
Frontiers in Endocrinology | www.frontiersi

Edited by:
Sheue-yann Cheng,

National Cancer Institute (NCI),
United States

Reviewed by:
Sabine Costagliola,

Fonds National de la Recherche
Scientifique (FNRS), Belgium

Risheng Ma,
Icahn School of Medicine at Mount

Sinai, United States

*Correspondence:
Qiliang Zhou

zhouql@med.niigata-u.ac.jp

†Present address:
Yingchun Li,

Department of Hematology, Shengjing
Hospital of China Medical University,

Shenyang, China

Specialty section:
This article was submitted to

Thyroid Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 24 September 2020
Accepted: 10 November 2020
Published: 14 December 2020

Citation:
Ran Q, Zhou Q, Oda K, Yasue A,

Abe M, Ye X, Li Y, Sasaoka T,
Sakimura K, Ajioka Y and Saijo Y

(2020) Generation of Thyroid Tissues
From Embryonic Stem Cells via

Blastocyst Complementation In Vivo.
Front. Endocrinol. 11:609697.

doi: 10.3389/fendo.2020.609697

ORIGINAL RESEARCH
published: 14 December 2020

doi: 10.3389/fendo.2020.609697
Generation of Thyroid Tissues From
Embryonic Stem Cells via Blastocyst
Complementation In Vivo
Qingsong Ran1, Qiliang Zhou1*, Kanako Oda2, Akihiro Yasue3, Manabu Abe4, Xulu Ye1,
Yingchun Li1†, Toshikuni Sasaoka2, Kenji Sakimura4, Yoichi Ajioka5 and Yasuo Saijo1

1 Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan,
2 Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan,
3 Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate
School, Tokushima, Japan, 4 Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata,
Japan, 5 Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences,
Niigata, Japan

The generation of mature, functional, thyroid follicular cells from pluripotent stem cells
would potentially provide a therapeutic benefit for patients with hypothyroidism, but in vitro
differentiation remains difficult. We earlier reported the in vivo generation of lung organs via
blastocyst complementation in fibroblast growth factor 10 (Fgf10), compound,
heterozygous mutant (Fgf10 Ex1mut/Ex3mut) mice. Fgf10 also plays an essential role in
thyroid development and branching morphogenesis, but any role thereof in thyroid
organogenesis remains unclear. Here, we report that the thyroids of Fgf10 Ex1mut/
Ex3mut mice exhibit severe hypoplasia, and we generate thyroid tissues from mouse
embryonic stem cells (ESCs) in Fgf10 Ex1mut/Ex3mut mice via blastocyst
complementation. The tissues were morphologically normal and physiologically
functional. The thyroid follicular cells of Fgf10 Ex1mut/Ex3mut chimeric mice were derived
largely from GFP-positive mouse ESCs although the recipient cells were mixed. Thyroid
generation in vivo via blastocyst complementation will aid functional thyroid regeneration.

Keywords: blastocyst complementation, embryonic stem cells, Fgf10, pluripotent stem cells, thyroid generation
INTRODUCTION

Continuous, oral thyroid hormone replacement therapy is indispensable for patients with
hypothyroidism caused by total thyroidectomy or etiological factors. Although this is relatively
simple, effective, safe, and inexpensive, it can be difficult to maintain the complex homeostatic
interactions of various hormones (1, 2), and the side-effects of over-replacement include cardiac events
and osteoporosis also cannot be ignored (2, 3). Regeneration and transplantation of thyroid tissue to
physiologically supplement thyroid hormone levels is an alternative (radical) treatment strategy (4, 5).
Derivation of thyroid follicular cells via directed differentiation of pluripotent stem cells (PSCs) in
vitro, using growth factor-supplemented media, failed to regenerate mature thyroid follicular cells
expressing the full genetic suite required for functional thyroid hormone biosynthesis (6–10). Using an
embryonic stem cell (ESC) line hosting a GFP reporter-linked cDNA targeting the locus encoding the
homeodomain-containing thyroid transcription factor 1 (TTF1 or Nkx2-1), Kurmann et al. reported the
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generation of functional thyrocytes via activation of bone
morphogenetic protein (Bmp) and fibroblast growth factor (Fgf)
signaling in vitro (11). Alternatively, transient forced overexpression
of the transcription factors TTF1 and Paired box gene 8 (Pax8) of
mouse or human ESCs allowed the cells to differentiate into
functional thyroid follicular cells in vitro (12–15). However, the
problems associated with in vitro generation of mature thyroid
follicular tissue from PSCs, including low differentiation efficiency,
the need for genetic labeling to sort and enrich progenitors, and the
risk of tumor formation from undifferentiated PSCs after
transplantation, limit the clinical applications of cell therapy.

