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Abstract
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized

k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus

it is more prone to converge at suboptimal results. Initially, the new approach randomly choses

k agents from the set of all agents to improve the global search ability. Gradually, the set of

agents is reduced by eliminating the agents with the poorest performances to allow rapid con-

vergence. The performance of the SL-GSA was analyzed for six well-known benchmark func-

tions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-

GSA is applied to minimum variance distortionless response (MVDR) beamforming technique

to ensure compatibility with real world optimization problems. The proposed algorithm demon-

strates superior convergence rate and quality of solution for both real world problems and

benchmark functions compared to original algorithm and other recent variants of SGSA.

Introduction
Increasing interference due to multiple users and other signal sources is one of the fundamental
problems in wireless communication and has been extensively studied for many years. Smart
antenna systems decrease interference by adaptive beamforming techniques like minimum var-
iance distortionless response (MVDR). It is one of the commonly utilized adaptive array beam-
forming techniques [1], but it is often not able to form nulls towards any nearby interference
sources satisfactorily. Consequently, MVDR may lead to significant performance degradation
in the case of unexpected interfering signals [2]. It is difficult and time consuming to solve
these problems through conventional empirical approach, and sometimes, in the applied cases,
is impractical. Recently, the employment of meta-heuristics algorithm has been growing
instead of exhaustive and exact procedures in similar applications [3–7].

Consequently, meta-heuristics and exploratory methods need to provide mathematically
reliable solution for this complicated class of optimization problems. However, the perfor-
mance of these algorithms is often unsatisfactory for cases with three or more interference
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sources due to issues such as premature convergence and lack of sufficient exploration. Several
methods are suggested for increasing the search diversity of SGSA, such as increasing the initial
number of leaders (initial kbest). However, this significantly increases computational complex-
ity of the force equation in GSA without properly addressing the key issue of dominant agents,
with large masses, causing premature convergence. Primary reason for the search pattern dom-
ination is because agents are allowed to exert a force proportional to their performance and
most SGSA variants allow the best agents to consistently influence all agents. Therefore, this
paper, suggests a stochastic leader gravitational search algorithm (SL-GSA) to enhance MVDR
beamforming performance by preventing premature convergence and improving overall
exploration.

Standard gravitational search algorithm (SGSA) [8] was proposed as a global optimization
method for computationally complex real world problems. In SGSA, the particles, called
agents, move based on Newton’s law of universal gravitation. The search space is represented
as an ‘n’ dimensional space and the position of each agent is represented by a coordinate vector
of length n. The mass of these agents are determined based on their fitness. The performance
of each agent is calculated using the fitness function and their positions are updated accord-
ingly. All the SGSA search agents (individuals) globally move toward the agents with heavier
masses due to their gravitational force. Hence, superior solutions of the problems are repre-
sented by the heavier masses. The global search ability and high performance of SGSA in solv-
ing several nonlinear functions have been confirmed previously [8].

The balance between exploration and exploitation is critical for heuristic algorithms to
achieve robust and reliable performance. In SGSA, this balance is achieved using the time vari-
ant linearly decreasing kbest parameter, which determines the number of agents that are
allowed to exert force on the others in a given iteration. Thus, the parameter kbest is initially
large and linearly reduced to provide some protection from premature convergence. This tech-
nique still allows the optimization process to be heavily influenced by agents with superior fit-
ness resulting in poor exploration properties. As kbest agents are chosen based on their current
fitness, it allows agents with superior fitness to attract the others towards optimal solutions.
Thus, the algorithm is highly dependent on the best performing agents. However, if the kbest
agents stagnate at a local optimum, the other agents become practically helpless to prevent pre-
mature convergence. The SGSA agents gravitate towards ‘kbest’ optimum agents. This allows
convergence towards superior solutions but also allows the search to stagnate at local optima.

In this paper, SL-GSA randomly selects agents from a gradually reducing set that removes
agents with inferior performance based on the adaptive parameter, γ. This directly prevents the
domination of the search pattern by any individual agent. Thus, SL-GSA is far less likely to
stagnate in a local optimum because it randomly ignores the best particles sometimes. This
allows more efficient exploration before final convergence. The proposed new parameter, γ,
prevents selection of the agents with the worse fitness in the later part of the optimization.
This, in conjunction with the linear decrease of the parameter k, allows SL-GSA to converge
faster than SGSA. This is verified by applying the proposed algorithm to six benchmark func-
tions and two case studies of MVDR beamforming technique. High performance of conver-
gence and quality of final solution compared to original algorithm is achieved as discussed in
simulation results. The rest of this paper is organized as follows: Section 2 introduces the brief
review of SGSA. The proposed SL-GSA is presented in section 3. The basics of adaptive beam-
forming and the conventional MVDR technique are explained in section 4 and 5, respectively.
The testing of the proposed SL-GSA via benchmark functions and the simulation results
obtained via SGSA and its variants are reported in section 6. Section 7 shows the incorporation
of MVDR in SL-GSA. The efficiency of SL-GSA for different interferences in two case studies
is also reported in this section. Finally, Section 8 concludes this investigation.

