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The investigation of the functional changes in the sensorimotor cortex has important
clinical implications as deviations from normal development can anticipate developmental
disorders. The functional properties of the sensorimotor cortex can be characterized
through the rolandic mu rhythm, already present during infancy. However, how the
sensorimotor network develops from early infancy to adulthood, and how sensorimotor
processing contributes to the generation of perceptual-motor coupling remains largely
unknown. Here, we analyzed magnetoencephalographic (MEG) data recorded in two
groups of infants (11–24 and 26–47 weeks), two groups of children (24–34 and 36–60
months), and a control group of adults (20–39 years), during intermixed conditions of
rest and prehension. The MEG sensor array was positioned over the sensorimotor
cortex of the contralateral hemisphere. We characterized functional connectivity and
topological properties of the sensorimotor network across ages and conditions through
synchronization likelihood and segregation/integration measures in an individual mu
rhythm frequency range. All functional measures remained almost unchanged during
the first year of life, whereas they varied afterwards through childhood to reach adult
values, demonstrating an increase of both segregation and integration properties. With
age, the sensorimotor network evolved from a more random (infants) to a “small-world”
organization (children and adults), more efficient both locally and globally. These findings
are in line with prior studies on structural and functional brain development in infants,
children and adults. We could not demonstrate any significant change in the functional
properties of the sensorimotor cortex in the prehension condition with respect to rest.
Our results support the view that, since early infancy, the functional properties of the
developing sensorimotor cortex are modulated by maturation.
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integration, rolandic mu rhythm

INTRODUCTION
In the cerebral cortex, functional domains such as visual, cogni-
tive or sensorimotor control rely on the development of distinct
and interconnected cortical and subcortical regions (Tau and
Peterson, 2009). For instance, the transient loss of face orienta-
tion discrimination at 2 months of age may result from a conflict
between subcortical and cortical pathways, also known as tran-
sient functional deterioration (Nakano and Nakatani, 2014). The
subsequent recovery by 4–6 months of age can be interpreted
as an establishment of coordination between the two systems.
U-shaped changes in a given behavior have been observed in

Abbreviations: SLMEAN, mean synchronization likelihood; C, mean clustering
coefficient; Eloc, local efficiency; L, characteristic path length; Eglob, global effi-
ciency.

reaching (Butterworth, 1989) and cross-modal orientation (Taga
et al., 2002). The developmental organization of these circuits is
a complex process that begins at early gestational age (Kostovic
et al., 1995) and continues until adulthood. The brain devel-
opment begins with neuronal proliferation and proceeds with
migration, apoptosis, synaptogenesis, pruning, myelination and
cortical thinning (Giedd et al., 2009). These events are tem-
porally overlapped and are genetically determined, epigeneti-
cally directed and environmentally influenced (Tau and Peterson,
2009) by sensorimotor and cognitive experiences.

Investigators working in the pediatric field have been par-
ticularly interested in the developmental properties of the mu
rhythm, which reflects sensorimotor processing in the fronto-
parietal network (Pineda, 2005). The adult mu rhythm, which
falls within the alpha frequency range (8–13 Hz), is strongly
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inhibited (i.e., desynchronized, suppressed) before and during
the execution of a bodily movement (Cheyne et al., 2014), dur-
ing the observation (Jarvelainen et al., 2004; Vogt et al., 2007)
and the imagination (Grafton et al., 1996; Molnar-Szakacs et al.,
2006) of a goal-directed action, and also during sensorimotor
stimulation (Cheyne et al., 2003). The mu rhythm modulation
is considered a neurophysiological measure of the mirror neuron
system (MNS), which is a neuronal mechanism that matches per-
ception and action, allowing goal-directed action understanding
(Hari et al., 2000; Hummel et al., 2002; Muthukumaraswamy and
Johnson, 2004; Depretto et al., 2006).

