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Commentary

Effective polysaccharide(conjugate) 
vaccines against Neisseria menin-

gitidis serogroups A, C, W, and Y have 
been widely used, but serogroup B 
meningococci remain a major cause of 
severe invasive meningococcal disease 
(IMD) worldwide, especially in infants. 
Recently, a vaccine, 4CMenB (Bexsero®), 
containing three recombinant proteins, 
and outer membrane vesicles (OMV) 
derived from a serogroup B meningococ-
cal strain (MenB) has been licensed in 
Europe and Australia and is indicated for 
persons aged 2 mo or older. This article 
discusses what should be considered to 
enable a successful implementation of a 
broad coverage MenB vaccine in national 
immunization programs. Epidemiology 
data, vaccine characteristics including 
vaccine coverage, immunogenicity, post-
implementation surveillance and costs 
are relevant aspects that should be taken 
into account when selecting an appropri-
ate immunization strategy. The potential 
impact on strain variation and carriage, 
as well as monitoring vaccine effective-
ness, and rare but potentially serious 
adverse events are points that need to be 
included in a post-implementation sur-
veillance plan.

Introduction

Neisseria meningitidis is a Gram-
negative bacterium frequently found 
in the human nasopharynx. Entry of 
N. meningitidis into the bloodstream can 
result in meningococcal meningitis and/
or septicemia. Invasive meningococcal 

disease (IMD) may result in death within 
24 h, even with antibiotic treatment. 
Patients who survive IMD are also at 
high risk of suffering at least 1 permanent 
sequela, which may include limb loss, 
cognitive deficits, hearing loss, or seizure 
disorders.1 Each year approximately 1.2 
million cases of IMD with 135 000 deaths 
are estimated worldwide. IMD affects 
mainly young children, older children, 
and young adults. Epidemiology and sero-
group distribution differs geographically.2 
N. meningitidis has at least 13 serologically 
distinct groups, classified according to the 
antigenic structure of the polysaccharide 
capsule.1 Six serogroups of N. meningitidis  
(A, B, C, Y, W, and more recently X) 
are responsible for the majority of IMD 
cases worldwide.1,3 The risk of invasive 
disease is higher for serogroup C and B 
compared with other serogroups, and is 
higher for serogroup C than for serogroup 
B.4 Disease caused by N. meningitidis 
serogroups (A, C, Y, and W) is prevent-
able using conjugate vaccines targeting 
the respective serogroup-specific polysac-
charide capsules. Currently, most menin-
gococcal disease in developed countries 
is caused by MenB. In the United States, 
nearly one-third of all cases of menin-
gococcal disease are caused by capsu-
lar group B strains.5 In many European 
countries, the proportion is even higher 
(up to 90%).6-11 Group B strains cause a 
disproportionate number of IMD cases in 
infants <1 y of age12 (Table 1). Rates of 
IMD infection generally decline with age, 
although disease prevalence rises slightly 
during the teenage years, presumably due 
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to the high carriage rate in this group 
attributable to increased peer contact and 
social behavior.4

The most effective prevention strat-
egy for meningococcal disease is vaccina-
tion. Since January 2013, the European 
Commission granted a marketing autho-
rization for the first meningococcal sero-
group B (MenB) vaccine, 4CMenB, a 
vaccine containing three recombinant 
proteins, and outer membrane vesicles 
(OMV) derived from MenB. In August 
2013, the 4CMenB vaccine was also 
licensed in Australia. The 4CMenB vac-
cine is indicated for persons 2 mo of age 
or older. This article discusses the dif-
ferent aspects that should be considered 
to enable a successful implementation of 

this vaccine in national immunization 
programs.