Stochastic Leader GSA for Enhanced Adaptive Beamforming Technique

PLOS ONE | DOI:10.1371/journal.pone.0140526 November 9, 2015 2 / 20



Standard Gravitational Search Algorithm
Standard gravitational search algorithm (SGSA) was presented as one of the recent heuristic
population search algorithms [8] based on the mass interactions and laws of gravity. This
method uses the Newtonian laws of gravitation to govern the motion of virtual agents through
a search space. The ith GSA agent is defined as Xi = (xi

1,. . .,xi
d,. . .,xi

n), for i = 1,2,. . .,N that will
be evaluated through their masses. In the definition of Xi, N is the total number of agents, n is
the total number of dimensions in the search space. These objects move together toward the
agents with heavier masses due to gravitational force. The new position and velocity of ith agent
at iteration t along the dth dimension will be upgraded as follows:

xi
dðt þ 1Þ ¼ xi

dðtÞ þ vi
dðt þ 1Þ ð1Þ

vi
dðt þ 1Þ ¼ rand � vi

dðtÞ þ ai
dðtÞ ð2Þ

where xi
d and vi

d is position and velocity of ith agent at dimension d respectively. randi aug-
ments a randomized characteristic to the search pattern. The acceleration of agent i in iteration
number t by the law of motion, is calculated as below:

adi ðtÞ ¼
Fd
i ðtÞ

MiðtÞ
ð3Þ

whereMi is the normalized inertial mass of ith agent that evaluated by fitness function. More
efficient agents have heavier masses that are calculated using fitness values. The updated inertia
masses are as follows:

miðtÞ ¼
fitiðtÞ � worstðtÞ
bestðtÞ � worstðtÞ ð4Þ

MiðtÞ ¼
miðtÞPN

j¼1

mjðtÞ
ð5Þ

where fiti(t) is the fitness value of the i
th agent at iteration t. worst (t) and best (t) are the worst

and best fitness of population, respectively that are defined as below (for a minimization prob-
lem):

worstðtÞ ¼ max
j2f1;...;Ng

fitjðtÞ ð6Þ

bestðtÞ ¼ min
j2f1;...;Ng

fitjðtÞ ð7Þ

Then, the total force on ith agent in d dimension is calculated as below:

Fd
i ðtÞ ¼

PN
j¼1;j6¼i

randjF
d
ijðtÞ ð8Þ

One way to increase the performance of SGSA is to make a suitable tradeoff between exploi-
tation and exploration. In order to avoid local optimum stagnation, the algorithm needs to
emphasize exploration at beginning. However, in later iterations, exploration must fade out
and exploitation needs to increase. kbest is a time function that is initialized as the total number
of agents and linearly decreased to one finally. Thus, at the beginning, all agents apply the force
and, at the end, only one agent applies force to the others [8]. Furthermore, this reduces the

Stochastic Leader GSA for Enhanced Adaptive Beamforming Technique

PLOS ONE | DOI:10.1371/journal.pone.0140526 November 9, 2015 3 / 20



number of overall forces that need to be summed to calculate the net force. Hence, Eq (8) is
modified to the following:

Fd
i ðtÞ ¼

P
j2kbest;j 6¼i

randjF
d
ijðtÞ ð9Þ

where randj is the random value in the interval [0,1] and Fij
d is force acting from mass j on

mass i at dimension t as follows:

Fij
dðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ

Ri;jðtÞ þ ε
xj

dðtÞ � xi
dðtÞ

� �
ð10Þ

where ε is the small constant value to prevent division by zero, Ri,j(t) and G(t) are the Euclidean
distance between agents i and j and the gravitational constant respectively as below:

Ri;jðtÞ ¼ XiðtÞ;XjðtÞ
�� ��

2
ð11Þ

GðtÞ ¼ G0 � exp �b� t
tmax

� �
ð12Þ

where t is the current iteration, tmax is the maximum iteration number, β is a constant value.
The gravitational constant determines how much influence the agents have on each other.
High gravitational constant basically allows larger acceleration. It is exponentially reduced to
allow convergence at the end of the optimization process.