Recently, in vivo models of organ generation via blastocyst
complementation have shown promise. Generation of the
pancreas (16, 17), kidney (18, 19), blood vasculature (20) and
lung (21) via intra- or inter-species blastocyst complementation
have been reported. Very recently, we used fibroblast growth factor
10, (Fgf10), compound, heterozygous mutant (Fgf10 Ex1mut/Ex3mut)
mice to generate lungs via blastocyst complementation (22). Fgf10
Ex1mut/Ex3mut mice exhibited limb and lung deficiencies, as did
Fgf10 Ex1−/− and Fgf10 Ex3−/− mice, as well as other Fgf10-
knockout mice (23–25). Complementation with ESCs enabled
Fgf10 Ex1mut/Ex3mut mice to survive to adulthood without
any abnormality.

In contrast to the relatively distinct role played by Fgf10 in
lung development and branching morphogenesis (23, 24, 26–28),
indefiniteness remains in thyroid organogenesis. Thyroid
agenesis has been reported in mice deficient in Fgf10 (24) or
its receptor Fgfr2b (29), indicating that Fgf10–Fgfr2b signaling
plays a crucial role in thyroid organogenesis. However, although
the thyroid primordium was absent at E13, the stage at which
thyroid morphogenesis was impaired was not explored. Nkx2-
1+/Sox 9+ thyroid progenitors were detected in the thyroid
placode at E9.5; weak expression of Fgfr2b in the thyroid
primordium at E12.5; and distinct expression of Fgf10 in the
mesenchyme at E15.5 (30). By contrast, it has been reported that
Fgf10-null mutant mouse embryos did not exhibit thyroid
agenesis but rather severe hypoplasia (the thyroid was shaped
normally) (30, 31). Similarly, conditional knockout of Fgf10
(Wnt1cre Fgf10 fl/fl) in neural crest, from which several head
tissues are derived (including the mesenchyme around the
developing thyroid glands), resulted thyroid remnants (31).
Therefore, we explored the thyroid phenotype of Fgf10 Ex1mut/
Ex3mut mice and the possibility of thyroid generation in such
mice from PSCs (thus via blastocyst complementation).

Here, we report that the thyroids of Fgf10 Ex1mut/Ex3mut mice
are normally shaped but severely hypoplastic. Complementation
with ESCs rescued thyroid organogenesis. Generation of thyroids
in vivo via blastocyst complementation will aid functional
thyroid regeneration.
MATERIALS AND METHODS

Generation of Fgf10 Ex1mut/Ex3mut

Mice and Chimeric Mice
All animal experiments were approved by the Institutional Animal
Care and Use Committee of Niigata University, Niigata,
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Japan (approval number SA00233). Fgf10 Ex1wild/mut and Fgf10
Ex3wild/mut mice were generated using the CRISPR/Cas9 system as
described in our previous report (22). Fgf10 Ex1mut/Ex3mut mice
were obtained by intercrossing Fgf10 Ex1wild/mut mice with Fgf10
Ex3wild/mut mice. Generation of Fgf10 Ex1mut/Ex3mut chimeric mice
via blastocyst complementation proceeded as described previously
(22). Briefly, embryos were prepared via in vitro fertilization of
Fgf10 Ex3−/+ ova with Fgf10 Ex1−/+ sperm, and five to eight GFP-
expressing mouse RENKA C57BL/6NCrlCrlj ESCs (#CFS-
EGFP27; Brain Research Institute, Niigata University) were
prepared and microinjected into the perivitelline space of eight-
cell/morula-stage embryos. After further culture in vitro, the
embryos were transferred into the uteri of pseudopregnant,
recipient ICR female mice. Genotyping of the Fgf10 Ex1mut/
Ex3mut mice and chimeric mice were performed using
the Surveyor System and DNA sequencing, as described
previously (22).

