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Abstract: The Ras homologous family of small guanosine triphosphate-binding enzymes (GTPases)
is critical for cell migration and proliferation. The novel drug 1A-116 blocks the interaction site of
the Ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase with some of its guanine exchange
factors (GEFs), such as T-cell lymphoma invasion and metastasis 1 (TIAM1), inhibiting cell motility
and proliferation. Knowledge of circadian regulation of targets can improve chemotherapy in
glioblastoma. Thus, circadian regulation in the efficacy of 1A-116 was studied in LN229 human
glioblastoma cells and tumor-bearing nude mice. Methods. Wild-type LN229 and BMAL1-deficient
(i.e., lacking a functional circadian clock) LN229E1 cells were assessed for rhythms in TIAM1, BMAL1,
and period circadian protein homolog 1 (PER1), as well as Tiam1, Bmal1, and Rac1 mRNA levels.
The effects of 1A-116 on proliferation, apoptosis, and migration were then assessed upon applying
the drug at different circadian times. Finally, 1A-116 was administered to tumor-bearing mice at
two different circadian times. Results. In LN229 cells, circadian oscillations were found for BMAL1,
PER1, and TIAM1 (mRNA and protein), and for the effects of 1A-116 on proliferation, apoptosis,
and migration, which were abolished in LN229E1 cells. Increased survival time was observed in
tumor-bearing mice when treated with 1A-116 at the end of the light period (zeitgeber time 12, ZT12)
compared either to animals treated at the beginning (ZT3) or with vehicle. Conclusions. These
results unveil the circadian modulation in the efficacy of 1A-116, likely through RAC1 pathway
rhythmicity, suggesting that a chronopharmacological approach is a feasible strategy to improve
glioblastoma treatment.

Keywords: chronopharmacology; Rho GTPase; glioma; brain tumor

1. Introduction

The mammalian circadian system is composed of a hierarchical arrangement of os-
cillators, with a master pacemaker located in the hypothalamic suprachiasmatic nuclei
(SCN) [1]. These nuclei control the rhythmicity of most physiological and behavioral pro-
cesses, enabling their entrainment to daily environmental variables such as light-dark and
temperature cycles [2]. The core molecular components of circadian oscillations are based
on transcriptional-translational auto-regulatory feedback loops generated by the activity
of circadian genes of which bmal1, period (1 and 2), cry (1 and 2) and clock are the main
components. Because circadian oscillations are produced by an endogenous mechanism,
they persist in the absence of environmental cycles and even in isolated cells and tissues
in vitro. Peripheral oscillators capable of generating circadian cycles are present in most
cells and tissues in the body and are coordinated by the SCN rhythmic neuroendocrine
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(e.g., melatonin, glucocorticoids), autonomic and behavioral outputs. These physiological
oscillations lead to daily rhythms in pharmacokinetics (e.g., absorption, metabolism) and
pharmacodynamics (interaction with effector targets) [3,4] of many drugs, providing the
basis for chronopharmacology, which seeks for the circadian time with maximum efficacy
of treatments and minimal side effects [5].

Glioblastomas (GBM) are the most common and malignant primary tumors of the
central nervous system in adults and are composed of poorly differentiated astrocytic
cells and their main characteristics are exhaustive proliferation, infiltration and resistance
to apoptosis [6,7]. The current treatment for high-grade gliomas includes surgery, radio-
therapy and chemotherapy with temozolomide (TMZ) [8] but even when treated, the
average survival time is just over one year [9]. Considering that the inclusion of TMZ in
the treatment of GBM patients increased their life expectancy by just a few months, neither
the quality nor the survival of the patients have improved considerably in the last three
decades [10]. Consequently, new therapeutic approaches are essential for GBM patients
worldwide [11,12]. The 1A-116 compound was recently proposed as a novel drug for the
treatment of glioblastoma and other tumors [13,14]. Both in LN229 and U-87 glioma cell
lines, it specifically inhibited the activation of RAC1 [13], a monomeric GTPase involved in
a variety of cellular processes required for tumor progression (proliferation, migration, and
cytoskeleton reorganization) [15,16]. 1A-116 was designed to block the binding of RAC1
to guanine exchange factors (GEFs) such as Tiam1, by interacting with the Trp56 residue
on its surface. As with many other drugs (including nitrates [17], benzodiazepines [18],
antidepressants [19] and those to treat essential hypertension [20]), the effectiveness of
1A-116 could be further improved by finding the best time for delivery. The improved
efficacy of chronopharmacological approaches for over thirty anti-cancer drugs was as-
sessed recently in pre-clinical studies and clinical trials, which showed that controlling
administration time leads to lower toxicity [21–25]. However, to the best of our knowledge,
only one chronopharmacological work was published reporting circadian modulation
of the effects of TMZ in patients [26]. To improve life expectancy and quality for GBM
patients, it is critical to identify new druggable targets and to optimize treatment schedules.
In this context, the aim of this work was to assess the circadian modulation of the efficacy
of 1A-116 acting on human GBM LN229 cell lines in vitro and in vivo in LN229 xenografts
implanted in nude mice.

2. Materials and Methods
2.1. Cell Lines

The established human glioma cell lines, LN229 (American Type Culture Collection
(ATCC) CRL-2611), were derived from grade IV astrocytomas and were maintained ac-
cording to ATCC recommendations. They were grown at 37 ◦C, under a 5% CO2 and 100%
humidity atmosphere. The culture medium used in the growth contained 10% fetal bovine
serum (FBS) in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, Thermo Fischer
Scientific, Waltham, MA, USA) and was supplemented with glutamine (2 mM). Confluent
cell cultures were then subcultured twice a week, using standard procedures.

Circadian synchronization of cell cultures was achieved by following the procedures
outlined in [27]; by exposing cells to a two-hour serum shock (50% FBS in DMEM), followed
by regular DMEM. After the serum shock, the elapsed time (in hours) was recorded as the
hours post-synchronization (HPS) and was used to set the circadian time. Only the cells
with passage numbers between 250 and 280 were used.

The genotype was confirmed with PCR and sequencing (Productos Bio-Lógicos,
Buenos Aires, Argentina) and Short Tandem Repeats (STR) (Easy DNA, Buenos Aires,
Argentina). During PCR and sequencing, the following oncogenes were looked at: PTEN
wt, p53 mutation Pro98Leu and p14 ARF and p16 deletions (Figure S1). Deletions of
p14 and p16 were confirmed by PCR and the sequences of PTEN and P53 were found as
expected. The STR profile was performed according to ATCC recommendations and it
reported the following results: Amelogenin: X, CSF1PO: 12, D13S317: 10,11, D16S539: 12,
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D5S818: 11,12, D7S820: 8,11, TH01: 9.3, TPOX: 8, vWA: 16,19; which are consistent with the
LN229 STR profile displayed in Figure S1. Finally, the cell line was tested for mycoplasma
contamination twice a year.