The acceleration of the ith agent at dimension d and iteration t is calculated by the Newto-
nian motion laws as following:

adi ðtÞ ¼
P

j2kbest;j 6¼i

randjGðtÞ
MjðtÞ

Ri;jðtÞ þ ε
xj

dðtÞ � xi
dðtÞ

� �
ð13Þ

Stochastic Leader Gravitational Search Algorithm
The method of selecting best agents to apply the force on others in SGSA using a linear time
based function, kbest, is an elegant way to improve the performance of the algorithm by effi-
ciently compromising between the exploration and exploitation properties. However, selecting
best agents to be the leaders may cause the algorithm to get trapped in local optima soon after
reaching a near optimal region due to adherence to the leaders. In this paper we propose a
modification to overcome this drawback by allowing other agents to lead randomly according
to their performances. This is done by modifying Eq (9) as follows:

Fd
i ðtÞ ¼

X
j2LAI

randjF
d
ijðtÞ ð14Þ

where LAI is a vector representing the indices of leaders to be selected from a vector of agents
sorted in descending order of fitness, at iteration t and can be described as follows:

LAI ðtÞ ¼ ½z1ðtÞ; z2ðtÞ; . . . ; ziðtÞ; . . . ; zKðtÞ� ð15Þ

ziðtÞ ¼ roundð1þ ðN � 1Þ � randi � gðtÞÞ; i ¼ 1; 2; . . . ;K ð16Þ

gðtÞ ¼ ginitial þ ðgfinal � ginitialÞ � ð t
tmax

Þ; 0 � g � 1; ginitial > gfinal ð17Þ

where zi(t) is the i
th leader index number in the vector of agents which are sorted from the best
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to the worst at iteration t. γ is an adaptive factor between 0 and 1 determining the range of
selection and is linearly adjusted during the search process from an initial value to a final value
based on Eq (17); randi produces a uniform random number between 0 and 1. In each itera-
tion, the agents are sorted in a vector based on their performances from heavier masses to ligh-
ter ones. Then K leaders are selected randomly from the vector according to Eq (16). The
selection mechanism is designed to allow selection of weaker agents in early iterations to lead
others, resulting in improved exploration. As the iterations proceed, the chance of selecting the
weaker agents is reduced by Eq (17) and superior agents attract others, which results in
enhanced exploitation and convergence behaviour. By this modification the agents will be
more active and the chance of getting trapped in local optima is reduced during first few itera-
tions, while not degrading the overall convergence performance.

The flowchart for SL-GSA, illustrated in Fig 1, explains the algorithm in detail. It shows that
the algorithm is rather convenient and robust as it requires calibration of only one additional
parameter, γ.

This modification is designed to improve the early segment of the search process, while
allowing the proposed algorithm to behave similarly to SGSA by discriminating against agents
with poor performance.

Adaptive Beamforming
The aim of adaptive beamforming is to steer radiation beam towards the signal of interest
(SOI) and produce null towards the interference sources. Beamforming, by signal processing
technique, automatically recognizes and adjusts incoming SOIs and interference from received
data. Signals from individual antennas were combined linearly after being scaled with the
matching weights. This procedure improves the antenna array to obtain maximum gain in the
desired signal radiation and nulls in the interference sources. An adaptive algorithm, like
MVDR, uses the SOI direction (direction of main beam) and interference directions to produce
a linear combination of the signals from each antenna, as illustrated in Fig 2, to achieve optimal
signal to interference and noise ratio (SINR) performance. Furthermore, the algorithm must
ensure a distortion-less response towards the SOI.

The output y is given by a linear combination of the data from theM sensors, with signal from
each element x(n) and weightw(n) where � symbolizes the complex conjugate as shown below:

y ¼
XM�1

n¼0

wn�xn ¼ WHX ð18Þ

WH ¼ ½w�
0;w

�
1; . . . ;w

�
M�2;w

�
M�1� ¼ ½WT �� ð19Þ

whereW is lengthN weights vector, X is length N received signals vector, and Superscript H is the
conjugate transpose (Hermitian vector).

Conventional MVDR Beamforming
The minimum output energy (MOE) uses as a beamforming technique that implements several
optimality standards. MOE has a fixed array gain on desired signal while simultaneously mini-
mizing the output energy. Therefore, when gain is constant, any decline in the energy is
because of suppressing interference as below:

wMOE ¼ arg min
w

Efjyj2g; wHh0 ¼ c ð20Þ
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� arg min
w

EfjwHxj2g; wHh0 ¼ c ð21Þ

where h0 is the steering vector. Lagrange multipliers method can solve this minimization. By
solving the gain constraint and using the constraint on the weight, the parameter of Lagrange λ
can be acquired. The weights can be written as:

¼ c
R�1h0

h0
HR�1h0

ð22Þ

where R is the covariance matrix, with size of (M, 1), for the received signal x.

