. . 4
. micromachines ﬂw\p\py
Va

Article
The Fabrication of Micro Beam from Photopolymer by
Digital Light Processing 3D Printing Technology

Ishak Ertugrul
Department of Mechatronics, Mus Alparslan University, 49250 Mus, Turkey; i.ertugrul@alparslan.edu.tr
check for
Received: 9 April 2020; Accepted: 9 May 2020; Published: 20 May 2020 updates

Abstract: 3D printing has lately received considerable critical attention for the fast fabrication of 3D
structures to be utilized in various industrial applications. This study aimed to fabricate a micro
beam with digital light processing (DLP) based 3D printing technology. Compound technology and
essential coefficients of the 3D printing operation were applied. To observe the success of the DLP
method, it was compared with another fabrication method, called projection micro-stereolithography
(PuSL). Evaluation experiments showed that the 3D printer could print materials with smaller than
86.7 um dimension properties. The micro beam that moves in one direction (y-axis) was designed
using the determined criteria. Though the same design was used for the DLP and PuSL methods,
the supporting structures were not manufactured with PuSL. The micro beam was fabricated by
removing the supports from the original design in PuSL. Though 3 um diameter supports could be
produced with the DLP, it was not possible to fabricate them with PuSL. Besides, DLP was found to
be better than PuSL for the fabrication of complex, non-symmetric support structures. The presented
results in this study demonstrate the efficiency of 3D printing technology and the simplicity of
manufacturing a micro beam using the DLP method with speed and high sensitivity.

Keywords: digital light processing; projection micro-stereolithography; 3D printing; micro beam;
fabrication

1. Introduction

The micro-electro-mechanical system (MEMS) is a process technology comprising of miniaturized
mechanical and electronic parts, that includes the transformation of a measured mechanic signal
into a readable signal. This signal may be force, pressure, heat, or chemical. MEMS has created
serious innovations in micro- and nano-study fields since the early 1980s [1]. Primarily, MEMS has
been improved for different implementations for example force, navigation, optical transmitting,
radio frequency, biological and medical, microfluidics, and gyroscope applications [2-6]. Currently,
MEMS has become an essential part of various study fields such as material, mechanical, and electrical
engineering studies [7-9]. The MEMS device is usually formed of four components, micro-structures,
micro-sensors, micro-actuators, and micro-electronics for data utilization [10,11].

MEMS technologies have been manufactured by traditional methods such as lithography, galvano
forming, and photolithography etc. These methods are dependent on additive or subtractive procedures
that operate minuscule capacities of materials in the shape of thin layers on the surface of silicon
wafers [12-16]. These conventional techniques are extremely precise and appropriate for the production
of planar geometries [17]. Although precise, these operations are associated with some drawbacks
such as multiple processing steps, the requirement of a cleanroom, an advanced work environment,
lengthy fabrication, inconsistency of flexible materials, and a costly fabrication process [18]. With the
improvement of 3D printing-additive manufacturing, the fabrication costs and processing steps of
MEMS devices have been gradually reduced. According to these improvements, itis possible to fabricate
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MEMS devices in atmospheric air without the need for multiple operations and cleanrooms [19,20].
Due to such advantages, it is now possible to use 3D printing technology for micro beam fabrication.

3D printing technology has become progressively popular in the fabrication of MEMS, since it
can be employed to manufacture complicated structures clearly from digital files, for instance
computer-assisted design drawings. This technology helps to improve the design and production and
especially facilitates the production and repair of complex parts using printing through layer- by-layer
deposition of the constituent materials [21-23]. With the progress of 3D printing techniques, interest
in using 3D printing for building MEMS systems has grown remarkably in the areas of biomedical,
electronics, wearable devices, soft robots, and automotive applications [24-29]. Unlike traditional
manufacturing processes such as machining and punching, 3D printing does not entail on-site process
control, cutting tools, coolers, or other additional resources. One of the important factors of 3D printing
methods is its capability to make miniaturized complex structural geometries using easy steps that are
not achievable by traditional manufacturing methods. Besides that, 3D printing methods offer many
other characteristics, for example flexibility in geometrical designs, excellent feature size and shapes,
and the ability to print functionally classified materials [30,31].