A growing body of literature indicates that action experience
may also modulate the mu rhythm desynchronization (Calvo-
Merino et al., 2006; van Elk et al., 2008; Cannon et al., 2013;
Ruther et al., 2014). Recent work on the infant mu rhythm indi-
cates that it is present in infancy (Stroganova et al., 1999; Marshall
et al., 2002; Berchicci et al., 2011; Marshall and Meltzoff, 2011),
although its peak activity occurs at lower frequency ranges as
compared to older children and adults, as it occurs for other brain
rhythms, such as the theta and delta rhythms (Orekhova et al.,
2006; Cuevas et al., 2014). It has been observed that the infant mu
rhythm desynchronizes during the execution of a goal-directed
action as well as the observation of a previously learnt action,
and that infants’ self-experience has an influence on the expec-
tations about others action. These findings support the notion
that the action-perception coupling network appears early in life
(Marshall and Meltzoff, 2014). However, no general agreement
exists on the mechanisms leading to the onset of this network.
One of the most popular views claims that perceptual-motor
coupling is present at birth and is merely shaped by experience
(Lepage and Theoret, 2007; Simpson et al., 2014). An alternative
position suggests that sensorimotor experience plays a critical role
in the generation of perceptual-motor coupling through general
associative learning processes (Heyes, 2001; Cook et al., 2014).
Support to this second view comes from studies (Southgate et al.,
2009; de Klerk et al., 2014) where the authors showed how visual
experience alone increased sensorimotor cortex engagement by
activating the previously established visuomotor associations
(Greenough et al., 1987; Stiles and Jernigan, 2010).

Indeed, the postnatal period represents a time of dramatic
change in the brain structure and function. The brain grows to
about 70% of its adult size by 1 year of age, to about 80% by age 2,
and to 90% of its adult size between the age of 2 and 5 years, which
is known as the “plateau” phase of development (Knickmeyer
et al., 2008). With time, local connections within cortical circuits,
especially in sensorimotor and visual cortices (Fransson et al.,
2007), are fine-tuned, and long-range connections among cir-
cuits produce an increasingly unified and functionally organized
neural network. Sets of regions that share temporally correlated
activity are believed to represent and become functional net-
works (Damoiseaux et al., 2006), and some studies had provided
advanced understanding of the functional architecture of the
human brain during early development (Gao et al., 2009; Doria
et al., 2010; Dosenbach et al., 2010).

Functional connectivity magnetic resonance imaging (fcMRI)
has proved useful in newborn studies. Indeed, it offers insight into
the earliest forms of cerebral connectivity in very young infants

(Power et al., 2010; Smyser et al., 2011). Damaraju et al. (2014)
recently characterized the development of intrinsic connectiv-
ity networks (ICNs) in infants aged between 4 and 9 months
with resting state MRI (rsMRI) performed while sleeping without
sedative medication. They observed that, with age, the connec-
tivity strength decreased within local networks and increased
between more distant networks. Other researchers (Gilmore et al.,
2011) have shown that, from birth to 2 years of age, cortical thin-
ning proceeds in a back to front direction and occurs first in the
sensorimotor areas, followed by association areas and lastly by
higher-order cortical areas, such as the prefrontal cortex and the
posterior parietal cortex. Two types of age-related changes (from
childhood to adulthood) in functional connectivity have been
described so far: decreases in local connectivity among anatom-
ically adjacent, but functionally distinct brain regions, because
they are integrated in their own brain networks; increases in long-
range connectivity among nodes that comprise each network
(Fair et al., 2007; Kelly et al., 2009).

In contrast to the high spatial resolution but low tempo-
ral resolution of rsMRI and fcMRI, magnetoencephalography
(MEG) and electroencephalography (EEG) enable the measure-
ment of functional connectivity with high temporal resolution
and medium level spatial resolution. Few studies (Ellingson, 1964;
Vanhatalo and Kaile, 2006) have demonstrated the evolution of
electro-cortical activity in the infant brain by means of EEG
recording, with regional variability and increasingly synchronous
activity between bilateral homologous regions. Event related
potential (ERP) findings suggested that sensorimotor networks
undergo rapid development during the first year of life (Bell and
Fox, 1992; Lin et al., 2008). To estimate cortical functioning, Bell
and Wolfe (2007) examined the developmental changes of electri-
cal activity during a working memory task in infants and children
by means of EEG power and coherence (a spectral measure of
the functional coupling between neural generators), and observed
similar changes in both measures: the widespread brain electrical
activity typical in infancy (8 months of age) became more local-
ized during early childhood (3 years of age). Righi et al. (2014)
conducted a longitudinal study in infants at 6 and 12 months of
age, and found that infants at risk of autism spectrum disorder
had lower functional connectivity between frontal and parietal
regions as indexed by linear coherence in gamma frequency band.
Other very recent studies (Keehn et al., 2013; Imai et al., 2014)
employed the near-infrared spectroscopy (NIRS) to look at the
functional connectivity in term, pre-term, and Down syndrome
infants, observing increased longer distance functional connec-
tivity over the first year of life in normal developing infants as
compared to pathological infants.