Epidemiology
Most of the MenB disease is endemic 

with incidences varying by country over 
the years; the highest incidence of IMD 
caused by serogroup B meningococci is 
in the infant age group (<1 y) (Table 1). 
In Europe, the overall IMD incidence 
ranges from 0.3 to 1.1 per 100 000 per-
sons (2009–2012).6-11,13 In the United 
States, the incidence of MenB disease 
is historically low, i.e., 0.05 per 100 000 
(2011).5 The epidemiology data of the US 
from 1998–2007 shows that the incidence 
of IMD caused by serogroup B peaked 
among infants aged 0–3 mo, whereas 
MenC disease peaked among 4–5 mo.14 In 

Canada (data from 1991–2011) the MenB 
disease incidence ranged from 0.1–0.9 per 
100 000 per year; A peak in IMD incidence 
was observed in infants at 4–5 mo.15,16 In 
Australia (2011), the incidence rate was 
0.8 per 100 000. Infants <1 y accounted 
for 18% of the cases, children 1–4 y for 
17%, and persons aged 15–19 y for 20% 
of the cases.17 In New Zealand (2012), the 
incidence rate was 1.2 per 100 000.18 More 
details are presented in Table 1.

MenB can also cause severe epidem-
ics dominated by one particular strain, 
which may persist for 10 y or longer, as 
seen in the past in Cuba, Brazil, Norway, 
and New Zealand. Strain-specific OMV 
MenB vaccines have been proven effective 
in controlling these epidemics.19-21

Table 1. epidemiological data of menB

% serogroup B 
per total IMD

Incidence rate per 
100 000 per year

% per age per total 
(MenB) IMD cases

Case-fatality 
rate

Reference

europe 0.3–1.1 (2009–12)

Germany 0.3 (2011) 13

the netherlands 83% (2010) 0.4–0.7 (2008–11)

19% (<1 y) menB 
ImD (2010)

28% (1–4 y) menB 
ImD (2010)

7

england-Wales 80% (2011–12) 1.1 (2011–12)
62% (<1 y) menB ImD
32% (1–4 y) menB ImD

6

austria 59% (2010)
0.5–0.9 (0.6 

in 2010)
10.5 rate (<1 y) 

menB ImD
8

Ireland 82–89% (2010–12)
5.2–0.9 

(1999–2012) 
(0.9 in 2012)

20–32% (<1 y) ImD
53–65% (1–4 y) ImD

2–5% 
(1999–2012)

9

Poland 52% (2010) 0.6 (2010) >51% (<5 y) ImD 11

Spain 72% (2009–10) 0.7–1.1 (2004–10)

21% (<1 y) menB 
ImD (2009–10)

31% (1–4 y) menB 
ImD (2009–10)

7–11% 
(2004–10)

10

US
28% (2011)

25% mnC (2011)
36% mny (2011)

0.05 (2011)
24% (<1 y) menB ImD
24% (1–4 y) menB ImD

5

Canada
ontario
Quebec

36% (2000–10)
22% mnC (2000–10)
22% mny (2000–10)

68% (1997–2011)
88% (2009–2011)

0.1–0.3 (2000–10)
0.1 (2010)

0.3–0.9 
(1991–2011)

21% (<1 y) menB ImD
15% (<1 y) ImD
14% (1–4 y) ImD

18% (15–19 y) ImD

6% 
(1997–2011)

15
16

australia 84% (2011) 0.8 (2011)

18% (<1 y) menB ImD
17% (1–4 y) menB ImD

20% (15–19 y) 
menB ImD

17

new Zealand
63% (2012)

34% menC (2012)
1.2 (2012)

14% (<1 y) menB ImD
16% (1–4 y) menB ImD

18% (15–19 y) 
menB ImD

4.7% (2012) 18
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Vaccine development
Vaccines against MenB disease have 

proved difficult to produce, because the 
capsular polysaccharide on the serogroup 
B bacterium is poorly immunogenic as it 
exhibits structural similarity to human 
neural (adhesion) molecules and is there-
fore not a useful target.22 Consequently, 
vaccine developers focused on other outer 
membrane structures and initially menin-
gococcal outer membrane vesicles (OMV) 
were used as basis for the development of 
several MenB vaccines. OMV produced 
from a representative outbreak strain has 
been shown to be successful in controlling 
various epidemics of MenB disease, such 
as MeNZB that was used to control an 
epidemic in New Zealand (2004–6).19,20 
The bactericidal activity induced by these 
OMV vaccines is largely directed at the 
PorA outer membrane protein (OMP). 
However, PorA is a highly variable, and 
therefore monovalent strain-specific 
OMV vaccines are not generally useful 
for prevention of endemic IMD caused by 