Micro beams are utilized as important components of different sensing and actuation systems
such as sensors, gyroscopes, micro actuators, and resonators [32-34]. Their easy geometries make
them very advantageous in terms of design, and microfabrication. In many applications, ranging from
residual stress measurement mass flow sensors to biomedical or DNA analysis, the sensing mechanism
is linked to the sensitivity of the micro beam to some applied stimulation [35-37]. Many studies have
been conducted, especially in the field of DNA [38—40]. In a study, a multi-scale analytical model was
created to define the relationship between the surface mechanical features of DNA self-assembled 2D
films and the detection signals of DNA-micro beam systems [41]. Micro beams exactly predict the
dynamic properties of the device, such as its natural frequencies and forced- vibration response.

Fabrication methods are very significant in designing and researching micro beams. Until now,
conventional MEMS fabrication methods have been used, such as photolithography and surface
micromachining, etc. [42,43]. These methods are usually time-consuming, with high fabrication
costs, and multi-step fabrication processing. Alternatively, the 3D printing or additive manufacturing
method solves these problems by manufacturing the structure directly. In recent years, various 3D
printing methods have been employed, for instance frontal polymerization (FP), projection micro-
stereolithography (PuSL), laser micro sintering (LMS), selective laser melting (SLM), etc. [44—47].
Among the different 3D printing techniques, the digital light processing (DLP) technique using
photocurable resins is appealing, since it can be used to manufacture a single layer of the 3D object
through spatially-controlled solidification using a projector light [48]. This light produces benefits
such as fast fabrication, high sensitivity, and surface quality. Besides, it is feasible to adapt the final
features of the printed object by only altering the photocurable resin formulations [49]. In this way, it is
feasible to reach a large diversity of systems for the fabrication of structures with excellent features and
functions [50].

In this study, we present our development on utilization of DLP technology for fast and highly
sensitive production of a micro beam with sub-millimeter scale properties. The DLP and PuSL methods
were compared based on the fabrication results. With this study, a micro beam was fabricated for
the first time using the 3D printing method. It is expected that this paper will contribute to the
current literature in terms of manufacturing a micro device through the use and comparison of
different techniques.

This study is arranged as follows. Section 2 describes the design of the micro beam. Section 3
explains the fabrication process, results, and discussion. Section 4 displays the result of the studies.



Micromachines 2020, 11, 518 30f13

2. Materials and Methods

2.1. Design Conditions

The possibility of coupling thermal, electrical, and structural characterization by fabrication of
a micro beam is accomplished with a model. For characterization, the displacement of the micro beam
is produced by passing a current through a beam; heat is produced by the current, and the rise in
temperature causes a displacement through thermal expansion. The displacement of the micro beam is
formed in these situations.

The MEMS-based micro beam is designed to move in one direction (y-axis). For the beam to move
on the y-axis, DC voltage must be applied. The feet of the micro beam at both ends are rigidly bound
to a substrate, and DC voltage is applied at both ends. The applied voltage induces an electric current
in the micro beam; current passing through the structure causes some retardation to the free flow of
electrons by which energy is dissipated in the form of heat. This generated heat induces thermal stress
on the beam and displaces the beam. The dimensioning and geometric structure of the micro beam,
designed as a 3D (3-dimensional plane) using CAD software, is shown in Figure 1.

Figure 1. Dimensions of the micro beam.

All the dimensions of our micro beam are shown in Table 1. These values were obtained with
the measurements of the beam made with the DLP and PuSL methods. The same design was used
for both methods. Nevertheless, as the supporting structures cannot be fabricated with the PuSL,
the measurements concerning the support are shown in Section 3. Photopolymer materials were used
for this study. These materials are frequently utilized in the field of MEMS because of their essential
physical and electrical features.
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Table 1. Description of the micro beam.

Parameter Symbol Value (pm)
Length of the feet Ly 25
Length of the arm L, 50
Height of the arm Wy 25
Height of the feet ws 50

Thickness of the beam t 30

2.2. Digital Light Processing Method

Digital light processing (DLP) is a rapid additive fabrication technology with superior sensitivity.
The processing basis of DLP technology is explained in [51,52] and can be briefly abstracted as follows.
A commercial 3D printer, MiiCraft 125 (Rapid City, Canada), was utilized in this paper, as shown in
Figure 2b.