2.2. Drugs and Reagents

1A-116 (MW 307.6 g/mol, 99.3% pure) was provided by Chemo-Romikin S.A (Buenos
Aires, Argentina). Unless stated otherwise, all reagents were provided by Sigma-Aldrich
(St. Louis, MO, USA).

2.3. CRISPR/cas9 Knock-Down of Bmal1 Expression

Knock-down experiments were performed as previously described [28]. Briefly, LN229
cells were cultured in 12-well plates and transfected with StBL3E1 Crispr-Cas9 for bmal1
human knock-down (kindly provided by Dr. Mario Guido). Transfection was performed
using Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA, USA) according to
manufacturer’s recommendations, in serum and antibiotics-free DMEM medium. After 6 h,
the medium was replaced with fresh complete DMEM, and after 72 h, the cells were treated
with 1 µg/mL puromycin for 72 h to positively select the transfected cells. The cells were
subcultured and 1 µg/mL puromycin was added every ten passages to ensure the selection
of transfected cells. The pool of selected LN229 cells was labeled as LN229E1. The successful
bmal1 knock-down was validated for LN229E1 using the following specific primers: Fw
primer: 5′-CAACGTGCCATGTGTTA-3′, Rv primer: 5′-GAAGGCCCAGGATTCCA-3′, for
amplification of a ~300 pb fragment of exon 2 of bmal1, flanking the CRISPR recognition
site, followed by Sanger sequencing (Macrogen, Seoul, Korea). Sequences of amplicons
were aligned with bmal1 sequence using software nBLAST (version 2.11.0, NCBI, Bethesda,
MD, USA), confirming the presence of edited exon 2 in LN229E1 (Figure S2). To assess if
the disruption of the bmal1 gene promotes a non-circadian phenotype, the loss of circadian
rhythms of BMAL1 and PER1 clock proteins in synchronized cultures was measured by
in-cell western assay [29] and real-time bioluminescent recording of bmal1 gene promoter
activity with pGL3-Bmal1-dLuc plasmid.

2.4. Bioluminescent Recordings

A total of 2.5 × 105 LN229 and LN229E1 cells/well were plated in 35 mm plates (Cell
Star, Greiner Bio-One, Frickenhausen, Germany). Similarly, transfection with pGL3-Bmal1-
dLuc plasmid [30] was performed using Lipofectamine 3000 according to manufacturer’s
recommendations, in a serum- and antibiotics-free DMEM medium. After 6 h, the medium
was replaced with fresh complete DMEM, followed by serum shock synchronization. The
DMEM was replaced 2 h later with a medium that was suitable for long-term biolumines-
cence recording: 1% FBS in DMEM without phenol red, supplemented with HEPES (Gibco,
Life Technologies, Waltham, MA, USA), glutamine (2 mM), pyruvate (2 mM) and luciferin
(0.1 mM). Finally, the plates were sealed with silicone grease to avoid medium evaporation.

Bioluminescence was measured with a luminometer (Kronos Dio, ATTO, Tokyo,
Japan) at 37 ◦C for a total time of 72 h. Readings were recorded every 30 min, each with an
integration time of 6 min. The data were then analyzed for circadian periodicity using the
ChronoStar 2.0 software (Stephan Lorenzen, Hamburg, Germany) [31].

2.5. Cell Proliferation Assay

A total of 3 × 103 cells/well were plated in 96-well plates (Cell Star, Greiner Bio-
One, Germany). To characterize the circadian modulation of the response to 1A-116,
synchronized cultures were treated during 72 h with 20 µM 1A-116, or vehicle, delivered
at 0, 5, 10, 15, 20, or 25 HPS (5 h intervals during 25 h). At 72 h, the cultures should form
confluent monolayers at standardized culture growth conditions. Cell growth (G) was
assessed by measuring the uptake of either crystal violet 0.1% (measuring absorbance at
570 nm), or Calcein AM (Life Technologies, Carlsbad, CA, USA), measuring fluorescence
emission at 520 nm. Uptake in drug-treated cultures was normalized dividing it by the
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average uptake in vehicle-treated cultures. Inhibition of proliferation (Ip) was quantified
as Ip = 1 − G. Three independent assays were performed for each experimental condition.

Using the same assay, dose-response experiments were performed to calculate the
half-maximal inhibitory concentration (IC50). Experiments were performed including
LN229 and LN229E1 with 1A-116 at 10, 20, 40, 50, or 100 µM at 10 and 23 HPS, which are
respectively the circadian time of maximum and minimum Ip, found in the previous exper-
iments. The collected data were processed and fitted to dose-response curves generated by
non-linear fitting using the variable Hill slope Dose-Response function within OriginPro9
(OriginLab Corporation, Northampton, MA, USA).

2.6. Cell Viability Assay

To determine the acute effects on cell viability, 2.5 × 103 cells/well were plated in
96-well plates (Cell Star, Greiner Bio-One, Frickenhausen, Germany). Following synchro-
nization, cells were treated with either 1A-116 at 5 or 10 µM, or vehicle at 10 or 23 HPS.
Because Calcein AM stains only living cells, cell viability was measured as the number of
fluorescent cells determined 16 h after the drug treatment. Three independent assays were
performed for each experimental condition.

2.7. Cell Migration Assays

2.5 × 105 LN-229 cells were plated and synchronized by serum shock in 12-well plates
having a silicon 3.5 mm elastomer (Sylgard 184) stopper previously adhered to the center of
each well. Except for technical controls (t0), the silicon stoppers in all wells were removed
at the time of treatment to generate a cell-free area into which the surrounding cells could
migrate. Cells were treated with 1A-116 (10 µM) or vehicle at 10 HPS or 23 HPS, and cell
migration was measured 16 h later (as stated in [13]) after labeling cells with Calcein AM.
Because 1A-116 has effects on proliferation and apoptosis, the time allowed for the cells
to migrate was enough for them to invade the cell-free area while keeping the number of
cell divisions at a minimum. The stoppers in the three t0 wells were removed 1 h before
quantification, the results were averaged and subtracted from the measurements of all
other wells to account for the cells that could stochastically detach and fall in the cell-free
area. Images of the cultures were obtained using a Cytation 5 Imaging Reader (Biotek
Instruments, Winooski, VT, USA) with a 2.5x objective and GFP (488/520 nm) channels.
Two regions of interest within the same area were selected and measured in each image,
one in the center of the cell-free area and the other one outside, where the cell monolayer
was intact (no stopper). This allowed measuring the cells in the migration area relative to
the cells outside, accounting for possible effects of the number of cells available to enter
the migration area. The number of labeled cells inside the migration area and the total
covered migration area for each treatment were assessed using ImageJ software (version
1.53a, Wayne Rasband, Stapleton, NY, USA). The results shown correspond to the average
of three independent experiments.