MEG was demonstrated to be a suitable method to investi-
gate the function of the developing brain during infancy and
childhood due to its non-invasive nature, its excellent temporal
resolution and, with recent devices, also good spatial resolution.
A technical and practical advantage of MEG systems in pediatric
applications is that MEG signals are unaffected by the imma-
ture skull features such as fontanels, allowing for longitudinal
neuro-developmental studies. In a recent study employing MEG
recordings over the contra-lateral hemisphere during a prehen-
sion task and power spectrum analysis, Berchicci et al. (2011)
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reported the presence of idling mu rhythm at rest and its sup-
pression during prehension in infants (from 11 to 47 weeks of
age) and pre-school children (from 2 to 5 years). In particular,
they showed that mu rhythm peak frequency increases as a func-
tion of age (from 2.75 Hz at 11 weeks of age to 9.5 Hz at 3 years
of age), and undergoes a rapid maturation during the first year
of life. Based on the time-frequency analysis performed, the spe-
cific MEG signal waveform, and the position of the cluster of
channels showing maximum mu rhythm desynchronization dur-
ing prehension over the subject’s head, Berchicci et al. (2011)
also suggested a sensorimotor generator site for mu oscillatory
activity.

Few studies using diffusion tensor imaging based fiber trac-
tography or resting state fMRI have adopted a graph theoretical
approach to characterize the developmental properties of the
child brain. These studies have focused on the assessment of
structural brain maturation (Lebel et al., 2008), on the analysis
of intrinsic functional connectivity (Supekar et al., 2009), on the
evolution of brain connectivity patterns (Yap et al., 2011), and
on the development of neural systems underlying cognition (Fair
et al., 2009). In general, they showed that the child brain develops
with maturation from strong local connectivity toward a more
distributed, predominantly functional based, connectivity pattern
characterized by stronger integration.

However, little information is provided on the developmen-
tal trajectories of the functional properties of the sensorimotor
cortex, and on how sensorimotor processing is modulated by sen-
sorimotor experience. Here we analyzed the MEG data collected
in our previous study (Berchicci et al., 2011) using a measure of
functional connectivity and graph theoretical concepts to con-
tribute to the understanding of the functional organization of
the developing sensorimotor cortex from early infancy to adult-
hood. In an attempt to verify whether sensorimotor processing
contributes to the generation of perceptual-motor coupling, we
analyzed the MEG data recorded in two experimental conditions:
at rest and during the execution of a prehension task.

We typified the functional organization over the sensorimo-
tor cortex by means of functional connectivity and efficiency
measures. Since the developmental properties of the mu rhythm
reflect sensorimotor processing (Pineda, 2005), all measures were
calculated within an individual mu rhythm frequency band to
ensure that all findings referred to the sensorimotor network.
Synchronization likelihood (Stam and van Djik, 2002), used in
brain studies to quantify the probability for the functional inter-
dependencies between neural signals, was used to reconstruct
functional connectivity maps over the sensorimotor cortex. The
type of functional efficiency over the sensorimotor network was
estimated by means of segregation and integration measures
(Stam, 2000) calculated on the functional connectivity maps.
Functional segregation measures (i.e., mean clustering coefficient
and local efficiency) quantify the specialized information pro-
cessing occurring within densely interconnected groups of brain
regions (Rubinov and Sporns, 2010), whereas functional integra-
tion measures (i.e., characteristic path length, Watts and Strogatz,
1998 and global efficiency, Latora and Marchiori, 2001) reckon
the ability of a functional network to rapidly combine specialized
information processing from distributed brain regions.

We also tried to explore whether any differences could be
observed in the functional properties of the sensorimotor cor-
tex during the execution of a prehension task, in order to provide
information useful to understand the contribution of sensorimo-
tor processing to the development of perceptual-motor coupling
in infants and children. To this aim, we compared the global
measures of functional connectivity and efficiency over the sen-
sorimotor cortex at rest with those related to the execution of
a prehension task. Prehension is one of the most remarkable
examples of perception and action coupling in infants, since
reaching for an object is guided by perceptual information on the
relation between the self and the environment, which continu-
ously changes as the posture (e.g., the motor system) is adjusted
to that information (Hatwell, 1987). Therefore, prehension is a
motor task suitable to explore whether sensorimotor processing
contributes to the generation of perceptual-motor coupling.