Fig 1. The simplified flowchart of SL-GSAmethod.

doi:10.1371/journal.pone.0140526.g001
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Determining arbitrary constant, c = 1, creates the minimum variance distortionless response
(MVDR). One of the beamforming techniques presented in literature [1] is known as MVDR
due to minimum energy (variance) required for output signal and unity signal gain (desired
signal is not distorted). Moreover, the output power that is subjected to a unity gain constraint
in the direction of wanted signal must be minimized. The output power can be obtained as
below:

p ¼ fEjyj2g ¼ EfwHxxHwg ¼ wHEfxxHwg ¼ wHR ð23Þ

MVDR beamforming keeps a distortionless main lobe response towards the desired signal
and minimize the array output power simultaneously. The Lagrange multiplier method does
not explore the entire search space. Instead, the search is limited to locations identified by Eq
(22), where the response towards the SOI is 0 dB. Furthermore, Lagrange multiplier method is
reliant on the ‘smoothness’ of the fitness function to achieve satisfactory performance. Thus,
this method may have unsatisfactorily low nulling in multiple interference scenarios, which
may have significantly adverse effect on any system performance [9]. Hence, the introduction
of a meta-heuristic technique with improved global exploration capability is proposed in this
paper for beamforming application.

Model Verification
In order to analyse, compare and validate the effectiveness and efficiency of the proposed
SL-GSA, the proposed algorithm is implemented on six standard benchmark functions and the
results are compared with SGSA [8], OBGSA [10] and MGSA [11]. These functions and
parameters used in this study are summarized in Tables 1 and 2, respectively. The first four
functions are unimodal and the other two are multimodal. The results shown in Tables 3, 4
and 5 are recorded from 30 simulation of each algorithm. The worst, mean, median, best and
standard deviation are calculated from aforementioned 30 runs and compared.

Fig 2. Adaptive beamforming system.

doi:10.1371/journal.pone.0140526.g002
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Table 3. Minimization result of benchmark functions in Table 1 with tmax = 500.

Function Method Worst Mean Median Best Standard deviation

F1 SGSA [11] 1120.8 486.03 418.38 261.32 189.9

MGSA [11] 125.9 65.05 60.36 28.011 24.48

SL-GSA 122.5 51.02 46.92 26.202 23.55

F2 SGSA [11] 2.304 0.151 0.0418 0.014 0.421

MGSA [11] 0.0518 0.0102 0.0082 0.0026 0.0101

SL-GSA 0.0307 0.0101 0.0101 0.0021 0.0051

F3 SGSA [11] 152.59 35.99 27.71 26.28 30.65

MGSA [11] 29.36 27.23 27.16 25.94 0.644

SL-GSA 29.09 26.61 26.59 25.20 0.627

F4 SGSA [10] 7.34 3.73 3.51 0.086 1.88

OBGSA [10] 8.56×10−9 5.11×10−9 4.89×10−9 3.36×10−9 1.46×10−9

SL-GSA 5.62×10−9 3.43×10−9 3.42×10−9 2.05×10−9 8.63×10−10

F5 SGSA [10] 2.88 0.736 0.374 0.0111 0.946

OBGSA [10] 0.0099 0.0017 6.24×10−4 2.76×10−5 0.003

SL-GSA 3.36×10−18 1.43×10−18 1.28×10−18 6.82×10−19 6.18×10−19

F6 SGSA 2.57 0.47 2.78×10−4 8.20×10−6 0.69

SL-GSA 1.64×10−8 1.12×10−8 1.04×10−8 6.79×10−9 2.92×10−9

doi:10.1371/journal.pone.0140526.t003

Table 4. Minimization result of benchmark functions in Table 1 with tmax = 1000.

Function Method Worst Mean Median Best Standard deviation

F1 SGSA [11] 530.85 249.76 243.24 67.85 106.14

MGSA [11] 49.53 27.1 26.22 8.33 10.36

SL-GSA 41.46 16.04 10.80 7.09 10.12

F2 SGSA [11] 0.0433 0.0227 0.022 0.0106 0.0077

MGSA [11] 0.0229 0.0077 0.0064 0.0026 0.0049

SL-GSA 0.0188 0.0067 0.0056 0.0022 0.0047

F3 SGSA [11] 152.68 32.86 26.1 25.79 26.55

MGSA [11] 29.36 27.23 27.16 25.94 0.644

SL-GSA 25.38 25.05 25.12 23.86 0.260

F4 SGSA [8] 8.5×10−6 3.7×10−6 3.7×10−6

SL-GSA 1.03×10−9 1.11×10−9 1.12×10−9 8.52×10−10 1.09×10−10

F5 SGSA [8] 0.01 4.2×10−13 0.01

SL-GSA 9.05×10−19 5.69×10−19 5.72×10−19 2.72×10−19 1.65×10−19

F6 SGSA [8] 1.1×10−5 6.9×10−6 6.9×10−6

SL-GSA 6.98×10−9 6.14×10−9 6.24×10−9 4.86×10−9 6.20×10−10

doi:10.1371/journal.pone.0140526.t004

Table 2. Parameters used in this study.