2.8. Early Apoptosis Assay

In total, 3 × 103 LN-229 cells/well were plated in 96-well plates. After 24 h, the cells
were synchronized and treated for 6 h (as stated in [13]) with either 20 and 50 µM 1A-116,
or vehicle at 10 HPS and 23 HPS. Early apoptosis was measured using fluorescent-labeled
Annexin V; a phospholipid-binding protein with a high affinity for phosphatidylserine that
is present in the outer surface of the cell membrane in apoptotic cells. The Alexa Fluor
488 Annexin V kit (Molecular Probes, Thermo Fisher Scientific, Waltham, MA, USA) was
used according to the manufacturer’s instructions. Each measurement was performed
using a Cytation 5 Imaging Reader (Biotek Instruments, Winooski, VT, USA) at 10x objective
and DAPI (360/460 nm) and GFP channels.
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2.9. Quantitative Real-Time RT-PCRs

The 8 × 105 LN-229 cells were plated in 6-well plates and were synchronized at 0,
4, 8, 12, 16, 20 and 24 HPS (4 h intervals during 24 h). The total RNA was extracted
using the EasyPure RNA kit (Transgen Biotech, Beijing, China) according to the manu-
facturer’s instructions. Next, the DNA was removed from all samples using DNAsa I
free Rnasa (Promega, Madison, WI, USA). Reverse transcriptase Superscript II (Thermo
Fisher Scientific, USA) was used according to the manufacturer’s instructions to then
synthesize cDNA. Quantitative real-time RT-PCR (qPCR) analysis was performed using
the Power Sybr Green PCR (Thermo Fisher Scientific, USA) with a Step-One Real-time
PCR system (Thermo Fisher Scientific, Waltham, MA, USA), using the following primers:
Rac1, Fwd: 5′-GTGCAGACACTTGCTCTCCT-3′, Rv: 5′-AATGGCAACGCTTCATTCGG-3′,
Tiam1: Fwd:5′-TGCCGTGTTCTGACTTACC-3′, Rv: 5′-ACATGAATCGCCACCCTCTC-3′,
Bmal1:Fwd: 5′-CCACTGTTCCAGGGATTCCA-3′, Rv: 5′-GGAGGCGTACTCGTGATGTT-
3′, Actin: Fwd: 5′-GGACTTCGAGCAAGAGATGG-3′, Rv: 5′-AGGAAGGAAGGCTGG
AAGA-3′. All gene mRNA expression values were normalized to the expression level of
the housekeeping gene (actin) and quantification of gene expression was performed using
∆Ct values, defining ∆Ct as the difference between the target and reference gene Ct values.

2.10. In-Cell Western Assays

3 × 103 LN-229 cells were plated in 96-well plates, synchronized, and fixed with
cold methanol (−20 ◦C) at 0, 3, 6, 9, 12, 15, 18, 21, or 24 HPS (3 h intervals during 24 h).
Cells were then washed with phosphate-buffered saline (PBS), blocked with 5% milk and
treated with either TIAM1-Alexa 488 (Santa Cruz Biotechnology, Dallas, TX, USA), BMAL1
(Novus, Centennial, CO, USA), and PER1 (Santa Cruz Biotechnology, Dallas, TX, USA)
monoclonal antibodies. Measurements were performed using a Cytation 5 Imaging Reader,
10x objective and DAPI and GFP channels.

2.11. Image Acquisition and Processing

Raw images were acquired with the GEN 5 software in the Cytation 5 system and
were processed using the Fiji image analysis software [32]. Raw images were obtained
to qualitatively confirm the staining patterns, so no intensity measurements were per-
formed. Intensity measurements were only performed in migration experiments. For each
experiment, raw images were processed to aid visualization in the following way: first,
both unsharp-mask and despeckle filters were applied to separate channels simultane-
ously. Next, all channels were merged into a single RGB color-type image. The result
of this process is a final image that resembles one of the blue-green images displayed in
Figure 1E,F.

For migration experiments, images were automatically acquired and stitched by the
GEN 5 software (Winooski, VT, USA) and were processed with Fiji (version 1.53a, Wayne
Rasband, Stapleton, NY, USA). Then, the unsharp-mask and despeckle filters were applied,
a flat-field correction was used to remove grid effects generated by the stitching process.
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Figure 1. Circadian mRNA levels and protein expression of Bmal1, Per1, Rac1 and Tiam1 in LN229 
and LN229E1 cells. (A,B) After synchronization with FBS, cells were fixed at 4-h intervals, and their 
mRNA was extracted. qPCR was done with Tiam1, Rac1 or Bmal1 primers, to determine the amount 
of Tiam1, Rac1 or Bmal1 levels relative to housekeeping (actin) mRNA levels. (A) In LN229 cells, 
Bmal1 and Tiam1 mRNA levels show circadian rhythms in antiphase. When fitting to a fix 24 h 
period, their p-values were: Tiam1: p < 0.05, Bmal1: p < 0.05, Rac1: ns. (B) Contrary to the previous 
sample, no circadian rhythms were found in the LN229E1 sample for Rac1 and Tiam1, which had 
measured p-values of p > 0.05. Circadian rhythms were still found for Bmal1, but with a decreased 
amplitude. (C,D) After synchronization with FBS, cells were fixed at 3-h intervals, processed for 
Tiam1, Per1, or Bmal1 immunocytochemistry (green channel), and nuclei counterstained with DAPI 
(blue channel) (C) BMAL1, PER1, and TIAM1 normalized immunoreactivity was circadian and in 
antiphase in LN229. When fitting to a fixed 24-h period, their p-values were: TIAM1: p < 0.0001, 
BMAL1: p < 0.0001, PER1: p < 0.05. (D) No circadian rhythms were observed in LN229E1, which had 
a p-value of p > 0.05. (E,F) Representative images obtained with the Cytation 5 fluorometer system, 