As given in Figure 2a, the 3D pattern of the matter is first sliced into layers horizontally (in the
x-axis). Thin layers are then transformed into 2D mask images. A light projection device is utilized to
harden the photopolymer resin. This device employs a digital masking method to reflect a dynamically
described mask image on the resin plane. With respect to [51], a bottom-up projection system has
many benefits compared to a top-bottom system. In this system, the mask image is reflected on the
bottom of a resin tank with cured resin at the bottom of the tank. This process continues until the
desired design is created.

We established a bottom-up DLP system, as shown in Figure 2b. The DLP projector was equipped
to provide a 400 nm full HD ultraviolet light source. The contrast ratio of the DLP system projector
is 900:1. The XY resolution of the 3D printing device is 65 um and the maximum building size
125 x 70 x 120 mm. With respect to [52,53], the masking method primarily occurs as three types: liquid
crystal display (LCD), digital micro-mirror device (DMD), and liquid crystal on silicon (LcoS). In our
improvement, the projector uses the DMD method. An optical reflector is employed to set the direction
of the UV light. A position adjusting device is employed to set the position and behavior of the reflector.
The adjustable angle range is + 15°, and the accuracy is 0.003°. A flexible compressing device is used
to press the resin vat. This device allows the vat to be lifted to a specific height.

For the DLP method, IP-S resin, which is a photopolymer, was used as the material. This resin was
designed to tend the double function of index-matching the dip fluid for final focusing of the object
and photo-polymerizable, thus enabling the highest resolution at a given magnification. The elemental
composition and fundamental features of the resin are given in Table 2 [54]. The composition was
decided upon by using the procedure discussed in [55] and is significant for this study since it decided
the x-ray absorption characteristics of the foam [56]. The foam structure extracted from the glass
substrate was qualified using optical microscopy and scanning electron microscope (SEM). SEM sample
preparation included a sputter coating of 30 nm thick gold to allow electrical charge conductivity
while imaging.
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Figure 2. (a) Schematic of a digital light processing (DLP) system [53]; (b) 3D printing process in
progress; (¢) MiiCraft 3D printer.

Table 2. The elemental composition and fundamental features of the IP-S resin [54].

Chemical Properties of Resin

Carbon (at%) Hydrogen (at%) Nitrogen (at%) Oxygen (at%) Empirical Formula
31.45 54.07 5.75 11.7 CHj 71N0.0850035
Physical and Mechanical Features
Density (liq) Density (s) Young's Modulus .
g/(cm’) g/(cm®) (GPa) Hardness (MPa) Refractive Index
1.3 15 3.8 150 1.51

2.3. PuSL Method

Projection micro-stereolithography (PuSL) is a sophisticated 3D printing method because of its
low cost, precision, velocity, and also the variety of the materials such as ceramics, biomaterials, curable
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photopolymer, polymer, and nanoparticle composites [54]. This method has demonstrated potential
in different implementations for example micro-resonators, micro-grippers, micro-optics, biomedical
micro devices, micro-fluidics, and so on [57-59]. Studies on PuSL are ongoing in terms of the quality
and accuracy of the construction process, which affects the production of complex 3D microstructures
and makes it attractive enough to be considered for commercial applications [60]. This technology
begins by creating a 3D construction via a computer-assisted design program and then transforms the
construction into a set of digital mask images. The working basis of PuSL is shown in Figure 3 [61].

Using a digital micro mirror device as the dynamic mask eliminates the cost of manufacturing
a mask for each layer. Besides, the PuSL method reduces production time since each layer is produced
in one exposure, and the time for mask alignment is eliminated. Moreover, this method has the least
mechanical moving parts and requires only one accurate z-axis motorized linear stage. Consequently,
PuSL decreases the cost of construction and protection [62].

All images symbolize a thin layer of the 3D structure. Along a production period, a single image
is demonstrated on the reflective LCD panel. The image from the LCD is then mirrored on the liquid
surface. All layers (ranging between 5-40 um thick) are polymerized. When the layer has been
solidified, it is dipped in the resin to allow a new thin layer of liquid to form. Repeating the loop forms
a 3D microstructure from a layer stack. For the PuSL method, IP-S resin, which is a photopolymer,
was used as the material. The properties of the photopolymer resin, which were specially developed
for this 3D printer and utilized in the fabrication of the micro beam, are shown in Table 2 [54].