Histological Analysis
Mouse tissues were fixed in 10% (v/v) neutral buffered formalin,
embedded in paraffin, sectioned, and the sections deparaffinized
with xylene and hydrated in a graded series of ethanol baths.
Hematoxylin and eosin (H&E) and immunofluorescence
staining were performed as described previously (22). The
primary antibodies were anti-GFP polyclonal antibody (goat
IgG, 1:200; #GTX26673; GeneTex, Irvine, CA, USA); anti-
TTF1 monoclonal antibody (rabbit IgG, 1:200; #ab76013;
Abcam, Cambridge, UK); anti-FOXE1 polyclonal antibody
(rabbit IgG, 1:200; #bs-0446r; Bioss, Woburn, MA, USA); anti-
Pax8 antibody (rabbit IgG, 1:200; #10337-1-AP; Proteintech,
Chicago, IL, USA); anti-thyroglobulin monoclonal antibody
(rabbit IgG,1:200; #ab156008; Abcam); anti-T3 polyclonal
antibody (rabbit IgG, 1:200; #MBS2001953; MyBioSource, San
Diego, CA, USA); anti-calcitonin polyclonal antibody (rabbit
IgG, 1:200; #GTX134005; GeneTex); anti-vimentin monoclonal
antibody (rabbit IgG, 1:200; #ab92574; Abcam); and anti-Ki-67
polyclonal antibody (rabbit IgG, 1:200; #ab15580, Abcam).
Donkey anti-goat IgG-Alexa Fluor 488 (1:200; #A11055;
Invitrogen, Carlsbad, CA, USA) and donkey anti-rabbit IgG-
Alexa Fluor 594 (1:200; #A21207; Invitrogen) served as
secondary antibodies. Nuclei were counterstained with 4′,6-
diamidino-2-phenylindole (DAPI) and fluorescence images
acquired using a C1si confocal microscope (Nikon,
Tokyo, Japan).

TTF1-positive cells were counted in over 1,500 cells in at least
three images (200× magnification) randomly selected from the
thyroids of each mouse. GFP-positive cells among TTF1-positive
cells were counted and the percentage of GFP/TTF1-positive
cells was then calculated.

Contrast-Enhanced Micro-Computed
Tomography
To explore the macroscopic phenotypes of the thyroid tissues of
Fgf10 Ex1mut/Ex3mut neonatal mice and Fgf10 Ex1mut/Ex3mut

chimeric neonatal mice, contrast-enhanced micro-CT analysis
was performed as described previously (22) with slight
modifications. Briefly, neonatal mice were first fixed in
December 2020 | Volume 11 | Article 609697
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4% (v/v) paraformaldehyde at 4°C for 2 days. A midline cervical
incision was then created and the larynx, trachea, and thyroid
exposed. Then, the mice were immersed in 25% (v/v) Lugol’s
iodine solution at room temperature for 5 days. Subsequently,
the samples were scanned using a micro-CT device (Nittetsu
Elex, Tokyo, Japan) and the data analyzed with the aid of TRI/
3D-Bon software (Ratoc System Engineering Co. Ltd.,
Tokyo, Japan).