diverse strains. In order to obtain broader 
protection multivalent PorA OMV vac-
cines have been developed, such as biva-
lent, hexavalent, and nonavalent OMV 
vaccine combinations.23-27 In addition, 
OMV vaccine formulations based on 
Neisseria lactamica have been designed to 
provide broad coverage.28 More recently, 
native OMV vaccines, without the use of 
detergents, based on genetically detoxi-
fied LPS have been developed.27,29 Other 
approaches that have been applied are 
vaccines containing multiple recom-
binant proteins, such as 4CMenB or 
rLP2086.19,30 Several of these vaccines 
are at stages of clinical development, and 
in January 2013, 4CMenB was the first 
MenB vaccine that has been approved by 
the European Medicines Agency (EMA) 
for use on the European market. 4CMenB 
is based on novel antigens identified by 
reverse vaccinology and is composed of 
factor H binding protein (fHbp), involved 
in regulation of complement activation, 
NadA, involved in cell adhesion, invasion 

and induction of cytokines, and NHBA, 
heparin-binding protein.19 NHBA and 
fHbp were fused to GNA1030 (unknown 
function) and GNA2091 (unknown func-
tion), respectively, to enhance protein sta-
bility and immunogenicity.19,31 In addition 
to these proteins, OMV from the New 
Zealand epidemic strain (NZ98/254; 
P1.7-2,4, ST41/44) were added to the 
formulation as major (PorA) antigen and 
for additional potential adjuvant activity 
besides the alum adjuvant.19

Discussion

N. meningitidis serogroup B strain 
typing

Today, meningococci are classified 
into serogroups (by type of capsular poly-
saccharide) usually performed by bacte-
rial agglutination test or PCR32 and fine 
types determined by sequencing epitope 
encoding regions of PorA (VR1, VR2) 
and FetA.33 Multilocus sequence typing 
(MLST) is a molecular technique that 

Table 2. randomized controlled phase 2–3 studies performed with 4CmenB prior to license

Study 
description

4CMenB Total subjects Results Reference

Phase 2b/3
1,2 or 3 doses of 4CmenB 

interval 1,2 or 6 mo

1631 healthy 
persons, aged 

11–17 y

Vaccine was safe. 
Vaccination with 2 doses with an interval of 6 mo, 

and not 1 or 2 mo, provided good SBa titers. a 
3rd dose provided no additional benefit

39

Phase 2b

3 doses 4CmenB at 2,4,6 
mo concomitantly with 

routine infant vaccination
3 doses 4CmenB at 2,4,6 
mo and at 3,5,7 mo rou-
tine infant vaccination 
(intercalated scheme)

3 doses concomitantly at 
2,3,4 mo simultaneously 

routine infant vaccination
only routine infant vac-

cination at 2,3,4 mo

1885 infants

after each vaccination, fever (≥38 °C) was reported; 76–80% 
in the groups receiving 4CmenB and the routine vac-

cines simultaneously, 71% in the intercalated group, and in 
51% in the group receiving the routine vaccines only.

no influence of clinical significance was observed of 4CmenB 
vaccination on the immune response to routine vaccination.

Higher SBa titers were observed in intercalated vaccination group.
In all groups: a SBa titer of ≥1:5 was observed in 99% or 
more of infants against strains 44/76-SL (fHbp) and 5/99 

(nada), and in 79–86% against the nZ98/254 strain (omV)

38

Phase 3

Safety: routine vaccines* 
alone or concomitantly 
with 3 doses of 4CmenB 

or menC at 2,4,6 mo
Immunogenicity: routine 

vaccines* alone or concomi-
tantly with 3 doses of 4CmenB

Fourth (booster) dose at 
12 mo with or without 

mmrV vaccination

1003 infants
2627 infants
1555 infants

Concomitantly 4CmenB was associated with increased fever 
(≥38.5 °C) rates. In total 77% (1912 of 2478) of infants had fever 
after any 4CmenB dose, compared with 45% (295 of 659) after 

routine vaccines alone, and 47% (228 of 490) with menC
no clear influence of 4CmenB vaccination was observed on 
the immune response to routine vaccination. a SBa titer of 