Mirror X

LCD Mask

UV Light

i

Lens | Z-Stage

i

CAD Design

I
UV Resin
Figure 3. Schematic of the projection micro-stereolithography (PuSL) method [62].

3. Fabrication

3.1. Fabrication with the DLP Method

The micro beam shown in Figure 4 was fabricated by a DLP technology-based MiiCraft 3D
printing device. 3D printing technology entails an input CAD model of the parts that may be designed
in software or obtained from reverse engineering such as 3D scanners. When the CAD model of the
micro beam is completed, it is transformed into standard STL format, which is most commonly used to
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represent 3D CAD models in 3D printing. In an STL file, the CAD model is symbolized using triangular
facets, which are described by the x-, y-, and z-coordinates of the three vertices. The step-by-step
schema of the 3D printing operation is displayed in Figure 5. The slicer first divides the object into
a stack of flat layers, followed by describing these layers as linear movements of the 3D printer extruder,
fixation laser, or equivalent. All these movements, together with some specific printer commands like
the ones to control the extruder temperature or bed temperature, are finally written in the g-code file,
that can be transferred after to the printer.

During fabrication of the micro beam, the printing parameters for example the layer thickness
(LT), the light intensity (LI), and the curing time (CT) of all layer significantly affect the print quality.
In this study, each parameter is selected for the printing material and TL = 30 pm, and CT = 3 s are set.
When the first layer is printed, LI is set to 50% of the brightness to provide a layer bond to the platform.

There are supports to the arms of this design. The number of supports to the arm is 20,
the diameter is 3 um, and the height is 5 um. Some unsuccessful experiments were done before this
design. Breakages were experienced during the manufacturing when the number of supports to the
arm was low. Concerning the experiments, the average distance between the supports should be
10 pm to avoid breakages. When the supports are not printed correctly, they cause a collapse and break
off the micro beam. An image of the micro beam manufactured with the DLP is shown in Figure 6.
This image was taken with the microscope of the 3D printer device.

Figure 4. CAD design of the micro beam. The structures at the top of the design were designed
as support.

3.2. Fabrication with the PuSL Method

The micro beam shown in Figure 7 was manufactured by a projection micro-stereolithography
(PuSL) method based MiiCraft 3D printing device. The manufacturing of the supported design with
the PuSL method was not possible for two reasons. First, the supported structures represent the system
as a 3D design. However, it is not possible to fabricate 3D structures with devices of MiiCraft 3D
printing, based on PuSL technology. Second, these devices have a resolution of 65 um and can fabricate
a minimum thickness of up to 30 pm.

When the support structures are removed, as shown in Figure 7, it is possible to perform the
fabrication as the micro beam design can be introduced to the device (a PUSL technology-MiiCraft 3D
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printer) in two dimensions. An image of the micro beam manufactured with the PuSL is shown in
Figure 8. This image was taken with the microscope of the 3D printer device.

Slice Geometry

Load Image

Set Printing Parameters

.
L

Set Platform Position

Print the First Laver

Successtul?

e

Print the Next Layer

END

Figure 5. The step-by-step diagram of the 3D printing operation.
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. 300 pm

Figure 6. Image of the micro beam fabricated with the DLP method.

Figure 7. CAD design of the micro beam. The support structures under the micro beam are removed.
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200 pm

Figure 8. Image of the micro beam fabricated with the PUSL method.
4. Conclusions

In this study, a micro beam fabricated with conventional MEMS methods, was manufactured for
the first time using the DLP and PuSL methods, which are 3D printing procedures. First, the printable
scale of the DLP 3D printing method was evaluated, and it demonstrated that the printer could produce
structures with a size of 86.7 um.

The experimental studies showed that 3 pym diameter supports were fabricated with the DLP
method. However, they could not be fabricated with the PuSL method even when the diameters of the
supports were 3 um. After these support structures were removed, the micro beam was fabricated
with PuSL. It was determined that PuSL was not suitable for complex structures. The results show the
success of the 3D printer and the suitability of manufacturing a micro beam using the DLP printing
method with fast and high sensitivity.

As a result of this study, it was found that DLP is more appropriate because it allows the
manufacturing of complex 3D structures with smaller dimensions, while PuSL is only suitable for
simple 2D microstructures. It is expected that this paper will contribute to the literature in terms of
fabrication of a micro device through the use and comparison of different techniques.
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