Enzyme-Linked Immunosorbent Assays
Serum tri-iodothyronine (T3) and thyroxine (T4) concentrations
were measured using ELISA kits (CSB-E05086m for T3, CSB-
E05083m for T4; CUSABIO, Wuhan, China), according to the
manufacturer’s protocols. Briefly, 50 µl of standards or blood
samples was added to 96-well plates, followed by 50 µl of
conjugate reagents; incubation proceeded for 60 min at 37°C.
The liquid was aspirated, the wells washed three times, 50 µl of
the HRP–avidin reagent added, and the plates incubated for
30 min at 37°C. The liquid was aspirated, the wells washed three
times, and 50 µl of substrates A and B added. After incubation for
15 min at 37°C in the dark, 50 µl of stop solution was added and
the optical density at 450 nm measured within 10 min using a
microplate reader. All tests were performed in duplicate.

Statistical Analysis
Data are presented as the means ± standard deviations. One-way
analysis of variance and the Tukey–Kramer test were used to
assess the significance of differences. A p-value <0.05 was deemed
to indicate significance.
RESULTS

Fgf10 Ex1mut/Ex3mut Mice Exhibit
Severe Thyroid Hypoplasia
Fgf10 Ex1mut/Ex3mut mice were generated as previously reported
(22). Consistent with the data of a recent study on embryonic
growth of the thyroid gland in Fgf10-null mutant mice (30),
neonatal Fgf10 Ex1mut/Ex3mut mice exhibited bilateral thyroid
remnants (Figure 1A) on micro-CT analysis. Serial sections of
the entire glands (n = 5) confirmed that the thyroids were normally
shaped but smaller than those of Fgf10wild/wild neonates
(Supplemental Videos 1 and 2). H&E and immunofluorescence
staining indicated that the hypoplastic thyroids glands of Fgf10
Ex1mut/Ex3mut mice had a lower proportion of parenchyma,
decreased branching, and fewer follicles than normal mouse
thyroids (Figures 1B, C). Immunofluorescence staining indicated
that the number of thyroid cells expressing TTF1 and Pax8 (the
most important transcription factors in terms of thyroid gland
organogenesis) was decreased in neonatal Fgf10 Ex1mut/Ex3mut

mice compared to neonatal Fgf10wild/wild mice (Figure 1C).
Although the protein levels seem to be similar, the total
expression levels of thyroglobulin (Tg) (a precursor protein of
thyroid hormone) and tri-iodothyronine (T3) were reduced in
neonatal Fgf10 Ex1mut/Ex3mut mice (Figure 1C). Ki-67 positive
proliferating cells were obviously reduced in thyroids of neonatal
Frontiers in Endocrinology | www.frontiersin.org 3
Fgf10 Ex1mut/Ex3mut mice compared to neonatal Fgf10wild/wild mice
(Figure 1C). The expression of calcitonin in the neonatal Fgf10
Ex1mut/Ex3mut mice did not seem to decrease significantly (Figure
1C), in agreement with a previous report that Fgf10 is not involved
in parafollicular cell differentiation (30).

Generation of Thyroid Tissues in
Fgf10 Ex1mut/Ex3mut Mice
We next sought to generate thyroid tissues from PSCs in Fgf10
Ex1mut/Ex3mut mice via blastocyst complementation. Micro-CT
confirmed the existence of thyroids adjacent to the trachea at the
front of the neck of neonatal Fgf10 Ex1mut/Ex3mut chimeras; the
glands were of normal shape and size (Figure 1A). The thyroids of
Fgf10 Ex1mut/Ex3mut chimeric neonates (Figure 1B and
Supplemental Video 3) were histologically normal (thus similar
to those of Fgf10wild/wild neonates) (Figure 1B and Supplemental
Video 1). The thyroid tissues of Fgf10 Ex1mut/Ex3mut chimeras
exhibited high-level GFP expression compared to those of
Fgf10wild/wild neonates (Figures 1D, E), indicating a major
contribution from GFP-expressing mouse ESCs. The levels of
TTF1, Tg, and T3 in the thyroids of neonatal Fgf10 Ex1mut/Ex3mut

chimeras (Figure 1F) were similar to those of neonatal
Fgf10wild/wild mice (Figure 1C). The GFP expression of TTF1-
positive follicular cells predominated but was mosaic, while those
of calcitonin-positive parafollicular cells and vimentin-positive
stromal cells showed no preponderance (Figure 1F). These data
indicated that thyroid tissues were generated in Fgf10 Ex1mut/
Ex3mut mice via blastocyst complementation.