Parameter Description SGSA MGSA[11] OBGSA[10] SL-GSA

N Population size 50 50 50 50

G0 Initial value of gravitational constant 100 100 150 100

β Constant value 20 20 20 20

ε Constant value 2.22×10−16 2.22×10−16 2.22×10−16 2.22×10−16

tmax Maximum iteration number 500,1000 500,1000 500 500,1000

γfinal Final Gamma N/A N/A N/A 0.1

γinitial Initial Gamma N/A N/A N/A 0.6

doi:10.1371/journal.pone.0140526.t002
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These benchmark functions provide an efficient method for comparison between heuristic
algorithms along with providing insight into specific aspects such as rate of convergence and
stability of the algorithm. The parameters presented in Table 2 are chosen to conduct a fair
comparison between different variants of SGSA.

Tables 3 and 4 compare the optimization performance of the proposed algorithm to the
results reported in literature for 500 and 1000 iterations, respectively.

According to the results of Tables 3 and 4, proposed SL-GSA provides considerably lower
mean fitness values in 500 iterations than SGSA in 1000 iterations for all functions. For the func-
tions F1, F2, and F3, proposed algorithm also provides better results in 500 iterations compared
with MGSA [11] at equal number of iterations. Furthermore, for the same number of iterations,
results achieved by proposed SL-GSA are better than those calculated by OBGSA [10] for the
functions F4 and F5. The comparison for 1000 iterations of SGSA and SL-GSA on F6 concludes
the comparisons with a prevalent trend of superior SL-GSA performance. Moreover, the stan-
dard deviations for 30 runs of proposed algorithm are generally smaller than those of SGSA,
OBGSA andMGSA for both 500 and 1000 iterations, which strongly indicate that SL-GSA is sig-
nificantly more stable and can produce better solutions more consistently. The results indicate,
for all tested functions, the mean fitness values achieved by proposed algorithm are significantly
lower than SGSA, OBGSA andMGSA, in same number of iterations. Therefore, the results of
Tables 3 and 4 establish the proposed SL-GSA as more robust and capable than SGSA and its var-
iants. The convergence histories of the mean best fitness of SGSA and SL-GSA in the 30 indepen-
dent runs for six benchmark functions are shown in Figs 3–8. The Figs show that the
convergence rate of the proposed SL-GSA is better than SGSA in 500 iterations.

Figs 3–8 show that the SL-GSA has faster varying curves of mean best fitness than SGSA and
achieves lower and better solution compared with SGSA. Furthermore, Figs 6 and 7 indicate that
SGSA suffers from premature convergence during optimization of F4 and F5 respectively. They
stopped improving approximately before 50 iterations and hence produced an inferior solution.
The overall results show that SL-GSA performs significantly better than SGSA for both unimodal
and multimodal optimization problems consistently. The difference in exploration performance
in the early phase between SGSA and proposed SL-GSA is vividly visible in most cases as the
SL-GSA curve falls away from the SGSA before the hundredth iteration. This early advantage
translates into further superior performance in the later phase of exploitation as the SL-GSA
graph continues to separate further from the SGSA curve in case of F1, F4, F5 and F6.

6.1 Sensitivity Analysis of γ Parameters
The γ parameters provide the distinctive characteristics to the proposed algorithm. Thus, in
this section, the effects of the γ parameters on the proposed algorithm’s performance are ana-
lyzed in detail. The γinitial determines the performance cutoff for eligible agents at the beginning
of the optimization. The value 0.6 roughly corresponds to the top 60 percentile in terms of per-
formance. This cutoff criterion becomes stricter with progressive iterations. As γ decreases

Table 5. Comparison of gamma (γ) boundaries for minimization of F6 with tmax = 500.