Figure 1. Circadian mRNA levels and protein expression of Bmal1, Per1, Rac1 and Tiam1 in LN229 and
LN229E1 cells. (A,B) After synchronization with FBS, cells were fixed at 4-h intervals, and their mRNA
was extracted. qPCR was done with Tiam1, Rac1 or Bmal1 primers, to determine the amount of Tiam1,
Rac1 or Bmal1 levels relative to housekeeping (actin) mRNA levels. (A) In LN229 cells, Bmal1 and Tiam1
mRNA levels show circadian rhythms in antiphase. When fitting to a fix 24 h period, their p-values were:
Tiam1: p < 0.05, Bmal1: p < 0.05, Rac1: ns. (B) Contrary to the previous sample, no circadian rhythms were
found in the LN229E1 sample for Rac1 and Tiam1, which had measured p-values of p > 0.05. Circadian
rhythms were still found for Bmal1, but with a decreased amplitude. (C,D) After synchronization with
FBS, cells were fixed at 3-h intervals, processed for Tiam1, Per1, or Bmal1 immunocytochemistry (green
channel), and nuclei counterstained with DAPI (blue channel) (C) BMAL1, PER1, and TIAM1 normalized
immunoreactivity was circadian and in antiphase in LN229. When fitting to a fixed 24-h period, their
p-values were: TIAM1: p < 0.0001, BMAL1: p < 0.0001, PER1: p < 0.05. (D) No circadian rhythms were
observed in LN229E1, which had a p-value of p > 0.05. (E,F) Representative images obtained with the
Cytation 5 fluorometer system, which was used to qualitatively confirm the staining results in LN229 and
LN229 E1 cells. The scalebars represent 20 µm.
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2.12. Animals

The animals used throughout the study were 2-month-old, male, NIH Swiss
foxN1(∆/∆) nude mice, which were purchased from Universidad Nacional de La Plata,
Argentina. Mice were housed in group cages (5 individuals) and were kept under a 12 h
light:12 h dark (LD) cycles [with zeitgeber time 12 (ZT12) defined as the time of lights OFF,
i.e., local time 7 p.m., and ZT0 defined as lights ON, i.e., local time 7 a.m.], with temperature
set at 22 ± 2 ◦C. The animals also had ad libitum access to balanced rodent chow and
water. Animals were kept for one week under LD cycles. All experimental procedures
with animals were approved by the Institutional Animal Care and Use Committee of the
Universidad Nacional de Quilmes (project #005-16, September 2016) as established by the
Guide for the Care and Use of Laboratory Animals (NIH, Bethesda, MA, USA).

2.13. Intracranial Surgery and Xenograft Implants

Approximately, 2 × 105 cells/µL of LN229 viable cells were implanted in each nude
mouse with a 33 ga syringe (Hamilton, Franklin, MA, USA). A stereotaxic device (Stoelting
and Co., Wood Dale, IL, USA) was used to aim the syringe towards the right striatum. Using
the Bregma as zero point, the corresponding coordinates are: ML: −2, AP: 0, DV: −3.4.
All surgeries were performed between ZT3 and ZT11, and then animals were randomly
assigned to each group. Once the mouse underwent the surgery, it was allowed to recover
for at least seven days, receiving 6 mg/kg sub-cutaneous ampicillin and 0.05 mg/mL
ibuprofen via drinking water, before the onset of the chronopharmacological protocol.

2.14. Chronopharmacological Drug Administration

Mice received a daily intraperitoneal injection of the drug 1A-116 (20 mg/kg, 200 µL)
or vehicle, at either ZT3 or ZT12. Currently, there are no available data allowing the
extrapolation of LN299 circadian timing in vitro to in vivo conditions. Thus, two timepoints
were selected for drug administration, one at ZT12 and the other one at ZT3. At ZT3 and
ZT12, mice are expected to display differences in many important physiological variables
including core body and distal temperature, liver and renal activity, hormonal blood levels,
and metabolic profile [23]. Thus, these two timepoints serve as a good starting point to
observe differences in the response to a drug. The animal’s survival time was measured
twice a week. Finally, to confirm the presence of the tumor, a necropsy was performed. In
this procedure, brains were dissected and fixed in a paraformaldehyde solution, thereafter,
histological sections were obtained to perform cresyl violet staining.

2.15. Statistical Analysis

Normal distributions were tested with the Shapiro-Wilkinson Normality Test and then
parametric analyses were performed (two-way and three-way ANOVA as indicated in the
text) and post hoc tests (Multiple comparisons Tukey’s and Sidak tests) were applied when
indicated. Results are presented as Mean ± SEM of experimental datasets.

Circular statistics analyze the time series for period detection better than linear statis-
tics. Thus, cosine models were used to test whether variables were rhythmic or not. For
data derived from in-cell western experiments and daily variation of proliferation inhibi-
tion effects of 1A-116, circadian rhythms were assessed using COSINOR fitting data with
a cosine function with set parameters: a 24 h period, testing amplitude = 0 as the null
hypothesis, Lomb–Scargle (LS) periodogram and JTK_CYCLE (JTK). Data were considered
rhythmic when at least two independent methods found significant rhythms and their
period was measured, fitting to a fixed period of 24 h. COSINOR analysis was performed
using the El Temps package [33] and the Meta2d function (to run LS and JTK) was run with
the Metacycle R package [34].

Bioluminescence recordings were processed and analyzed with the Chronostar 1.0
software. First, they were filtered with a 3-h moving average to remove high-frequency
variations. Next, a 4th order polynomial fit was performed on the data and then subtracted
from the data (detrending filter) to remove low-frequency variation. Then, a cosine model
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was fitted to the data to determine the period and goodness of fit (CC). Data series were
considered circadian if they had a measured period within the 20 to 28 h range and a CC of
over 0.85.

Survival times of tumor-bearing mice under chronopharmacological protocol were
analyzed using Kaplan-Meier survival curves, which were then compared using a log-rank
test. Statistical analyses were performed with GraphPad Prism 7 (GraphPad Software, La
Jolla, CA, USA) and OriginPro9 software programs. Results with p-values lower than 0.05
were considered statistically significant.