Characterization of the Thyroids of Adult
Fgf10 Ex1mut/Ex3mut Chimeric Mice
We showed that survival of Fgf10 Ex1mut/Ex3mut mice to
adulthood was rescued by complementation with mouse ESCs
(22). Next, we analyzed the thyroid tissues of five Fgf10 Ex1mut/
Ex3mut adult chimeric mice. We lacked data on adult Fgf10
Ex1mut/Ex3mut mice because they died immediately after birth;
they had no lungs. The low proportion of parenchyma in the
thyroids of Fgf10 Ex1mut/Ex3mut neonates (Figure 1B) recovered
in the thyroid tissues of adult Fgf10 Ex1mut/Ex3mut chimeras
(Figure 2A). The thyroid follicles of adult Fgf10 Ex1mut/Ex3mut

chimeras were well-organized spheres lined with follicular cells
surrounding the lumina that contained a colloid, as in adult
Fgf10wild/wild mice (Figure 2A). The thyroid follicular cells of
adult Fgf10 Ex1mut/Ex3mut chimeras expressed TTF1, FOXE1
(formerly TTF2), and Pax8 at levels similar to those of adult
Fgf10wild/wild mice (Figure 2B). Calcitonin-positive parafollicular
cells were detected in connective tissue adjacent to the thyroid
follicles, as in adult Fgf10wild/wild mice (Figure 2B). Thus, the
thyroids of adult Fgf10 Ex1mut/Ex3mut chimeric mice were
histologically normal.

Next, we investigated the contribution of GFP-expressing
mouse ESCs to the thyroids. Extremely strong, diffuse, GFP
expression across all thyroid tissues was observed in Fgf10
Ex1mut/Ex3mut adult chimeras compared to adult Fgf10wild/wild
mice or Fgf10 Ex1wild/Ex3mut chimeras (Figure 2B). In Fgf10
Ex1mut/Ex3mut adult chimeric mice, large proportions of the
December 2020 | Volume 11 | Article 609697
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FIGURE 1 | Characterization of the thyroids of Fgf10 Ex1mut/Ex3mut neonates and Ex1mut/Ex3mut chimeric neonates complemented with mouse embryonic stem
cells (mESCs). (A) Axial micro-computed tomography images of the neck regions of Fgf10wild/wild and Ex1mut/Ex3mut neonates and Ex1mut/Ex3mut chimeric neonates.
Yellow arrows indicate thyroid lobes adjacent to the tracheae. Scale bar = 2 mm. (B) Hematoxylin and eosin staining of cervical cross-sections of Fgf10wild/wild and
Ex1mut/Ex3mut neonates and Ex1mut/Ex3mut chimeric neonates. The right panels show magnified views of the areas indicated by the green dotted lines in the left
panels. Scale bars = 100 mm. (C) Immunofluorescence staining of the thyroids of Fgf10wild/wild and Ex1mut/Ex3mut neonates for various markers (red): TTF1, thyroid
transcription factor1; PAX8, paired box gene 8; T3, tri-iodothyronine; Tg, thyroglobulin; Calcitonin and Ki-67. Nuclei were stained with DAPI (blue). Scale bars = 50
mm. Yellow dotted lines in (B, C) indicated representative thyroid follicles. (D–F) Immunofluorescence staining of the thyroid of an Fgf10 Ex1mut/Ex3mut chimeric
neonate. (D) A low magnification image acquired using a stereo fluorescence microscope. The thyroid of an Fgf10wild/wild neonate placed on the same slide served
as the control. White dotted lines indicate the thyroid glands. (E) Image acquired using a confocal microscope (with slight magnification) of the tissue indicated by the
yellow dotted box in (D). Scale bars = 1 mm. T, trachea; C, cartilage; E, esophagus. (F) Immunofluorescence staining of the thyroids of Fgf10 Ex1mut/Ex3mut