Our investigation adds to prior studies that have considered
either the rest condition or the observation of actions (Gilmore
et al., 2011; Virji-Babul et al., 2012; Damaraju et al., 2014; Rotem-
Kohavi et al., 2014), since we studied the functional properties
over the developing sensorimotor cortex not only at rest but
also during prehension. Moreover, by including infants below 6
months of age in our study population, we provided a valuable
adjunct to studies on the developing brain.

Based on the knowledge that children and young-adults’ brains
have “small-world” organization at the global level (Supekar
et al., 2009), and on the notion that fronto-temporal connec-
tions develop more slowly than other regions (Lebel et al., 2008),
we expect that the functional properties over the sensorimo-
tor network evolve, from infants to children and adults, toward
a more efficient “small-world” organization. As well, based on
the hypothesis that sensorimotor processing plays a role in the
generation of perceptual-motor coupling, we expect to observe
different functional organizations over the sensorimotor cortex
for the rest and prehension conditions.

MATERIALS AND METHODS
PARTICIPANTS
Data collection was performed in infants, children and adults fol-
lowing a cross-sectional design. Participants were selected from a
larger database of subjects (see Berchicci et al., 2011). Subjects
experiencing any serious illnesses or developmental problems
since birth (i.e., traumatic brain injury, seizures, and congenital
conditions), or receiving any long-term medication were excluded
from the study. Out of the 43 healthy infants enrolled (<12
months of age), 25 infants met all inclusion and exclusion cri-
teria. Chronological age at entry in the study ranged between 11
and 47 weeks (mean = 24.9, SD = 10.8). The functional devel-
opment of all infants was examined with the Kent Inventory
of Developmental Skills (KIDS; Reuter et al., 1996). All infants
were found to function within the normal range for age. Parent
report was used to assess Apgar score (Apgar, 1953) at birth,
which were all within normal limits (i.e., 8–10). However, due
to poor signal quality that prevented a reliable calculation of the
functional connectivity and efficiency measures, 11 infants had
to be excluded from the study (see details in Section Statistical
Analysis). Eighteen healthy children aged between 24 and 60
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months were enrolled and met all inclusion and exclusion crite-
ria, but, due to motion artifacts, only 12 children were included
in the study population (mean = 37.3, SD = 12). Six right-
handed adults (mean = 28.3, SD = 7.8) participated in the study
as control group.

Based on the results of our prior study (see Berchicci et al.,
2011), we knew that a large variation of the mu rhythm peak fre-
quency occurred during the first year of life, indicating a rapid
functional development. For this reason, we decided to split the
group of infants in two age groups, one including the infants <6
months of age, and another including the infants <12 months of
age. To have a similar number of subjects in all study groups, we
split also the group of children in two age groups, one includ-
ing the children with an age range of 24–34 months, and another
including the children with an age range of 36–60 months.
Details on the age groups can be found in Section Statistical
Analysis.

The protocol was reviewed and approved by the Human
Research Review Committee at the University of New Mexico
Health Sciences Center and written informed consent was
obtained from participant’s guardians or adult participants after
the description of the study protocol. Infants and children were
recruited at day-care centers and from the community using word
of mouth, brochures posted on campus, and social networks.

PROCEDURE AND TASK
The experimental setup is only briefly described herein; details
can be found in our previous study (see Berchicci et al., 2011).
Neuromagnetic activity was recorded using a multi-channel pedi-
atric magnetoencephalography (MEG) system (Okada et al.,
2006) for hemispheric recordings. The sensor array operated in
a magnetically shielded room, consisted of 76 first-order axial
gradiometers, and had a headrest with a smooth outer surface
made of thick fiberglass. Inter-sensor distance was approximately
13 mm center-to-center. The headrest was based on a standard
reference for the head size of babies. Since the thickness of the
neonatal scalp and skull is about 3–4 mm, brain activity could
be measured a few millimeters above the brain surface, providing
excellent sensitivity.

