form

independent groups; it explains why most methods can perform well on those two cancers since their

important features are well isolated from the others. In contrast, the other five cancer types share significant

portions of important features. This forms a machine learning trap that discriminative learning algorithms

(e.g., the random forest adopted by CancerSEEK) could be biased towards the cancer type that has the

largest data samples (e.g., colorectal cancer here as demonstrated in Figure 4).

DISCUSSION

In this study, we have explored different approaches for multiple cancer type detection from multianalyte

blood test results. With eight circulating protein markers and one circulating DNAmutation score, the best

approach (CancerA1DE) can outperform the existing approach (CancerSEEK) for cancer detection at the

99% specificity level.

Nonetheless, such an observation is based only on the available 1,817 patient blood samples. It is undeni-

able that different approaches can result in different performance on different datasets. This is further

complicated by the fact that we have diverse cancer types within the 1,817 patient blood samples. The

main competitiveness of our approach is that it can take into account the nonlinear relationships between

the available markers, although the only cost is the slightly increased computational complexity. However,

we conceive such a cost as manageable under the current computing environment (e.g., it takes only less

than 1 sec for the CancerA1DE model building on our desktop computer using the Weka library).

On the other hand, for cancer type localization with additional 31 circulating protein markers and gender

information, we observed diverse performance behavior among different approaches. Such performance

discrepancy is attributed to several reasons ranging from the cancer-type-specific feature importance to

the supervised learning methodology paradigm (i.e., generative or discriminative modeling) as revealed.

In particular, we observe the resurge of the generative Bayesian approach (CancerA1DE), which has

been demonstrated to be more successful than the state-of-the-art methods such as random forest

(CancerSEEK) and deep learning in this study.

With the advancement of edge computing devices (e.g., mobile phones) and biotechnology (e.g.,

biosensor devices), we envision that the integration between them can provide one-stop blood tests
iScience 15, 332–341, May 31, 2019 339



Figure 5. Feature Importance Heatmap for Cancer Type Localization under One-Class-versus-Others Setting

The feature rankings are measured based on the Learning Vector Quantization (LVQ) building under Python caret

package (Bischl et al., 2016). Ten-fold cross-validations are run to compute the feature importance values. After that, the

function ‘‘heatmap.2’’ in R language is adopted with the default setting to cluster and visualize the feature importance

values. Further details can be found in Figure S14.
accessible to patients. Our current study can provide a reference to deploy a sensitive and robust blood

test model for routine cancer screening at the software level.

In the future, it can be interesting if additional marker features can be explored; however, the related costs

are substantial on actual patient cohorts. Comprehensive genomics and pathway analysis on the newly

arisen markers are also needed for providing mechanistic insights before incorporating into the current

study. Continuous assessment on the proposed approaches is also required for extensive uses. Therefore,

with the public Web server and open software programs for scientific reproducibility, we believe that this

study can serve as a useful platform for future studies on early cancer detection from blood.

Limitation of Study

The current study is limited by the absence of a truly independent validation set.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.04.035.
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S1 Supplemental Information

S1.1 Transparent Methods

The software programs and related models are opened and released for scientific repro-
ducibility. An open-access webserver is also built and provided in the following web
address: http://cancer.cs.cityu.edu.hk/

S1.1.1 CancerA1DE Modeling

CancerA1DE has demonstrated the best performance in the subsequent sections. There-
fore, we briefly describe CancerA1DE in this section. CancerA1DE is based on the A1DE
framework (Webb et al., 2005) which is a variant of Naive Bayes (NB). Weakening the
attribute (or feature) independence assumption on the naive Bayes classifier has been
proved to achieve significant improvement by various approaches. Nevertheless, the
techniques such as the Lazy Bayesian Rules (LBR) and Tree Augmented Naive Bayes
(TAN) weaken the assumption with the cost of intensive computational power because
the optimal subset selection procedure from all attributes or parent attributes p(xi)
could be computationally intensive. In addition, the model selection tends to over-fit
the training data and thus increase the estimation variance. To speed it up, Aggregating
One-Dependence Estimators (A1DE) is developed; A1DE is designed to avoid any model
selection by enumerating all possible 1-dependence classifiers in each of which there is
an attribute as the parent of all others. Moreover, A1DE introduces a threshold m such
that the models are discarded if the training data contain less than m examples of each
parent attribute value xi noted as F (xi) < m for computational efficiency.