≥1:5 was observed in 100% of infants against strains 44/76-SL 
(fHbp) and 5/99 (nada), and in 84% against the nZ98/254 strain 

(omV). In a subset (n = 100), 84% had SBa titer ≥1:5 for nHBa.
95–100% of boost-vaccinated infants had SBa titers ≥1:5 

for all antigens with or without concomitant mmrV

37

*routine vaccination: with 7-valent pneumococcal and combined diphtheria, tetanus, acellular pertussis, inactivated polio, hepatitis B, Hemophilus influen-
zae type b DtaP-IPV-HepB-Hib vaccine. menC, serogroup C conjugate vaccine; mmrV, measles-mumps-rubella-varicella vaccine.
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has been developed and has been increas-
ingly used for MenB typing.34 MLST is 
performed by sequencing of selected genes 
encoding housekeeping enzymes. The loci 
of each house-keeping gene define the 
allelic profile or so-called sequence type 
(ST). Related STs with identical alleles 
at four or more loci are grouped together 
as a clonal complex (CC). The combina-
tion of antigen sequence typing of PorA 
and FetA together with MLST seems to 
provide a robust framework, which can 
be complemented by sequence typing of 
other antigens and measurement of their 
expression.34

After implementation of a MenB vac-
cine in a national immunization program, 
it is important to have a surveillance sys-
tem that provides complete and accurate 
data of the circulating MenB strains. This 
is essential to be able to identify antigenic 
changes that may lead to vaccine failures. 
N. meningitidis has the capability adapt 
surface structures to changing environ-
ments by a variety of genetic mechanisms. 
Horizontal gene transfer is a common 
occurrence in the Neisseria genus and is 
responsible for large numbers of geneti-
cally heterogeneous MenB strains, espe-
cially at the OMP level whereby a variety 
of combinations are present.32,33,35 In 
addition, MenB strains could also escape 
immune responses against vaccine anti-
gens by changing the expression levels of 
the target antigens.19 For example, only 
50% of invasive meningococcal isolates 
are known to produce NadA, present in 
4CMenB, in detectable quantities (NadA 
expression is phase variable) with a sig-
nificant proportion of the NadA nega-
tive isolates not having the NadA gene at 
all. NHBA on the other hand, appears to 
be present in all isolates tested so far, but 
protein sequence variability is high. The 
fHbp shows significant variability result-
ing in limited cross-protective antibody 
responses and immune selection under 
vaccine pressure may occur.19 Therefore, 
in addition to traditional typing of the 
serogroup, fine and genetic typing, data 
are required on the fHbp, NHBA and 
NadA genotypes (DNA sequencing), and 
phenotypes of invasive circulating strains 
for the post-implementation surveillance 
of the 4CMenB vaccine. The meningo-
coccal antigen typing system (MATS) was 

developed to predict 4CMenB strain cov-
erage, using serum bactericidal antibody 
assay with human complement (hSBA) 
taking antigen expression levels and cross 
protection into account.36 However, the 
MATS assay is a complicated assay that 
cannot be performed in any reference 
laboratory and it has been suggested that 
selected reference laboratories should 
carry out MATS. Moreover, the vaccine 
producer itself developed the assay and 
is the only producer so far. Therefore, 
national public health authorities may not 
want to rely on it. Also, if post-implemen-
tation surveillance methods that take into 
account antigen expression levels will be 
used, vaccine failures should be carefully 
defined. As aforementioned vaccine pres-
sure may drive meningococci to reduce 
expression of antigens present in the 
vaccine.