γinitial- γfinal Worst Mean Median Best Standard Deviation

1–0 1.90×100 6.57×10−1 6.44×10−1 5.28×10−9 0.670

0.9–0.5 0.0711 0.0046 6.73×10−8 3.76×10−8 0.0163

0.9–0.1 2.59×10−8 1.37×10−8 1.45×10−8 8.32×10−9 4.40×10−9

0.8–0.4 6.61×10−8 3.56×10−8 3.17×10−8 1.86×10−8 1.18×10−8

0.6–0.1 1.64×10−8 1.12×10−8 1.04×10−8 6.79×10−9 2.92×10−9

doi:10.1371/journal.pone.0140526.t005
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linearly towards the γfinal value of 0.1, the agents must be within the approximately top 10 per-
centile to be eligible for selection. The algorithm randomly chooses the leaders from the eligible
set of agents. This process implements equal probability of selection for each eligible agent.
Furthermore, an eligible agent may be selected multiple times. The proposed algorithm is more
dependent on the choice of value for γfinal than γinitial. Higher values for γinitial are likely to
yield more exploration in the early phase, but degrade the overall convergence rate. γfinal value
of zero indicates that only the best particle is eligible for selection. This strategy is similar to the
common practice of reducing kbest to 1 in SGSA and similar algorithms. Implementation of
the less stringent γfinal value of 0.1 in this study allows the proposed algorithm to outperform
the SGSA and some of its variants.

However, varying γ from 1 to 0 is detrimental to the search process. This causes all agents,
including agents with the worst performance, to be eligible for selection in the early phase. The
algorithm can be misguided if the poorest performing agents are repeatedly selected, resulting
in poor stability. Table 5 illustrates a performance comparison for different pairs of γinitial and
γfinal. The algorithm was applied 30 times for each configuration to the multimodal function F6
to study the overall effects of γ. The worst performance is recorded for the extreme values of
γinitial = 1 and γfinal = 0. It is the least stable configuration as it exhibits the highest standard
deviation. γinitial = 0.9 and γfinal = 0.5 shows slightly better results. However the accuracy and
stability of convergence are still unsatisfactory as indicated by the considerably high mean and
standard deviation. The third case of γinitial = 0.9 and γfinal = 0.1, in Table 5, can be considered
adjustment from the first case results in. The algorithm is extremely stable and accurate in this
configuration. The proposed algorithm exhibits similar behavior for the last two cases

Fig 3. Performance comparison of SGSA and SL-GSA for minimization of F1.

doi:10.1371/journal.pone.0140526.g003
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considered in Table 5, which illustrates that it is not too sensitive to the γ parameters provided
they are within the general guidelines mentioned above.

An overall sensitivity analysis for γinitial = 0.6 ± 0.1 and γfinal = 0.1 ± 0.1 on unimodal func-
tion F3, presented in Table 6, further illustrates the stable performance of the proposed algo-
rithm. The last two rows in Table 6 show the cumulative effect of parameter value alterations.
‘Up’ row represents the results obtained from increasing both γ parameters. Conversely,
‘Down’ considers the scenario with both parameters reduced. Each configuration was imple-
mented 30 times and the deviations are recorded as percentage of the results presented in
Table 6, as shown in Eq (24).

Deviationð%Þ ¼ Solutionðperturbed valueÞ � Solutionðoriginal valueÞ
Solutionðoriginal valueÞ � 100 ð24Þ

The results in Table 6 are attained using the recommended configuration of γinitial = 0.6 and
Yfinal = 0.1. The highest average performance deviation in Table 6 is 2.352% for increasing γinitial
by 0.1. This does not accumulate further as the ‘Up’ scenario shows deviation of 2.2403%. Thus,
the performance degradation caused by γinitial is partially mitigated by increasing γfinal. It is evi-
dent from the p-values of Wilcoxon Rank Sum test that the recommended configuration achieves
a statically significant performance improvement over only one of the six scenarios tested in
Table 6. The ‘Down’ configuration resulted in p-value less than 0.05, which means the null
hypothesis (no statistical difference) must be rejected and alternate hypothesis (recommended
configuration outperforms ‘Down’ configuration) must be accepted. Thus, there is no statistically

Fig 4. Performance comparison of SGSA and SL-GSA for minimization of F2.

doi:10.1371/journal.pone.0140526.g004
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significant change in performance for most configurations of γ, indicating that the proposed
algorithm is robust and the choice of values for γ is not critical.

The results presented in Tables 5 and 6 indicate that the proposed algorithm is applicable to
both multimodal and unimodal functions. Overall, the analyses show that the proposed algo-
rithm is sufficiently stable for application in real world optimization problems.

Model Application
In the previous section, the robustness and effectiveness of the suggested algorithm (SL-GSA)
have been tested through six benchmark functions. The performance of the proposed method
to enhance signal to interference and noise ratio (SINR) of MVDR beamforming technique will
be investigated and compared with conventional MVDR and MVDR-SGSA in this section.
Two interference scenarios will be considered in this study. The first case is with two interfer-
ence sources located at 30° and 50° while the second case is with four interference sources
located at 30°, 50°, 25° and 60°. Both cases have one user at 0° and number of elements is four.
The proposed algorithm was implemented by using MATLAB1.

7.1 Signal to Interference and Noise Ratio Calculation
In this paper, the SL-GSA was employed to improve the MVDR beamforming performance by
increasing the SINR value of four element antenna array. The SL-GSA and SGSA were applied
on MVDR technique to maximize the SINR by varying the complex weights.