Hence, given that each blood marker sample can be represented by a vector x =
〈x1, x2, ..., xn〉 where xi is a marker attribute value, an A1DE model can be trained and
assigned cancer detection label y based on its posterior probability:

P (y|x) =
P (y, x)

P (x)
∝ P (y, x) (1)

By aggregating all possible 1-dependence classifiers, P (y, x) can be written as:

P (y, x) =

∑
1≤i≤n∧F (xi)≥m P (y, xi)P (x|y, xi)
|{1 ≤ i ≤ n ∧ F (xi) ≥ m}|

(2)

Therefore, the label assignment (cancer detection label y) can be derived as follows:

arg max
y

∑
1≤i≤n∧F (xi)≥m

P̂ (y, xi)
n∏

j=1

P̂ (xj |y, xi) (3)

where P̂ denotes the probability estimate. From the above, we can see that, if none of
the parent attributes xi have its F (xi) count greater than m, the A1DE is identical to a
traditional NB classifier. On the other hand, the posterior of classes can be derived as
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follows:

P̂ (y|x) =

∑
1≤n∧F (xi)≥m P̂ (y, xi)

∏n
j=1 P̂ (xj |y, xi)∑

y′∈Y
∑

1≤n∧F (xi)≥m P̂ (y′, xi)
∏n

j=1 P̂ (xj |y′, xi)
(4)

where the above formula is derived from the Bayes rule P (y|x) = P (y, x)/P (x). The
advantage of A1DE is its relative low complexities as tabulated in Table S2. We can
observe that, although A1DE has significant performance gain over the original NB, its
training time complexity is nether quadratic to the number of samples nor cubic to the
number of attributes. Its training time complexity is just O(tn2) where t is the number
of samples and n is the number of attributes. Such a property guarantees that it can
scale with the number of samples in a linear manner. Its quadratic complexity to the
number of attributes (i.e. markers here) should not be a big problem since the number
of blood test markers is usually finite and limited. In addition, its model formulation
is incremental; it means that the CancerA1DE model can be easily updated with new
blood marker samples, unlike random forest.

S1.1.2 Minimum Description Length (MDL) Principle

The minimum description length (MDL) is a principle defined to be the minimum size
of information to specify all samples. Under the principle, the supervised attribute (or
marker feature in this study) discretization problem can be modeled as a sender and
receiver problem: sender maintains the function of choosing the shortest description of
proper class labels while the receiver determines class labels for examples (Fayyad and
Irani, 1993). Given a set of samples S, we test the attribute A and use the threshold T
to generate a binary partition πT . Assuming that the partition can either be accepted
or rejected, HT represents a hypothesis that the partition is accepted while NT is a
null hypothesis that πT is rejected. Hence, HT suggests the classifier assigns all samples
whose attribute value A < T to the same attribute (or feature) interval while NT
suggests that all samples belongs to the same attribute (or feature) interval regardless
of any examination.

The null hypothesis (NT) For the null hypothesis NT , the sender encodes shortest
class labels in code length (e.g. Huffman tree) for every sample in the sample set S.
Assuming that the average code length is l and the number of classes is k, the sender
sends (|S| · l) bits to the receiver while the dictionary of encoding has the size of (k · l).
Therefore, the cost measured in bits is:

|S| · l + k · l (5)

The hypothesis (HT) For the hypothesis HT , it is corresponding to the partition job
where piT separates the set S into S1 and S2 with the code lengths l1 and l2 respectively.
Since the code is encoded, the cut value can be determined with the cost of log2(|S|−1).
Hence, transmitting HT has the cost measured in bits of:

log2(|S| − 1) + |S1| · l1 + |S2| · l2 (6)
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Considering each partitioned subset can be one of the 2k−1 subsets under k classes, the
transmission of the encoding dictionary has the cost measured in bits of:[ k−1∑

ki=1

(
k

ki

)
2ki
]

+ 2k − 1 = 3k − 2 (7)

After all, the cost of HT measured in bits is:

log2(|S| − 1) + |S1| · l1 + |S2| · l2 + log2(3
k − 2) + |S1| · k1 + |S2| · k2 (8)

Decision Rule Accepting a partition πT on the set S, S will be separated into S1 and
S2 with k1 and k2 distinguish class labels respectively. The information gain of the
partition is:

IG(πT ;S) = Ent(S)− |S1|
|S|

Ent(S1)−
|S2|
|S|

Ent(S2) (9)

To accept a partition πT on the set S, the cost of null hypothesis should be larger than
the cost of hypothesis.