3. Results
3.1. LN229 Cells Exhibit a Functional Circadian Clock That Modulates TIAM1 Expression

Most mammalian cells display circadian rhythms even when cultured in vitro. When
properly synchronized, those rhythms are evident at the population level. However, rhyth-
micity can be severely affected or completely lost in tumoral cells due to their high mutation
rates. Thus, the first step in this analysis was to assess the presence of circadian rhythms in
LN229 cultures, focusing specifically on the canonical clock genes. LN229 cells showed
a circadian rhythm in Bmal1 mRNA levels (Figure 1A), which showed a dampened, low
amplitude cycle in LN229E1 cells (Figure 1B) (Bmal1 LN229: JTK: p < 0.05, LS: ns, Meta2d:
p < 0.05, Amp: 13.35. Bmal1 LN229E1: JTK: p < 0.05, LS: ns, Meta2d: p < 0.05, Amp: 1.5)
In addition, rhythmic expression of the BMAL1 promoter activity in LN229 cells was
found for over 72 h in cells carrying a pGL3-Bmal1-dLuc reporter plasmid, while no circa-
dian variations were observed in the LN299E1 line carrying the same reporter (Figure S3).
Then, clock proteins BMAL1 and PER1 were studied using in-cell westerns (Figure 1C-F).
Statistical analyses were performed to identify the presence of circadian rhythms in
BMAL1 and PER1 expression, indicating that synchronized LN229 cultures displayed
circadian rhythms (BMAL1: JTK: p < 0.0001, LS: p < 0.01, Meta2d: p < 0.001, PER1: JTK:
p < 0.05, LS: ns, Meta2d: p < 0.05) (Figure 1C). Minimum expression levels of BMAL1 were
observed at 9 HPS, with peak expression observed at 21 HPS. Rhythmic PER1 expression
levels varied in antiphase with those of BMAL1, with maximum expression at 6 HPS and
minimum levels at 18 HPS. These rhythms were lost in LN229E1 cell lines (BMAL1: JTK: ns,
LS: ns, Meta2d: ns; PER1: JTK: ns, LS: ns, Meta2d: ns) (Figure 1D).

The rhythmic variation under constant culture conditions in mRNA and protein
level of BMAL1, in addition with PER1 rhythmic expression, combined with the lack
of such rhythmicity in PER1 and BMAL1 clock proteins and the dampened rhythms in
Bmal1 mRNA in LN229E1 cultures, suggest that LN229 cells exhibit a functional circadian
molecular clock.

Circadian modulation of TIAM1 expression could lead to time-dependent variations
of the effects of drugs targeting pathways where this protein plays a role. The drug 1A-116
was previously shown to inhibit RAC1 activation in a TIAM1-dependent manner, with
larger effects of the drug observed with higher TIAM1 expression levels [13,35]. Thus, the
circadian modulation of Rac1 and Tiam1 mRNA levels was studied in synchronized LN229
cultures. Tiam1 showed a significant circadian rhythm, whereas no rhythm was observed
for Rac1 levels (Figure 1A) (Tiam1: JTK: 24 h period, p < 0.05, LS: ns, Meta2d: p < 0.05.
Rac1: JTK: ns, LS: ns, Meta2d: ns). No circadian rhythms were found in LN229E1 cells for
both Tiam1 and Rac1 (Figure 1B).

In-cell Western assays also showed a significant circadian variation of TIAM1 protein
expression (Figure 1C) (JTK: p < 0.0001, LS: p < 0.01, Meta2d: p < 0.0001), with maximum
expression levels observed at 8 HPS, and minimum levels at 20 HPS, in antiphase with
BMAL1 expression. No circadian rhythms were observed in LN229E1 cells with a disrupted
circadian clock (JTK: ns, LS: ns, Meta2d: ns) (Figure 1D).

The results obtained for both mRNA and protein levels indicate that TIAM1 is mod-
ulated by a functional circadian clock in LN229 glioma cells, while Rac1 showed a non-
circadian expression at the mRNA level.
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3.2. 1A-116 Inhibits GBM Cell Proliferation in a Circadian Manner

The main goal of any chronopharmacological approach is to find the circadian time
of maximum effectiveness of the drug under study and if possible, the time when the
ratio between desired and unwanted effects is largest. Since circadian modulation of the
expression of TIAM1 was observed and it was previously reported that 1A-116 inhibits the
Rac1 pathway in Tiam1 overexpressing cells [13,35], we hypothesized that 1A-116 effects
should display circadian rhythms related to those of circadian TIAM1 levels. To test this
hypothesis, LN229 cells (Figure 2A) were treated with either vehicle or 20 µM 1A-116 at
5 h intervals over 25 h (each culture was treated only once).

At the time of measurement, vehicle-treated cultures were close to becoming con-
fluent monolayers, unlike the ones treated with 1A-116. Proliferation was inhibited by
20 µM 1A-116 in a circadian-dependent manner, with maximum inhibitory effects ob-
served at 10 HPS, minimum at 23 HPS, and significant circadian periodicity (JTK: p < 0.01,
LS: p < 0.05, Meta2d: p < 0.01) with a maximum phase approximate to the one observed for
maximal TIAM1 expression (see Figure 1C).

To further study the circadian response to 1A-116, dose-response curves were per-
formed for LN229 and LN229E1 cells at 10 HPS and 23 HPS (Figure 2B), the times of
maximum and minimum 1A-116 inhibition of proliferation, respectively (see Figure 2A).
In LN229 cells, a significant time dependency was observed for both 10 and 20 µM 1A-116,
with larger effects observed in cultures treated at 10 HPS. In LN229E1 cells, intermediate
IC50 values compared to those observed for LN229 at both 10 and 23 HPS were found,
but with no significant circadian-dependency at both 10 and 20 µM. The inhibitory effects
of 1A-116 on proliferation reached saturation at doses higher than 20 µM in all groups.
In LN229 cells the IC50 evidenced significantly higher drug efficacy at 10 HPS, when
compared to 23 HPS, while this difference was not observed in LN229E1 cells. IC50 values
ranged from 10.93 ± 0.9 µM for LN229 cultures treated at 10 HPS, to 30.85 ± 1.78 µM for
LN229 cultures treated at 23 HPS (Figure 2C).

3.3. Pro-Apoptotic Effects of 1A-116 Are Circadian-Dependent

Slowing down the proliferation of tumoral cells is important for cancer treatments,
but inducing cell death is critical. Apoptosis is a regulated process of cell death that can be
distinguished by several morphological and biochemical changes, including fragmentation
of nuclear chromatin and loss of membrane asymmetry [36]. One of such changes is the
translocation of phosphatidylserine from the cytoplasmic to the external surface of the cell
membrane. Thus, detecting phosphatidylserine on the cell surface with fluorophore-labeled
Annexin V (a protein with a high affinity for phosphatidylserine) [37] is a widely used
method to measure apoptosis, reporting fluorescence intensity [38].