Fig 5. Performance comparison of SGSA and SL-GSA for minimization of F3.

doi:10.1371/journal.pone.0140526.g005
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In these algorithms, wmvdr (MVDR weight vector) will be replaced as the first agent of initial
population. The rest of the population is initialized randomly, as shown in Eq (26). This system
will create a population of N agents to represent weight vectors. The weight vectors in every
agent will containM number of weights, whereM is the number of elements in the array. The
weights considered in the optimization process, thus, are represented as the matrixWNM.

xdi ¼ wnm ð25Þ

where dimension d is analogous to number of sensorm. Agent index, i, in SL-GSA and SGSA
is set to n, as shown in Eq (26). The population weight vectors can be defined in the matrix for-
mat as follows:

WNM ¼

wmvdr1 wmvdr2 wmvdr3 wmvdr4

w21 w22 w23 w2M

w31 w32 w33 w3M

: : : :

: : : :

wN1 wN2 wN3 wNM

2
666666666664

3
777777777775

ð26Þ

whereWNM is the weight vectors of N agents withM sensors andWmvdr is the weight vectors
from conventional MVDR beamformering. The fitness function employed in this study is the

Fig 6. Performance comparison of SGSA and SL-GSA for minimization of F4.

doi:10.1371/journal.pone.0140526.g006
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SINR as shown in Eq (27). Therefore, the optimization processes will try to maximize the fit-
ness function by finding the corresponding optimal weight vectors.

FitnessFunctionðFNÞ ¼
PUXI

i¼1

Pi þ N

ð27Þ

where Pu is the target user power, Pi is the power of interference at i interference, I is the num-
ber of interference sources and N is the noise.

7.2 Simulation
In this section, the validation of the proposed approach for real world applications with two
interference scenarios is studied. The parameters of SGSA are chosen according to the recom-
mendations and guidelines presented in literature [8]. These configurations of SGSA have also
been used extensively after the development of SGSA [10–13]. The algorithms are simulated 20
times and the best results are recorded. The maximum iteration number and population size
set to 100 and 50 respectively.

7.2.1. Case 1: One user two interferences. Two interference sources at 30°, 50° and user
at 0° have been assumed in the first case study.

According to the weights in Table 7, the performance of power response for MVDR,
SGSA-MVDR and SL-GSA-MVDR beamforming is plotted in Fig 9 to explain the target user

Fig 7. Performance comparison of SGSA and SL-GSA for minimization of F5.

doi:10.1371/journal.pone.0140526.g007
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and interference by using different values. Fig 9 clearly illustrates that the proposed algorithm
achieves significantly deeper nulls than SGSA-MVDR and conventional MVDR.

In Table 8, 67.79% and 105.84% improvements of SINR are achieved by using SGSA and
SL-GSA, respectively, over conventional MVDR. The superior performance of SL-GSA in this
problem, along with the results of the benchmark problems, establishes SL-GSA’s as a suitable
interference mitigation algorithm.

7.2.2. Case 2: One user four interferences. Four interference sources at 30°, 50°, 25° and
60° and user at 0° have been assumed as the second case study.

The power response for MVDR, SGSA-MVDR and SL-GSA-MVDR is plotted in Fig 10
according to the weights in Table 9 to explain the target user and interference by using different
values. Conventional MVDR rarely manages to create sufficiently deep nulls towards more

Fig 8. Performance comparison of SGSA and SL-GSA for minimization of F6.

doi:10.1371/journal.pone.0140526.g008

Table 6. Results of the sensitivity analysis for minimization of F3with tmax = 500.

Parameter Best (Deviation %) Average (Deviation %) Worst (Deviation %) P-Value

γinitial = 0.6 γinitial–Δγinitial = 0.5 25.1129 (-0.3456) 26.81479 (0.7695) 29.2709 (0.6218) 0.157

γinitial = 0.6 γinitial+Δγinitial = 0.7 25.3654 (0.6563) 27.23589 (2.3520) 29.2769 (0.6424) 0.999

γfinal = 0.1 γfinal–Δγfinal = 0 25.3758 (0.6976) 26.70139 (0.3434) 29.0484(-0.1430) 0.099

γfinal = 0.1 γfinal+Δγfinal = 0.2 25.4258 (0.8960) 26.98846(1.4222) 29.1975(0.3695) 0.904

All Down 25.4239 (0.8884) 26.63502 (0.0940) 29.2909 (0.6906) 0.001

All Up 25.3027 (0.4075) 27.20617 (2.2403) 29.3829 (1.0068) 0.999

doi:10.1371/journal.pone.0140526.t006
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Table 7. Comparison of weight vectors for conventional MVDR, SGSA-MVDR and SL-GSA-MVDR for user at 0° and interferences at 30° and 50°.