Cost(NT ) >Cost(HT )

Cost(NT ) =N · Ent(S) + k · Ent(S)

Cost(HT ) = log2(|S| − 1) + |S1| · Ent(S1) + |S2| · Ent(S2)
+ log2(3

k − 2) + Ent(S1) · k1 + Ent(S2) · k2

(10)

Derived from the above equations, the partition acceptance criterion should be:

IG(πT ;S)− log2(|S| − 1)

N
> log2(3

k − 2)− [kEnt(S)− k1Ent(S1)− k2Ent(S2)] (11)

Based on the above MDL decision rules, we can partition each attribute (or feature) into
intervals for Bayesian learning in the study.
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S1.2 Supplemental Figures and Tables

InfoG Input Features Feature Description

0.6897 CA19-9 (U/ml) Circulating Cancer Antigen 19-9 Concentration in U/ml
0.5119 CA-125 (U/ml) Circulating Cancer Antigen 125 Concentration in U/ml
0.5001 HGF (pg/ml) Circulating Hepatocryte Growth Factor Concentration in pg/ml
0.2779 OPN (pg/ml) Circulating Osteopontin Concentration in pg/ml
0.2208 OmegaScore Omega Score for Mutations in Circulating Cell-Free DNA
0.1826 Prolactin (pg/ml) Circulating Prolactin Concentration in pg/ml
0.1518 CEA (pg/ml) Circulating CarcinoEmbryonic Antigen Concentration in pg/ml
0.0989 Myeloperoxidase (ng/ml) Circulating Myeloperoxidase Concentration in ng/ml
0.0916 TIMP-1 (pg/ml) Circulating Tissue Inhibitor of MetalloProteinases 1 Concentration in pg/ml

Table S1: Feature List for Cancer Detection ranked by Information Gain (In-
foG), related to Figure 1

(a) t-distributed Stochastic Neighbor Embedding (b) Principal Component Analysis

(c) Nonnegative Matrix Factorization (d) Spectral Embedding

Figure S1: Dataset Visualization for Cancer Detection, related to Figure 1
All figures are drawn using the captioned method with Python scikit-learn
package and its default setting (Pedregosa et al., 2011).
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Figure S2: Linear Discriminant Analysis (LDA) for Cancer Detection, related
to Figure 1
The plot is drawn using the default setting of the klaR package in R. The two
colors correspond to the linearly discriminated regions. The red fonts denote
the wrongly classified samples.

18



(a) Decrease in Purity (b) Decrease in Accuracy

(c) Recursive Feature Elimination

Figure S3: Feature Rankings for Cancer Detection, related to Figure 1
The feature rankings are measured based on the random forest building under
Python scikit-learn package(Pedregosa et al., 2011). Each bar represents one
feature. For purity and accuracy, 5-fold cross-validations are run on the
random forests of 250 Gini decision trees for 300 times to give the means and
standard deviations as visualized on the error bars.
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Figure S4: Feature Correlation Matrix for Cancer Detection, related to Figure
1
The matrix is drawn using the ’PerformanceAnalytics’ package in R with its
default setting. The upper triangle tabulates the Pearson correlation values
under different pairing scenarios. P-values are also computed where each
significance level is associated to a symbol where *** denotes 0.001; ** denotes
0.01; * denotes 0.05.
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Figure S5: Protein-Protein Interaction Network for Cancer Detection, related
to Figure 1
Only the protein markers which can be precisely mapped onto STRING net-
work analysis without any ambiguity are shown here (Szklarczyk et al., 2016).

Table S2: Comparative Computational Complexity Analysis on Naive Bayes
Variants, related to Figure 1
A1DE is the model underlying CacnerA1DE; NB denotes Naive Bayes; LBR
denotes Lazy Bayesian Rule; TAN denotes Tree Augmented Naive Bayes; SP-
TAN denotes SuperParent TAN.

Complexity A1DE NB LBR TAN SP-TAN

Training time complexity O(tn2) O(tn) O(tn) O(n2t+ kn2t2 + n2logn) O(tkn3)
Prediction time complexity O(kn2) O(kn) O(tkn3) O(kn) O(knv2)
Training space complexity O(k(nv)2) O(knv) O(tn) O(k(nv)2) O(k(nv)2 + tn)
Prediction space complexity O(k(nv)2) O(knv) O(tn) O(knv2) O(knv2)

Note:
k is the number of classes
n is the number of attributes
v is the mean number of attributes values
t is the number of training samples
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Figure S6: Cancer Detection Feature Histograms (vertical axis) after Feature
Discretization (horizontal axis), related to Figure 1
The feature discretization is based on the Minimum Description Length
(MDL) principle using JAVA Weka (Kononenko, 1995). The red colour de-
notes cancer while the blue colour denotes healthy patient sample.