It was previously reported that 1A-116 can induce apoptosis [13], so the dependence
on the time of treatment of this effect was tested in GBM cells under 6 h treatment with
20 or 50 µM 1A-116 (Figure 3). When applying 20 µM 1A-116 at 10 HPS or 23 HPS, a
significant difference in the Annexin V fluorescence signal was observed, with higher levels
detected at 10 HPS indicating more cells were undergoing apoptosis in the cultures treated
at 10 HPS than in those treated at 23 HPS. At 50 µM, 1A-116 apoptosis induction showed
no statistical differences when comparing cultures treated at 10 HPS with those treated at
23 HPS. Similar to the results obtained for proliferation assays, the pro-apoptotic activity
of 1A-116 20 µM was more effective when applied at 10 HPS, than when applied at 23 HPS
(Figure 3A,B).
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Figure 2. Circadian variation in the effect of 1A-116 on proliferation in the LN229 glioblastoma cell
line. (A) Proliferation inhibition relative to vehicle-treated cells. The assessment was conducted
with crystal violet 0.1% staining, 72 h after applying the treatment of 20 µm of 1A-116 or vehicle at
different HPS. Circadian modulation of 1A-116 effects on proliferation was observed with significant
values when fitting to a fix 24 h period: Meta2d: p < 0.01, two-way ANOVA, ns. (B) Dose–response
curves for proliferation inhibition relative to vehicle-treated cells in LN229 and LN229E1 cultures,
which were treated at 10 HPS or 23 HPS (mean± SEM). A larger response was observed when LN229
was treated at 10 HPS; Three-way ANOVA: HPS, p < 0.0001; 1A-116 Concentration, p < 0.0001; 1A-116
Concentration × HPS, p < 0.0002; HPS × Cell type, p < 0.0041; 1A-116 Concentration × HPS × cell
type, p < 0.05, N = 3. Only main comparisons are stated for results obtained with Tukey´s multiple
comparisons test: LN229 WT 10 HPS 10 µM vs. LN229 WT 23 HPS 10 µM, p < 0.0001, LN229 WT
10 HPS 20 µM vs. LN229 WT 23 HPS 20 µM, p < 0.0003; LN229 WT 10 HPS 20 µM vs. LN229E1
23 HPS 20 µM, p < 0.013, LN229 WT 10 HPS 0 µM vs. LN229 WT 10 HPS 20 µM, p < 0.0001, LN229E1
10 HPS 0 µM vs. LN229E1 10 HPS 20 µM, p < 0.026). The dose-response curves were obtained by
fitting the median data values, which were calculated from three separate experiments. (C) IC50
values were obtained for independent experiments. It shows significantly lower IC50 values for
LN229 cultures treated at 10 HPS. No time dependency was found for LN229E1. The following
values were obtained: Two-way ANOVA, for factor HPS, p < 0.001, HPS x cell line, p < 0.05. Tukey’s
multiple comparisons test reported: 10 HPS LN229 vs. 23 HPS LN229 ** p < 0.01,10 HPS LN229 vs.
23 HPS LN229E1, * p < 0.05. All plotted data represent mean ± SEM.
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Figure 3. Apoptosis induction by 1A-116 is higher at 10 HPS in LN229 cells. Annexin V staining
was used to measure early apoptosis in LN229 cultures 6 h after the addition of vehicle, 20 µM, or
50 µM of 1A-116. Fluorescence intensity was measured in a Cytation 5 system and DAPI staining
was used to relativize the number of cells in each well. (A) Relative early apoptosis values were
obtained for three independent experiments (N = 3) and were compared between treatments at
10 HPS and 23 HPS. Significantly larger values were observed when the treatment was applied
at 10 HPS (two-way ANOVA, for factor HPS p < 0.01, factor Concentration p < 0.001, interaction
p < 0.05. Multiple comparisons Tukey´s tests: 0 µM 23 HPS vs. 20 µM 10 HPS: ** p < 0.01, 0 µM
10 HPS vs. 20 µM 10 HPS: ** p < 0.01, 0 µM 23 HPS vs. 50 µM 23 HPS: ** p< 0.01, 0 µM 10 HPS vs.
50 µM 10 HPS: **** p < 0.0001, 0 µM 23 HPS vs. 50 µM 10 HPS: **** p < 0.0001, 20 µM 23 HPS vs.
20 µM 10 HPS: ** p < 0.01, 20 µM 23 HPS vs. 50 µM 23 HPS: ** p < 0.01).Column values represent
mean ± SEM. (B) Representative images that were obtained to qualitatively confirm the staining
results in LN229 cells at 10 HPS and 23 HPS, 6 h after treatment with 1A-116. White scale bars
represent 20 µm.

3.4. 1A-116 Inhibits LN229 Cell Migration Only at 10 HPS

GBM tumors are highly invasive, making complete surgical removal and radiotherapy
extremely difficult and leading to recurrence of the disease due to the survival of GBM
cells outside of the treated area. Thus, beyond killing and preventing the proliferation of
tumoral cells, inhibition of migration is another desirable characteristic for GBM treatments.
To assess the time dependence of the effects of 1A-116 on cell migration, the invasion of
a cell-free area in cultures treated with 1A-116 or vehicle was measured at 10 HPS and
23 HPS (Figure 4).
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Figure 4. Cell migration inhibition due to 1A-116 at 10 HPS. Cell migration into a cell-free area was
measured in cultures treated with 1A-116 (10 µM) or vehicle at either 10 HPS or 23 HPS. At 16h
after treatment, live cells were stained with Calcein-AM. The area covered by cells in the previously
cell-free area was measured with ImageJ software. The total covered area by the cells was normalized
to the covered area of the vehicle (control), after the area outside the cell-free area and technical
controls (t0) were subtracted out from the data. (A) The covered area for 10 µM treated cells was
significantly reduced at 10 HPS than at 23 HPS (Two-way ANOVA, for factor HPS, * p < 0.05, for
factor concentration, * p < 0.05. Sidak’s multiple comparisons test: 1A-116 10 HPS vs. 23 HPS:
* p < 0.05; 10 HPS Veh vs. 1A-116: * p < 0.05, 10 HPS 1A-116 vs. 23 HPS Veh: p < 0.05, N = 4).
Column plots represent the mean ± SEM. (B) Representative images of the migration area at 16 h
after treatment. The white scale bar represents 1 mm, and the white circles represent the originally
cell-free area where cell migration was quantified.

The addition of 10 µM 1A-116 at 10 HPS significantly reduced cell migration when
compared to cultures treated with the same concentration of 1A-116 at 23 HPS or with
vehicle-treated cultures at either 10 HPS or 23 HPS. Addition of 1A-116 at 23 HPS did not
affect cell migration when compared to vehicle-treated cultures, unmasking a temporal
dependence of the effects of 1A-116 on cell migration. The selected 1A-116 concentra-
tion (10 µM) showed no effects on cell viability (Figure S4). Additionally, no significant
differences were found in the number of cells outside of the cell-free area, but since this
variable can affect the total number of migrating cells, they were quantified to normalize
the migration data (Figure S5) to take into account possible differences in the number of
cells available to migrate into the cell-free area.