neonates for GFP (green) and thyroid markers (red): TTF1, T3, Tg and Calcitonin. Nuclei were stained with DAPI (blue). Insets in (C, E) show magnified views of the
areas indicated with white dotted lines. Scale bars = 50 mm.
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TTF1-, FOXE1-, and Pax8-positive follicular cells were GFP-
positive, indicating that the cells were derived principally from
mouse ESCs (Figure 2B). The extent of GFP expression in non-
follicular regions, including parafollicular cells, blood vessels,
and connective tissues, did not differ between the Fgf10 Ex1mut/
Ex3mut and Ex1wild/Ex3mut chimeras (Figure 2B). Moreover,
86.4 ± 7.9% of follicular cells in adult Fgf10 Ex1mut/Ex3mut
Frontiers in Endocrinology | www.frontiersin.org 5
chimeras were derived from GFP-positive mouse ESCs,
a greater proportion than in adult Fgf10wild/wild and Ex1mut

or Ex3mut chimeras (Figure 2C). Next, we assessed the
physiological function of the thyroid tissues of adult
Fgf10 Ex1mut/Ex3mut chimeras. Immunofluorescence staining
confirmed cytosolic expression of Tg and deposition thereof in
the thyroid follicular lumina (Figure 3A). T3 was also detected in
A

B

C

FIGURE 2 | Characterization of the thyroids of adult Fgf10 Ex1mut/Ex3mut chimeric mice complemented with mouse embryonic stem cells (mESCs). (A) Hematoxylin
and eosin staining of thyroid tissues from adult Fgf10wild/wild mice, and Fgf10 Ex1wild/Ex3mut and Ex1mut/Ex3mut chimeric mice. The bottom panels show magnified
views of the areas indicated by the dotted lines in the top panels. (B) Immunofluorescence staining of the thyroids of Fgf10 Ex1mut/Ex3mut chimeric neonates for GFP
(green) and various markers (red): TTF1, thyroid transcription factor 1; FOXE1, forkhead box E1; and PAX8, paired box gene 8 for follicular cells, Calcitonin for
parafollicular cells, and Vimentin for stromal cells. Nuclei were stained with DAPI (blue). Fgf10wild/wild and Fgf10 Ex1wild/Ex3mut chimeric mice served as controls.
Insets show magnified views of the areas indicated with white dotted lines. The right panels show magnified views of the areas indicated by the dotted lines in the left
panels. Scale bars = 100 mm for (A); 50 mm for (B). (C) Enumeration of GFP/TTF1-positive thyroid follicular cells in adult Fgf10 Ex1mut/Ex3mut, Fgf10 Ex1mut or
Ex3mut, and Fgf10wild/wild chimeric mice. Data are expressed as the means ± standard deviations; n = 3/group. *p < 0.05 versus other treatments; #p > 0.05 versus
Fgf10wild/wild chimeras.
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the colloid, as in adult Fgf10wild/wild mice (Figure 3A). ELISA
confirmed that the plasma T3 and thyroxine (T4) levels of adult
Fgf10 Ex1mut/Ex3mut chimeras were similar to those of adult
Fgf10wild/wild mice and Ex1mut or Ex3mut chimeric mice (Figure
3B). Thus, thyroids of adult Fgf10 Ex1mut/Ex3mut chimeras were
functional. Thus, the functional thyroid follicles were generated
principally from mouse ESCs in adult Fgf10 Ex1mut/Ex3mut

chimeric mice, via blastocyst complementation.
DISCUSSION

We generated thyroid tissues in Fgf10 Ex1mut/Ex3mut mice with
severely hypoplastic thyroids via blastocyst complementation with
mouse ESCs. The generated thyroids were morphologically
normal and physiologically functional compared to those of
Fgf10wild/wild mice. The generated thyroid tissues exhibited
significant contributions from GFP-positive ESCs but the
recipient cells were mixed.