Name MVDR SGSA-MVDR SL-GSA-MVDR

Weights 0.2233 + 0.1492i
0.3453–0.0650i
0.2387–0.003i
0.1925–0.0806i

0.2233 + 0.1491i
0.3453–0.0654i
0.2384–0.0034i
0.1927–0.0805i

0.2231 + 0.1491i
0.3454–0.0650i
0.2387–0.0035i
0.1926–0.0807i

doi:10.1371/journal.pone.0140526.t007

Fig 9. Comparison of performance of power response for user at 0° with two interferences at 30° and 50° with 100 iterations. (a) MVDR (b)
SGSA-MVDR (c) SL-GSA-MVDR.

doi:10.1371/journal.pone.0140526.g009

Table 8. Comparison of SINR calculation for conventional MVDR, SGSA-MVDR and SL-GSA-MVDR
for user at 0° and interferences at 30° and 50°.

Name SINR(dB)

MVDR 33.88

SGSA-MVDR 56.85

SL-GSA-MVDR 69.74

doi:10.1371/journal.pone.0140526.t008
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Fig 10. Comparison of performance of power response for user at 0° with interference at 30°, 50°, 25° and 60° with 100 iterations. (a) MVDR (b)
SGSA-MVDR (c) SL-GSA-MVDR.

doi:10.1371/journal.pone.0140526.g010

Table 9. Comparison of weight vectors for conventional MVDR, SGSA-MVDR and SL-GSA-MVDR for user at 0° and interferences at 30°, 50°, 25°
and 60°.

Name MVDR SGSA-MVDR SL-GSA-MVDR

Weights -0.0067 + 0.2276i
0.5071 + 0.3017i
0.5065–0.3022i
0.0069–0.2271i

-0.0059 + 0.2281i
0.5061 + 0.3012i
0.5059–0.3022i
0.0058–0.2271i

-0.0029 + 0.2297i
0.4973 + 0.3001i
0.5008–0.2957i
0.0009–0.2310i

doi:10.1371/journal.pone.0140526.t009

Table 10. Comparison of SINR calculation for conventional MVDR, SGSA-MVDR and SL-GSA-MVDR
for user at 0° and interference at 30°, 50°, 25° and 60°.

Name SINR(dB)

MVDR 12.17

SGSA-MVDR 12.21

SL-GSA-MVDR 12.76

doi:10.1371/journal.pone.0140526.t010
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than 3 interference sources as shown in Fig 10. The two interferences at 25° and 30° produce
one shallow null for MVDR and SGSA-MVDR. Furthermore, the nulls towards the other two
interference sources are similarly shallow. Two of the three nulls created by MVDR are signifi-
cantly improved by the implementation of the proposed algorithm. This clearly shows that
SL-GSA can outperform the beamforming techniques in complex scenarios involving more
than 3 interfering sources. The deep nulls correspond to superior SINR performance as shown
in Table 10.

Table 10 illustrates the improvement of SINR that are 0.32% and 4.84% by SGSA and
SL-GSA, respectively, as compared to conventional MVDR method. This case represents the
most complex interference mitigation optimization problem in this paper. The results are con-
sistent with the previous case, indicating SL-GSA to be generally superior for real world optimi-
zation problems compared to SGSA.

Referring to the both simulation cases, when the interference sources become closer, it is
more difficult for both conventional MVDR and artificial intelligence based technique to
enhance null level at the interference direction. From the simulation result, it is clearly
observed that, SGSA performs inferior than SL-GSA. The superior exploratory and exploitive
properties of SL-GSA over SGSA have resulted in better beam steering and interference mitiga-
tion performances in both cases.

Conclusions
In this paper, a stochastic leader gravitational search algorithm via randomizing the choice of
kbest utilized in total force calculation of the original algorithm was proposed. The use of kbest
in SGSA that allows the heaviest few agents to apply force on other agents may often causes
premature convergence due to one or a group of dominant agents. The proposed SL-GSA alle-
viates this problem while simultaneously enhancing the exploration in the early phase of opti-
mization by randomly selecting the leading agents. This stochastic process prevents the
aforementioned domination and results in superior performance for both benchmark func-
tions and real world optimization problems. The parameter γ provides an elegant method for
balancing the exploration and exploitation properties of the proposed algorithm. Overall,
SL-GSA exhibits higher robustness, convergence rate, accuracy, and stability without increas-
ing computational difficulty in comparison with SGSA. The achievement of satisfactorily deep
nulls in complex interference environments indicates that the proposed algorithm is ready to
be implemented in real world applications.
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