3.5. Daytime Dependent Effects of 1A-116 Treatment in Survival of GBM Nude Mice Model

The results obtained in vitro demonstrate that the effectivity of 1A-116 is modulated
by a circadian oscillator present in LN229 cells and support testing in vivo the daytime-
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dependent effect of 1A-116 drug delivery in a murine GBM model. To this end, LN229 cells
xenografts were implanted in the brain of nude mice to generate gliomas.

1A-116 was administered at two different circadian times corresponding to ZT3 and
ZT12 (i.e., 3 h after lights on and at the time of lights off, respectively). When comparing
the effects of injecting 1A-116 or vehicle at ZT3 vs. ZT12, a significant increase in survival
time was observed when 1A-116 was administered at ZT12 compared both to the same
treatment at ZT3 and to vehicle groups. The median survival times obtained were 73 days
for 1A-116 at ZT12, 68 days for ZT3, 64.5 days for the vehicle at ZT12 and 63.5 days for
the vehicle at ZT3 (Mantel–Cox log-rank test, p < 0.05) (Figure 5), demonstrating that the
effectivity of the 1A-116 can be improved only by varying the time of administration. These
results suggest that a chronopharmacological delivery with 1A-116 is a feasible strategy to
improve survival for GBM.
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Figure 5. GBM bearing nude mice treated with 1A-116 at ZT12 exhibited increased survival rates
than mice treated with 1A-116 at ZT3. Survival curves of nude mice treated with vehicle or 1A-116
in ZT3 and ZT12 were significantly different (n = 11, Mantel–Cox log rank Test, * p < 0.05). Median
survival increased in ZT12. The median survival times obtained from fitting the data are listed: ZT12
Veh: 64.5 days, ZT3 Veh: 63.5, ZT12 1A-116: 73 days, ZT3 1A-116: 68 days.

4. Discussion

In this work, we report a circadian modulation for the effects of 1A-116 on GBM cells
in vitro and on tumor-bearing nude mice in vivo. We found that LN229 cells express a
functional circadian clock, displaying circadian oscillations of BMAL1, both at mRNA and
protein levels, and of PER1 protein. In addition, while Rac1 mRNA showed no circadian
oscillations, the GEF activator TIAM1 presented circadian rhythms both in mRNA and
protein expression. Oscillations of BMAL1, PER1 and TIAM1 protein expression, as well as
Tiam1 mRNA, were abolished by knocking down the bmal1 clock-gene, while mRNA oscil-
lations of Bmal1 were seriously impaired, indicating that the observed circadian oscillations
were generated by this canonical component of the molecular circadian clock in LN229
cells. Our results show that the effects of 1A-116, a drug designed to specifically inhibit the
Rac1 signaling pathway by preventing its interaction with TIAM1, were also modulated
by the circadian clock in LN229 cells in vitro and showed a time-of-day dependence in a
glioma tumor model in vivo. Interestingly, all the antitumoral effects studied of the drug,
including proliferation inhibition, apoptosis induction and migration inhibition, were in
phase with TIAM1 high levels of expression.

1A-116 was obtained by rational design from an analog selected through a docking-
based virtual screening approach. It specifically blocks the interaction site of RAC1 with
its GEFs, particularly RAC1-TIAM1 and RAC1-DOCK180, and it was reported to induce
apoptosis and inhibit proliferation and migration in LN229 and U-87 glioma cell lines [13].
Considering that this drug was proposed as a good candidate to treat GBMs and other
cancers, we decided to study the circadian modulation of the effects of 1A-116 on critical
cellular processes for cancer progression. Cell proliferation inhibition, apoptosis induction
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and cell migration were studied after the addition of 1A-116 at different times after circadian
synchronization. All of these responses were dependent on the time of administration,
with larger effects at the time when TIAM1 and PER1 levels are high, and BMAL1 levels
are low. When exposing cells to 10 and 20 µM of 1A-116, proliferation was inhibited
when the drug was applied at 10 HPS, but not at 23 HPS, while no circadian dependency
was observed at higher, saturating concentrations. Accordingly, an IC50 reduction on cell
proliferation by 1A-116 was observed when cultures were treated at 10 HPS when compared
to 23 HPS. This difference was absent in LN229E1 cells lacking circadian rhythms of
BMAL1, TIAM1 and PER1 expression, suggesting that the efficacy of the drug is regulated
by the circadian molecular clock. When applied close to the time of TIAM1 peak of
expression, low concentrations of 1A-116 (20 µM) elicited similar effects in LN229 cells, to
those obtained at other time points with saturating concentrations. Similar to the results
observed for proliferation inhibition, apoptosis was induced at 20 µM by 1A-116 when it
was applied at 10 HPS, but not when added at 23 HPS. In addition, no effect on cell viability
was evident at lower concentrations, 5 and 10 µM, of 1A-116 at both 10 and 23 HPS. This
low-ranged 10 µM dose was efficient to inhibit cell migration when applied at 10 HPS, but
not when applied at 23 HPS, confirming the circadian dependency of the effects of 1A-116
also in this process.

When 1A-116 was applied on tumor-bearing mice, it was more effective at extending
survival time when delivered at ZT12 than at ZT3. Many anti-cancer drugs have already
been shown to decrease tumor growth and extend survival when applied at different
circadian times both in mice and humans [22,23,26]. Chronotherapy presents an interesting
treatment option, allowing us to improve the effectiveness of the therapies just by picking
the optimal time of application, as shown by treatment with 1A-116 in our glioma model.
The current therapy of choice for GBM is TMZ, which prolongs patient survival by just a
few months on average [39] and its effects were also recently shown to be dependent on the
time of day at which it is administered [26]. It is necessary to continue studying new drugs
and treatment schedules that may extend life expectancy and overall survival for patients,
ideally with fewer and milder effects. In this regard, our results indicate that 1A-116 shows
potential as a new drug for chronopharmacological GBM treatment and supports further
studies in combination with TMZ.

Much evidence links the circadian system to cancer risk and progression [40]. Dis-
rupted circadian rhythms were reported in different cancer models [41] and several lines of
evidence link glioma progression to the circadian clock [42,43]. Two genes that play im-
portant roles in circadian clock regulation, casein kinase-1 epsilon (CK-1ε) and the nuclear
receptor NR1D2, were found to regulate GBM cell survival and were proposed as targets
for glioma treatment [44]. Additionally, the P38 MAPK pathway, linked to circadian en-
trainment [45] was proposed as a good target to treat different cancers including GBM, and
found to be under circadian control in normal astrocytes, but deregulated in GBM cells [46].
In the context of this work, what makes the RAC1 pathway an interesting target from a
chronopharmacological perspective, is that it is related to most of the pathways linking
GBM to the circadian clock: (a) an NR1D2 knock-down was found to impair p-Rac1, (b) the
p38 MAPK pathway is known to be activated by RAC1 and (c) CK-1e mutants were shown
in breast cancer to activate the non-canonical Wnt/Rac-1/JNK pathway contributing to
cancer development [47].