Since participants performed the assigned tasks with their
right hand, they were positioned on the MEG bed on their left
side, and a pillow was used to support their back, if necessary. The
left hemisphere of the head was positioned on the MEG headrest
in order to cover the sensorimotor areas. To ensure child safety
and to promote calmness during acquisition, a parent attended
the child inside the magnetically shielded room. For each sub-
ject, two 5-min blocks of continuous MEG data were recorded. If
the infant/child felt uncomfortable from lying still, or was getting
drowsy and needed a break, data collection was stopped.

Two different experimental conditions were intermixed: rest
and prehension. Under the rest condition, the participant remained
motionless for about 10 s while the investigator stood in front
of him/her at a distance of approximately 40 cm. Infants and
children were visually engaged to prevent head motions. During
the prehension condition, participants were invited (in case of
adults and children) or directed (in case of infants) to squeeze
a pipette placed at about 5 cm from their right hand. The pipette,

small enough to be comfortably held and squeezed by infants
and children, was connected to a pressure transducer to record
the pressure exerted during prehension. Adults used a similar
device with a button trigger. The pressure profile was synchro-
nized with MEG data, hence permitting the identification of the
time points at which squeezing started. This was necessary for
MEG data post-processing purposes. The shielded room light
was kept dim during all acquisition sessions to minimize dis-
tractions. The experimental sessions were recorded with a video
camera synchronized with MEG recording to observe behavior
and take note of any movement that might have occurred during
acquisitions.

DATA ACQUISITION AND PRE-PROCESSING
MEG data were recorded with a sampling rate of 500 Hz.
Although data acquisition was halted in cases of significant dis-
placement of the child’s head, residual artifacts, including small
movements due to chewing/sucking and arm displacements, were
rejected during MEG data pre-processing.

First, MEG channels not working properly were excluded
from further analysis. Second, MEG data were band-pass filtered
between 0.5 and 40 Hz using a forward-reverse Butterworth fil-
ter of the third order. Filtered MEG data were then processed
with PCA for dimension reduction, and Independent Component
Analysis (ICA, BinICA algorithm with open source toolbox,
EEGlab, www.sccn.ucsd.edu/eeglab) was used to separate the
independent components (ICs) of interest and to reject those
related to artefactual sources. We allowed for a total of 20 ICs, and
retained for further processing only those ICs that satisfied two
conditions: a topological distribution compatible with the acti-
vation of the contralateral sensorimotor cortex, and a clear mu
rhythm peak at the individual frequency of the subject, as identi-
fied in our previous study (see Berchicci et al., 2011). In general,
we retained 2–4 ICs per subject, since the majority of ICs were
related to noise, artifacts, MEG channels not working properly,
or were seemingly related to brain activity but with a too high
content of noise. An example of ICs separated for an infant at 36
weeks is provided in Figure 1, where one can see how ICs with a
topological distribution that could be related to the activation of
the sensorimotor cortex (e.g., IC6 or IC9), have a frequency con-
tent that is mainly due to noise. This type of ICs was not retained
to reconstruct the brain signals. The retained ICs (ICs 7, 8, and
14 in the example of Figure 1) were re-projected on the sensors’
positions to reconstruct the MEG source signals related to the true
brain activity.

DATA ANALYSIS
Functional connectivity representations
For each subject, the pre-processed MEG signals were segmented
according to the 4-s time intervals of rest and prehension iden-
tified in our previous study (see Berchicci et al., 2011) for both
spontaneous mu rhythm (rest condition) and mu rhythm desyn-
chronization (prehension condition). The rest time intervals were
selected during the resting state far from prehension occurrences.
The prehension time intervals were selected around prehension
(as identified with the pressure transducer profile and the analysis
of the video recordings) to include anticipatory cortical activity.
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FIGURE 1 | Upper panel: the 20 ICs separated from the MEG
recordings in an infant at 36 weeks (G2, mu peak frequency at 7.5 Hz).
The ICs retained for further analysis are identified by a green circle,

whereas the rejected ICs are identified by a red circle. Lower panels:

power spectra of the retained ICs (on the left hand side), and of the
rejected ICs (on the right hand side).

Hence, prehension time intervals started 1 s before movement
onset.