Early during mouse thyroid development, thyroid progenitors
expressing a specific combination of four critical transcription
factors [Nkx2-1, Pax8, FOXE1 (Forkhead Box E1), and HHEX
(hematopoietically expressed homeobox)] assemble to form the
Frontiers in Endocrinology | www.frontiersin.org 6
thyroid bud in the anterior foregut endoderm (32, 33). These
transcription factors are linked to an integrated regulatory
network that controls thyroid survival and migration during
organogenesis, via cell-autonomous mechanisms (32, 33).
Deletion of a gene encoding any of these transcription factors
triggers athyreosis or severe thyroid hypoplasia (34). Fgf10 plays
essential roles in the development of many organs such as the
thyroid, limbs, lungs, and pituitary and salivary glands, mediated
principally via the mesenchymal–epithelial interaction signaled
through the receptor Fgfr2-IIIb (24, 35). Mice deficient in Fgf10 or
Fgfr2b exhibit athyreosis, indicating that Fgf10 is required for
thyroid budding and branching morphogenesis (24, 29). However,
a recent study reported that most Fgf10-null mouse embryos
exhibited small, unilateral remnant thyroids, indicating that
organogenesis proceeded even in the complete absence of Fgf10
(31). Conditional, neural crest Fgf10 knock-out reduced thyroid
size to a lesser degree than in the null mutant, suggesting that a
source of Fgf10 apart from the neural crest might be available to
assist thyroid development (31). A recent work on thyroid
branching morphogenesis showed that normally shaped,
symmetrical thyroids were present in Fgf10-null mutant mouse
embryos, but were severely hypoplastic (30). Fgf10–Fgfr2b
signaling may thus be dispensable in terms of thyroid
December 2020 | Volume 11 | Article 609697
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FIGURE 3 | In vivo thyroid functionality assessment in adult Fgf10 Ex1mut/Ex3mut chimeric mice complemented with mouse embryonic stem cells (mESCs).
(A) Immunofluorescence staining of the thyroids. Thyroid follicles were analyzed by staining for GFP (green) and markers of thyroid function. Tg, thyroglobulin; T3, tri-
iodothyronine. Insets show magnified views of the areas indicated with white dotted lines. The right panels show magnified views of the areas indicated by dotted
lines in the left panels. Nuclei were stained with DAPI (blue). Fgf10wild/wild and Fgf10 Ex1wild/Ex3mut chimeric mice served as controls. Scale bar = 50 mm. (B) ELISA
analyses of serum tri-iodothyronine (T3) and thyroxine (T4) concentrations in adult Fgf10 Ex1mut/Ex3mut chimeric mice. Adult Fgf10wild/wild and Fgf10 Ex1mut or Ex3mut

chimeric mice served as controls. Data are expressed as the means ± standard deviations; n = 3 for the adult Fgf10 Ex1mut/Ex3mut chimeric mouse group and n = 4
for the adult Fgf10wild/wild and Fgf10 Ex1mut or Ex3mut chimeric mouse groups; *p > 0.05 versus other treatments.
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specification and early development, but is required to regulate
organogenesis (30). We found that the thyroids of neonatal, Fgf10
compound heterozygous mutant (Fgf10 Ex1mut/Ex3mut) mice were
severely hypoplastic but symmetrically residual, supporting the
above observations in mouse embryos (30, 31). Furthermore,
complementation with Fgf10wild-type ESCs rescued thyroid
organogenesis both histologically and functionally in Fgf10
Ex1mut/Ex3mut mice, indicating that Fgf10 played essential roles
in late thyroid development and organogenesis.