Figure S7: Conditional Probability Plots (P̂ (xj |y, xi)) for CancerA1DE when
the Parent Feature xi refers to Myeloperoxidase (ng/ml), related
to Figure 2
The colours denote different parent feature values as demonstrated in the
right legends. The horizontal axis denotes the child feature values (xj) which
conditional probabilities are scaled across the vertical axis grouped by cancer
or normal (y).
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(a) CA-125 (U/ml) (b) CA19-9 (U/ml)

(c) CEA (pg/ml) (d) HGF (pg/ml)

(e) Prolactin (pg/ml) (f) OPN (pg/ml)

(g) OmegaScore (h) TIMP-1 (pg/ml)

Figure S8: Conditional Probability Plots (P̂ (xj |y, xi)) for CancerA1DE, related
to Figure 2
The colors denote the parent feature values (xi) as demonstrated in the right
legends. The horizontal axis denotes the child feature values (xj) which
conditional probabilities are scaled across the vertical axis grouped by cancer
or normal (y).
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Table S3: CancerA1DE and CancerA2DE Performance Sensitivity Analysis,
related to Figure 1
The analysis is based on independent training and testing data in different
size proportions.

Training % Testing % CancerA1DE ROC AUC CancerA2DE ROC AUC

1 99 0.694 0.694
5 95 0.892 0.892
10 90 0.926 0.924
20 80 0.983 0.983
30 70 0.983 0.984
40 60 0.987 0.987
50 50 0.989 0.989
60 40 0.989 0.989
70 30 0.991 0.991
80 20 0.991 0.991
90 10 0.994 0.994

Pathway ID Pathway Description False Discovery Rate Matching Proteins

5144 Malaria 2.14E-06 CSF3,HGF,IL6,IL8,THBS2
4151 PI3K-Akt signaling pathway 3.97E-06 ANGPT2,CSF3,FGF2,HGF,IL6,PRL,SPP1,THBS2
4060 Cytokine-cytokine receptor interaction 9.58E-06 CSF3,HGF,IL6,IL8,LEP,PRL,TNFRSF11B
4066 HIF-1 signaling pathway 0.00123 ANGPT2,ENO2,IL6,TIMP1
4630 Jak-STAT signaling pathway 0.00476 CSF3,IL6,LEP,PRL
5200 Pathways in cancer 0.00528 FGF2,HGF,IL6,IL8,TGFA
4512 ECM-receptor interaction 0.0103 CD44,SPP1,THBS2
4640 Hematopoietic cell lineage 0.0103 CD44,CSF3,IL6
4620 Toll-like receptor signaling pathway 0.0151 IL6,IL8,SPP1
4932 Non-alcoholic fatty liver disease (NAFLD) 0.0405 IL6,IL8,LEP

Table S4: Enriched Pathway List for Cancer Type Localization, related to Fig-
ure 4
It is computed from the network in Figure S12 using STRING network analysis
(Szklarczyk et al., 2016).
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(a) t-distributed Stochastic Neighbor Embedding (b) Principal Component Analysis

(c) Nonnegative Matrix Factorization (d) Spectral Embedding

Figure S9: Dataset Visualization for Cancer Type Localization, related to Ta-
ble 1
All figures are drawn using the captioned method with Python scikit-learn
package and its default setting (Pedregosa et al., 2011).
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(a) Decrease in Purity (b) Decrease in Accuracy

(c) recursive feature elimination

Figure S10: Feature Rankings for Cancer Type Localization, Table 1
The feature rankings are measured based on the random forest building un-
der Python scikit-learn package(Pedregosa et al., 2011). Each bar represents
one feature. For purity and accuracy, 5-fold cross-validations are run on the
random forests of 250 Gini decision trees for 300 times to give the means
and standard deviations as visualized on the error bars.

26



Figure S11: Feature Correlation Matrix for Cancer Type Localization, related
to Table 1
The heatmap is drawn using the ’gplots’ package in R with its default setting
under the function ’heatmap.2’. In particular, the correlations values are
computed using the Pearson correlation approach. The features are order
by the corresponding hierarchical clustering on each axis.
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Figure S12: Protein-Protein Interaction Network for Cancer Type Localiza-
tion, related to Figure 4
Only the protein markers which can be precisely mapped onto STRING
network analysis without any ambiguity are shown here (Szklarczyk et al.,
2016). K-means community detection has been applied onto the network
with 3 communities.
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(a) CancerA1DE (b) CancerA2DE

(c) CancerSEEK (d) DeepLearning1

(e) DeepLearning2 (f) DeepLearning3

(g) J48 (h) Naive Bayes

Figure S13: Receiver Operating Characteristic (ROC) curves for Cancer Type
Localizations, related to Figure 4
The curves are generated under 10-fold cross-validations using the R package
’pROC’ with the multiclass setting according to Hand and Till (Hand and
Till, 2001). Each plot represents a method.
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(a) Breast (b) Colorectum (c) Liver

(d) Lung (e) Ovary (f) Pancreas

(g) Upper GI

Figure S14: Feature Importance Analysis for Cancer Type Localization under
One-Class-versus-Others Setting, related to Table 1
The feature rankings are measured based on the Learning Vector Quan-
tization (LVQ) building under Python caret package (Bischl et al., 2016).
10-fold cross-validations are run compute the feature importance values.
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