The patterns of functional dependencies between the pre-
processed MEG signals were estimated by means of the
Synchronization Likelihood (SL) (data were analyzed using

Brainwave v0.9.133.1, http://home.kpn.nl/stam7883/brainwave.
html). This measure, introduced by Stam and van Djik (2002),
gives a straightforward normalized estimate of the dynamical
interdependencies between two or more simultaneously recorded
time series. Differently from other connectivity measures such as
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coherence, this measure, closely related to the concept of gen-
eralized mutual information, overcomes the problems related to
sub-systems dimensionality, and can be suitable for the analysis
of non-stationary data, such as ours. In essence, SL describes how
strongly the signal recorded by each channel is synchronized to
the signals recorded by the other channels in the array at a given
time instant or in a given time span.

For each subject and each experimental conditions (rest and
prehension), we calculated one SL matrix for each 4-s time inter-
val within a frequency band centered around the individual mu
rhythm peak frequency (IMPF). The IMPF of each subject had
been determined in our previous study (see Berchicci et al., 2011),
and the frequency band used to calculate the SL matrices had
high-pass and low-pass cut-off frequencies at (IMPF − 2 Hz)
and (IMPF + 2 Hz) respectively. The SL matrices obtained for all
time intervals in each condition were then averaged to obtain one
average SL matrix. For each subject we then had two average SL
matrices, one for the rest and one for the prehension condition.

To retain only significant functional connections across MEG
signals, we thresholded each average SL matrix on the basis
of its own SL values distribution, which is expected to be
non-Gaussian. We calculated the Median and Median Absolute
Deviation (MAD) of the distribution of SL values for each aver-
age SL matrix, and defined a new thresholded SL matrix (that we
called SLMAD matrix) where only the SL values > (Median + 1
MAD) were retained. All other SL values in the SLMAD matrix
were set equal to zero.

Since we analyzed the MEG signals in the sensor space, the
SLMAD matrices could still have a bias due to the spatial prox-
imity of adjacent sensors. For this reason, we reconstructed the
matrix of Euclidean inter-sensor distances MEu for all retained
MEG channels, and calculated the coefficient of determination
r2 between MEu and the two SLMAD matrices (one for rest and
one for prehension) for each subject. We then retained for further
analysis only the subjects for whom both SLMAD matrices satisfied
the condition r2 < 0.1, hence ensuring that the SL values in the
SLMAD matrices do not depend on the Euclidean distances across
neighboring MEG sensors.

To quantify the overall probability for functional connectiv-
ity over the sensorimotor areas at rest and during prehension, for
each subject and each experimental condition we calculated the
mean SL value in the SLMAD matrix as:

SLMEAN = 1

N

∑
i,j

SLMAD,i,j (1)

where N is the total number of SL values �= 0 in the SLMAD matrix.

Measures of functional organization
We used graph theoretical concepts to study the topological
features of the functional networks represented by the SLMAD

matrices. Within this framework, patterns of functional connec-
tions are represented as graphs where nodes (in our case the
MEG sensors) are linked with edges (if connected). For each sub-
ject, we estimated the level of functional organization over the
sensorimotor cortex at rest and during prehension by means of
segregation and integration measures described below. To this

aim, we calculated the segregation and integration measures on
the SLMAD matrices, where each SL value (when different from
zero) represents the strength of the functional connection (edge)
between two given MEG signals (nodes). As the comparison of
graphs derived from brain networks requires a step of normal-
ization, for instance by setting a fixed average degree (K) (van
Wijk et al., 2010), prior to calculating segregation and integra-
tion measures we checked the degrees of the SLMAD matrices of
each subject included in the study population, and considered for
further processing only those subjects whose SLMAD matrices had
the same degree in both rest and prehension (see also sub-Section
Statistical Analysis).

Measures of functional segregation. Functional segregation in
the brain refers to specialized information processing occurring
within densely interconnected groups of brain regions (Rubinov
and Sporns, 2010). In our case, functional connectivity was cal-
culated by SLMAD matrices in the sensor space, hence segregated
neural processing will be suggested by statistical dependencies
between clustered channels. We calculated two weighted measures
of functional segregation:

(1) Mean clustering coefficient C. For a given node i (in our case,
for a given MEG channel i), ci is defined as the fraction of
the node’s neighbors (other MEG channels) that are directly
connected with it (Watts and Strogatz, 1998). At the network
level, the mean clustering coefficient C reflects the prevalence
of clustered connectivity around individual nodes:

C = 1

n

∑
i ∈ N

ci = 1

n

∑
i ∈ N

2tw
i

ki (ki − 1)
(2)

where N is the set of all nodes in the network, and n is the
number of nodes, ki is the degree of node i (i.e., the number
of links connected to node i), and tw

i is the weighted geo-
metric mean of triangles around i. High values of C indicate
that a high number of connections exists among neighboring
nodes.