Although Fgf10 seems to be dispensable in terms of thyroid
specification and early thyroid development, Fgf10-induced
branching growth has been reported to account for over 80% of
thyroid enlargement before birth (30). Given the symmetrical,
severe thyroid hypoplasia of Fgf10 Ex1mut/Ex3mut mice, we
expected that it might be possible to generate functional thyroid
tissues from PSCs in such mice via blastocyst complementation.
Indeed, high proportions of the thyroid follicular cells of Fgf10
Ex1mut/Ex3mut adult chimeric mice were GFP-positive (Figure
2B), indicating major contributions from donor ESCs. Localized
Fgf10 expression by donor ESCs in the mesenchyme around
developing thyroid glands would act non-selectively (via Fgfr2-
IIIb-mediated mesenchymal–epithelial interaction signaling) on
both GFP-positive donor cells (Fgf10wild/wild) and GFP-negative
host cells (Fgf10 Ex1mut/Ex3mut) resident in the endoderm.
However, other mechanisms [such as ectopic expression of
Fgf10 in the GFP-positive donor epithelium (Fgf10wild/wild), as
indicated during lung generation via blastocyst complementation]
(22) may explain in the relative preponderance of GFP-positive
donor ESCs during thyroid development compared to the level in
the Fgf10 Ex1mut/Ex3mut host epithelium. Importantly, ESC-
derived thyroid follicles expressed and deposited T3 as did adult
Fgf10wild/wild mice (Figure 3A). These data, together with the
ELISA results indicating that adult Fgf10 Ex1mut/Ex3mut chimeras
had normal T3 and T4 plasma levels compared to adult Fgf10wild/
wild mice (Figure 3B), indicated that the mature, functional
thyroid follicle tissues of adult Fgf10 Ex1mut/Ex3mut chimeras
were generated predominantly from ESCs.

Directed in vitro differentiation of PSCs using growth factors
has been reported, but failed to regenerate mature thyroid
follicular cells (6–10). Derivation of functional thyroid follicular
cells in vitro frommouse and human induced PSCs (4, 11), mouse
ESCs (12, 13, 15), and human ESCs (14) has been reported using
several protocols. However, the generation of such cells from
PSCs is inefficient; enrichment and sorting of precursor cells
currently requires genetic editing (TTF1 and Pax8 overexpression
or labeling of targeted alleles) (34, 36). Also, the risk of tumor
formation from undifferentiated PSCs on transplantation after in
vitro differentiation cannot be ignored. Our current work
indicates that mature, functional thyroid follicular cells can be
generated from PSCs via blastocyst complementation. Although
the generated thyroid tissues in Fgf10 Ex1mut/Ex3mut chimeras
were mixtures of donor and host cells, this is not an argument
against thyroid regeneration, because transplantation of mature
thyroid follicular cells (not the organ) would suffice as therapy for
patients with hypothyroidism. Sorting of PSC-derived mature
follicular cells or follicular tissues is required. Furthermore, the
Frontiers in Endocrinology | www.frontiersin.org 7
low efficiency of adult Fgf10 Ex1mut/Ex3mut chimera generation (5
adult compound heterozygous chimeras weaned from 76
neonatal chimeras obtained by transplantation of 638
blastocysts) (22) and the undesirable thyroid chimerism of the
present study require attention. The use of a conditional
knockout method or other knockout targets such as Nkx2-1,
Pax8, or Fgf2 (all of which are essential for early thyroid
development) might be useful. Wen et al. recently generated
lung and thyroid epithelial cell lineages almost entirely from
mouse ESCs in Nkx2-1 knockout mice via blastocyst
complementation (37). Exploring the possibility of generation
of PSC-derived thyroid tissues via inter-species blastocyst
complementation in rodents or livestock remains to be
investigated (22). Another concern is that human PSCs-derived
cells will appear in the brains and gonads of livestock, especially
when generating human organs from PSCs in livestock using the
current inter-species blastocyst complementation technique. The
use of committed stem or progenitor cells, or PSCs genetically
modified to restrict their differentiation potential, would address
this issue (16), but clinical application remains some way off.

In summary, we showed that Fgf10 played an essential role in
thyroid development and that thyroid tissues generated in thyroid
hypoplastic Fgf10 Ex1mut/Ex3mut mice were largely derived from
mouse ESCs via blastocyst complementation. Generation of PSC-
derived thyroid tissues via blastocyst complementation is a
promising approach to thyroid regeneration.
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