Taking a chronopharmacological approach in a given treatment focuses on finding the
optimal time for drug application. Defining an optimal time is non-trivial since it depends
on a large number of processes that need to be taken into consideration, including desired
and side effects, costs, the feasibility of proposed schedules, tolerance, pharmacodynamics
and pharmacokinetics [23]. However, in most cases, the optimal time for treatment will be
the one generating the maximum therapeutic index, the largest ratio between desired and
side effects [48]. The chronotherapeutics of anti-tumor drugs were tested on a wide variety
of cancers, finding that the time of administration can generate significant differences in
survival and tumor growth [49]. Levi et al. showed that the administration of oxaliplatin
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with a chronopharmacological scheme in patients with colorectal cancer could reduce its
toxicity on normal cells [22]. For GBM, temozolomide and VX-745 (a p38 MAPK inhibitor)
effects were reported to depend on the time of administration in vitro [46,50]. In our model,
higher efficacy of 1A-116 was observed at circadian times of low BMAL1 expression in
GBM cells and a differential overall survival was found when applying 1A-116 at ZT12 to
glioma-bearing nude mice. These results suggest that a chronopharmacological application
of 1A-116 is a feasible strategy to improve survival. Further studies need to be performed to
identify the pharmacological mechanisms underlying the in vivo time dependency of 1A-
116 treatment as well as to find the optimal treatment time, assessing administration with
1A-116 in more Zeitgeber times. In addition, future research should focus on characterizing
the circadian clock of GBMs in vivo, in order to determine the regulation of the circadian
clock on 1A-116 effectivity. Taking into account that the circadian clock of tumors in vivo
may be disrupted, the use of a chronobiotic, (such as melatonin) [51], could be an interesting
strategy to reset the circadian staging of targets of the drug. Characterizing the rhythmicity
of GBM tumors in vivo will require complex experimental approaches, probably using
advanced bioluminescence and fluorescence imaging techniques, and translating those
results to humans is likely to pose even more difficult challenges, but considering the
urgent need to improve GBM therapies, these are efforts worth undertaking.

The chronotherapy of cancer medications thus far has been based on animal model
studies, and potentially represents the combined effects both of chronopharmacokinetic
and chronopharmacodynamic phenomena. The findings of this work are representative of
the chronopharmacokinetics and chronopharmacodynamics of 1A-116 in combination and
can be the basis for human trials to improve outcomes of this very aggressive and difficult-
to-survive cancer. Thus, our results provide a good starting point once the circadian phase
relationship between tumors and host clocks is defined.

Since circadian expression of TIAM1 had not been reported before and Rac1 mRNA
levels were found not to be under circadian control in this work and in [52], circadian
modulation of the RAC1 pathway could have easily been overlooked. Further research
should look into the mechanisms and implications linking the circadian molecular clock and
the entire Rac1 pathway. In addition to our results, previous data on rhythmic expression
of TIAM1 can be found only in the CircaDB database for lung samples [53], indicating
that further work should determine whether this modulation occurs in other tumoral
and normal cells and tissues, the mechanisms underlying its circadian control, and if it is
relevant for treatment.

Circadian oscillations of 1A-116 effectivity may be the consequence of a variety of fac-
tors, including circadian modulation in the expression of its molecular target, modulation
of upstream and downstream components of the affected pathways, circadian control of
the transport of 1A-116 into the cells, metabolization, and even cellular processes making
the cells more prone to enter apoptosis or slow down cell proliferation. Importantly, a
reciprocal interaction between components of the circadian clock and the cell cycle has also
been demonstrated. The circadian gene bmal1 induces the expression of the cell cycle genes
wee [54], cyclins B and D [55] and p21 [56] and some clock genes are expressed at specific
phases of the cell cycle [57], demonstrating this molecular cross-talk [58]. Recent studies
reported that either decreasing or enhancing circadian clock function can inhibit tumor cell
proliferation [59,60]. Further studies are necessary to determine if the circadian modulation
of the effects of 1A-116 is in any way related to the cell cycle phase. It was previously
shown that the circadian rhythms of pharmacokinetic processes play an important role
in the temporal variations in the effectivity of several drugs [61,62]. Therefore, future
studies involving 1A-116 should consider a chronopharmacological approach, addressing
both chronopharmacodynamics (i.e., circadian interaction with RAC1) and chronophar-
macokinetics, to fully unveil the mechanisms underlying the modulation of its activity.
Interestingly, in the last decades, targeted therapies have provided a novel approach to treat
cancer. Our results show that further refinement can be achieved considering circadian os-
cillations in the expression of drug targets and associated pathway components. The correct
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timing of drug dose has been a largely underappreciated factor in established therapeutic
schemes for most diseases [63], improving therapeutic outcomes as in hypertension [64].
This becomes particularly important in cancer treatment, where the therapeutic window
of most drugs is generally narrow and there is a need to optimize therapeutic outcomes
minimizing the associated side effects [65]. This work highlights the opportunity to exploit
a chronotherapeutic approach with an agent that blocks Rac1 interaction with its GEFs,
providing promising results to tackle glioblastoma, an aggressive cancer with extremely
limited therapeutic options.

5. Conclusions

In LN229 cells with a functional circadian clock, we observed the circadian expres-
sion of the protein TIAM1, together with the circadian-dependent response to the novel
chemotherapeutic agent 1A-116. The circadian dependency was lost in LN229E1 cells in
which the bmal1 clock gene was knocked down, supporting the hypothesis of the circadian
control of the response to 1A-116. In our glioma-bearing mice, 1A-116 administered at
ZT12 increased the survival time when compared both to animals treated with 1A-116 at
ZT3 and those treated with vehicle.

These data unveil the circadian modulation of TIAM1, one of the main GEF activators
of RAC1 and the chronomodulation of 1A-116. Our results should be taken into considera-
tion in future preclinical studies for glioblastoma treatment, as well as in all studies related
to GEFs and the RAC1 signaling pathway.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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of genomic edition of Exon2 of bmal1 by Crispr/Casp9, Figure S3: Circadian expression of Bmal1
is maintained for over 72 h. Figure S4: Cell viability. Figure S5: Number of cells outside of the
migration area.
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