(2) Local efficiency Eloc. The local efficiency is defined as the
average efficiency of the local subgraphs. For weighted con-
nectivity matrices, such as SLMAD matrices, it is:

Eloc = 1

2

∑
i ∈ N

∑
j,h ∈ N,j �= i

(
wi,jwi,h

[
dw

j,h (Ni)
]−1

)1/3

ki (ki − 1)
(3)

where, for a given triangle of vertices i,j,h, wi,j, and wi,h are
the weights between nodes i and j and nodes i and h respec-
tively, and dw

j,h is the distance between nodes j and h, i.e.,
the minimum number of links connecting node j to node
h. Eloc provides an information similar to the mean cluster-
ing coefficient C, but adds an indication on how much the
system is fault tolerant, i.e., how efficient is the communica-
tion between the first neighbors of node i when it is removed.
Local efficiency suggests a connection redundancy that pro-
tects the network from local errors and failures (Latora and
Marchiori, 2001).
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When high functional segregation is found in a functional con-
nectivity matrix, the prevailing functional connections occur
across neighboring brain areas (or, as in our case, across signals
recorded by neighboring channels).

Measures of functional integration. In the brain, functional
integration represents the ability to rapidly combine specialized
information from distributed brain regions. Although our MEG
recordings refer only to the hemisphere contra-lateral to the mov-
ing limb, we calculated two measures of functional integration
to estimate how easily different brain regions communicate. The
measures of functional integration are based on the concept of a
path:

(1) Characteristic path length L. In a graph, the lengths of paths
connecting two given nodes estimate the potential for func-
tional integration in the network (Watts and Strogatz, 1998).
The characteristic path length L is defined as the mean of the
distances (i.e., the minimum path lengths) among all nodes
pairs:

L = 1

n

∑
i ∈ N

∑
j ∈ N,j �= i dw

i,j

n − 1
(4)

where dw
i,j is the weighted distance between nodes i and j, i.e.,

the minimum number of links connecting node i to node
j. Short paths, corresponding to low values of L, indicate a
strong potential for integration within the network.

(2) Global efficiency Eglob. In functional connectivity data, such as
the SLMAD matrices, paths represent sequences of statistical
associations between subsequent pairs of channels. The level
of functional integration in the network can be represented
by the global efficiency Eglob, which is the average inverse
shortest path length (Latora and Marchiori, 2001; Achard and
Bullmore, 2007). For weighted connectivity matrices:

Eglob = 1

n

∑
i ∈ N

∑
j ∈ N, j �= i (dw

i,j)
−1

n − 1
(5)

When high functional integration is found in a functional
connectivity matrix, the functional organization of the brain
takes advantage of multiple specialized and densely con-
nected areas that are linked with long distance functional
connections for a more efficient information processing.

Statistical analysis
Linear regression analysis was performed on the individual mea-
sures to assess whether any linear correlation exists between age
and/or mu rhythm peak frequency and the functional connectiv-
ity/efficiency measures.

Groups analysis was performed for each connectiv-
ity/efficiency measure on the age groups defined in Section
Participants. In each age group, we retained only those subjects
for whom the following two conditions were satisfied: (1) the
determination coefficient r2 between the individual SLMAD

matrices at rest and during prehension and the individual MEu

matrix of the euclidean inter-sensor distances was smaller than
0.1, and (2) the degree of the individual SLMAD matrices for rest
and prehension was the same. The first condition guarantees
that the SLMAD matrices are independent on the inter-sensor
distances, and the second condition satisfies the requirement for
a reliable comparison of segregation and integration measures.
Seven infants (age <6 months) and 4 infants (age <12 months)
did not satisfy these conditions and were excluded from further
analysis. The characteristics of the age groups are reported in
Table 1.

Statistical analysis was performed using an ANOVA 5 (age
groups) × 2 (conditions: rest, prehension) for each dependent
variable, i.e., for the individual measure of functional connectiv-
ity (SLMEAN ), and for functional segregation (C and Eloc), and
integration (L and Eglob) measures. Post-hoc comparisons were
performed using Bonferroni corrections. Statistical significance
was set at p < 0.05.