Clinical data
Since no other MenB vaccine has com-

pleted clinical development, this article 
focuses on clinical data obtained with 
4CMenB (Table 2). Three large phase 
2–3 randomized controlled clinical stud-
ies have been performed to study the 
immunogenicity and safety of the inves-
tigational vaccine, 4CMenB, in adoles-
cents, and infants (2–12 mo).19,37-39 The 
immunogenicity of 4CMenB was deter-
mined by measuring serum bactericidal 
antibody (SBA) titers against MenB refer-
ence strains that primarily expressed just 
one particular vaccine antigen, i.e., strain 
44/76-SL (matched with the vaccine for 
fHbp), strain 5/99 (matched with the vac-
cine for NadA), and strain NZ98/254, the 
vaccine strain for the OMV component.19 
Summarizing, 4CMenB was shown to be 
safe in adolescents and infants (primary 
series and booster dose). However, high 
fever (≥38–38.5 °C) rates, up to 80%, 
were reported in the infant groups, espe-
cially when 4CMenB was given concomi-
tantly with routine vaccines. Evidence 
suggests that the rise in body temperature 
induced by the vaccine can be tempered by 
prophylactic use of paracetamol without 
influencing the immunogenicity.40 In gen-
eral, good SBA titers were found against 
the selected MenB reference strains and 
no influence of clinical relevance was 
observed regarding the immune response 
against routine infant vaccines. The 

potential of 4CMenB to protect against 
wild-type circulation strains should be 
proven after implementation of the vac-
cine in routine schemes.

In a recent study, waning of SBA titers 
was observed at 40 mo of age after pri-
mary immunization with 4CMenB at 6, 
8, and 12 mo of age.41 Thus, a robust sur-
veillance program post-implementation is 
recommended, allowing early recognition 
of any decline in vaccine effectiveness and 
the need for a booster vaccination later in 
childhood or adolescence.

Carriage
N. meningitidis is transmitted between 

individuals via respiratory secretions. 
Carriage is considered a prerequisite for 
the development of IMD. Asymptomatic 
nasopharyngeal carriage of N. meningitidis 
is common, with an average carriage rate 
of approximately 10%.4,42,43 Commensal 
association of particular strains with a 
host is a long-term relationship, often last-
ing several months.43 In contrast to IMD, 
which is most common in infants and 
declines through childhood, the preva-
lence of N. meningitidis carriage is high-
est among teenagers and low in young 
children. The carriage rate was shown to 
be <3% in children younger than 4 y and 
increased up to 24–37% in the age-group 
15–24 y, but may differ per country and 
over the time.4,42-44 Apart from age, other 
risk factors for higher carriage are active 
and passive smoking, gender (slightly 
more male), recent respiratory infections, 
and regular visits to public venues, such as 
youth clubs and discotheques.42-44

Asymptomatic infection with or car-
riage of pathogenic and non-pathogenic 
strains may help to protect against menin-
gococcal disease.4,42,43,45 This may explain 
the higher risk of disease in infants that 
may have never been a carrier (naive). 
Carriage of meningococci has been shown 
to cause an increased bactericidal antibody 
response. The humoral response may last 
several months after the carried strains 
have been lost.42,45 Cellular immunity and 
cytokine production in relation to menin-
gococcal disease and carriage are poorly 
understood and deserve more attention. 
There is evidence that the loss of capsule 
enhances the capability of meningococci 
to colonize the human nasopharynx and 
to avoid human defense systems. Capsule 
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production in meningococcal strains 
can be switched on and off at a high 
frequency.42 Moreover, meningococci 
can change from serogroup by capsular 
switching. In a population-based study, 
a substantial proportion of invasive sero-
group B, C, and Y isolates demonstrated 
capsular switching, indicating that this 
is a common natural phenomenon. The 
implementation of MenB vaccination in 
national immunization programs might 
have an effect on population-level menin-
gococcal carriage state. This phenomenon 
should be further explored in post-imple-
mentation surveillance programs.

Implementation in national immuni-
zation programs

The highest incidence of IMD caused 
by serogroup B is in the infant age group 
(<1 y). Therefore, implementation of a new 
MenB vaccine in existing routine infant 
immunization schedules seems the most 
logical strategy. However, it is noteworthy 
that a substantial disease burden occurs 
in very young infants (i.e., those younger 
than 3–5 mo of age),14,15 and these cases 
will probably not be vaccine-preventable 
using a 2-, 4-, and 6-mo schedule. Results 
from clinical trials suggest that a 2-, 3-, or 
4-mo infant schedule may be acceptable, 
although further information is needed 
given the lower immunogenicity that was 
observed using this schedule.38 In some 
countries, this accelerated schedule fits 
well in the national immunization pro-
gram, while in other countries the routine 
infant vaccinations are given at a 2-, 4-, 
and 6-mo schedule. This should also be 
taken into account. Official recommen-
dations for infants is, according to the 
product information, three primary doses 
starting at the age of 2 mo and a booster 
vaccination between the age of 12 and 
23 mo. 4CMenB can be given concomi-
tantly with vaccines against diphtheria, 
tetanus, acellular pertussis, Hemophilus 
influenza type b, inactivated poliomyeli-
tis, hepatitis B, heptavalent pneumonoc-
cal conjugate, measles, mumps, rubella or 
varicella.

Another strategy may be maternal vac-
cination, however, because young children 
remain vulnerable for IMD in the first 
years of their life, the infants will not be 
protected when maternal antibody lev-
els have diminished. Probably multiple 

vaccinations are then still necessary to pre-
vent MenB IMD during young childhood.

After the implementation of the MenB 
vaccine, it is recommended to investigate 
the influence on meningococcal carriage. 
So far, three studies have examined the 
effect of MenB OMV vaccines on carriage; 
in these studies high vaccine coverage had 
no effect on rates of meningococcal car-
riage.32 Recently, results were presented 
of a large study in the UK of nearly 3000 
young adults immunized with 4CMenB 
and/or quadravalent meningococcal A, 
C, W, Y conjugate vaccines examining the 
effect on meningococcal carriage rates. 
In this study, prior to vaccination 33% 
of the samples (n = 930) yielded Neisseria 
cultures, mostly N. meningitides (98%), 
mainly of serogroups B and Y. Primary 
analysis at one month after the vacci-
nation series did not reveal significant 
impact of the 4CMenB vaccine, but at 
later time points 4CMenB was associated 
with a decrease in carriage of MenBCWY 
strains (24.2%).46 These results raise the 
possibility of an impact on individual car-
riage, which may lead to greater herd pro-
tection in settings where the vaccines are 
implemented broadly. If immunization 
with a MenB vaccine were to influence 
nasopharyngeal carriage, a mass immuni-
zation campaign of adolescents and young 
adults, the age of peak nasopharyngeal 
carriage, may reduce circulation of strains 
covered by the vaccine leading to reduced 
rates of disease (i.e., herd immunity). This 
strategy alone, however, is probably not 
sufficient to protect young children.

Based on modeling data that have been 
published regarding the cost-effectiveness 
of a new MenB vaccine it is not expected 
that the vaccine is cost-effective at pres-
ent, considering the commonly accepted 
threshold of €50 000 per QALY. Only 
when the MenB incidence will increase 
considerably or the vaccine price will 
become very competitive it may become 
cost-effective.47,48 Another important 
influence on cost-effectiveness will be 
whether the vaccine results in herd effects, 
by reduction of carriage rate, which is not 
yet known.32,47,48 The duration of protec-
tion and the need for booster doses in 
childhood will be other key cost consid-
erations.32,47,48 Apart from cost-effective-
ness, the success of a vaccine program is 

dependent on public acceptability and fea-
sibility. Meningococcal disease is highly 
feared by the public, which may encour-
age the uptake of the MenB vaccine. On 
the other hand, parental acceptability may 
be influenced by vaccine concerns, which 
include safety, undefined effectiveness, or 
more practical concerns regarding many 
vaccines and multiple injections at single 
visits.32 With respect to vaccine safety, 
parents can fear the risk of fever associ-
ated with 4CMenB vaccine, when admin-
istered to infants. An adequate system of 
post-implementation surveillance to detect 
and evaluate (potentially rare and serious) 
adverse effects and will be an essential 
component of maintaining public confi-
dence. In addition, post-implementation 
surveillance data should be sufficient to 
monitor the vaccine effectiveness and to 
be able to detect possible changes in the 
clonal, antigenic, and phenotypic profiles 
of circulating strains under vaccine selec-
tion pressure.
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