RESULTS
Linear regression analysis on the individual functional connec-
tivity/efficiency measures did not show any significant linear
dependence on age or mu rhythm peak frequency. In particular,
the coefficient of determination r2 between age and SLMEAN , C,
Eloc, L, and Eglob ranged between 0.197 and 0.465, and r2 between
mu rhythm peak frequency and SLMEAN , C, Eloc, L, and Eglob

ranged between 0.008 and 0.269, indicating no significant linear
correlation between any connectivity/efficiency measure and age
or mu rhythm peak frequency.

FUNCTIONAL CONNECTIVITY REPRESENTATIONS
The changes of the group-averaged SLMEAN values with age
in the two experimental conditions (rest and prehension) are
summarized in Figure 2. ANOVA results on the individual mea-
sures of SLMEAN showed significant differences across age groups
[F(4, 27) = 4.546 p = 0.006, η2

p = 0.402, power = 0.897], no
significant differences between conditions, and no interaction
between groups and conditions. During the first year of life
(groups G1 and G2), the average SLMEAN values do not differ
significantly, whereas around 2 years of age (group G3), SLMEAN

values start to increase toward the adult values (group G5).
Post-hoc analysis showed significant differences only between the

Table 1 | Number of subjects included in each age group (Nstudy) out

of those who met all inclusion and exclusion criteria (Nincl/excl).

Group Nincl/excl Nstudy Age Mu peak frequency

(Hz) (Mean ± SD)
Months Years

G1 14 7 2.75–6 4.46 ± 1.12
G2 11 7 6.5–11.75 <1 7.41 ± 0.61
G3 6 6 24–34 2–2.8 8.71 ± 0.64
G4 6 6 36–60 3–5 8.50 ± 0.52
G5 6 6 20–39 10.32 ± 1.20

For each age group, the age range and the mu rhythm peak frequency (Mean ±
SD) are also reported.
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FIGURE 2 | Group-averaged SLMEAN values (mean ± SD) for the five

age groups (G1–G5) and the two experimental conditions (rest and

prehension). ∗p < 0.05.

group of adults G5 (0.315 ± 0.093) and the groups of infants G1
(0.143 ± 0.056; p = 0.015) and G2 (0.129 ± 0.062; p = 0.007).

These results indicate that, during infancy, the likelihood for
functional connections over the sensorimotor cortex is much
lower than in adulthood, and that it increases with age. Although
no statistically significant difference was observed between condi-
tions, it is interesting to observe that, in our group of very young
infants (G1), the average SLMEAN is slightly higher during pre-
hension than at rest, whereas in the groups of children and in the
group of adults the average SLMEAN slightly decreases during pre-
hension. This fact could deserve further investigation, possibly in
larger populations of infants and children. Examples of SLMAD

matrices at rest and during prehension for each age group are pro-
vided in Figure 3. A typical layout of the MEG sensor array over
the head is also shown. However, please consider that the same
channels in different SLMAD matrices could be positioned over
different brain regions, as no information on the relative positions
of the MEG channels with respect to the subject’s head could be
collected.

MEASURES OF FUNCTIONAL SEGREGATION
The changes of the group-averaged C and Eloc values with age
in the two experimental conditions (rest and prehension) are
summarized in Figures 4A,B. ANOVA results on the individ-
ual measures of C showed significant differences across age
groups [F(4, 27) = 4.975 p = 0.004, η2

p = 0.424, power = 0.924],
no significant differences between conditions, and no interac-
tion between groups and conditions. During the first year of
life (groups G1 and G2), C remains almost unchanged, whereas
around 2 years of age (group G3) it starts to increase toward the
adult values (group G5). Post-hoc analysis showed significant dif-
ferences between the group of adults G5 (0.231 ± 0.076) and the
groups of infants G1 (0.094 ± 0.037; p = 0.011), G2 (0.083 ±
0.047; p = 0.005). A tendency toward significant difference was
also observed between G5 and G3 (0.104 ± 0.041; p = 0.030).

Similarly, ANOVA results on the individual measures of Eloc

showed significant differences across age groups [F(4, 27) = 5.223
p = 0.003, η2

p = 0.436, power = 0.937], no significant differences
between conditions, and no interaction between groups and con-
ditions. During the first year of life (groups G1 and G2), Eloc

remains almost unchanged, and around 2 years of age (group
G3) it starts to increase toward the adult values (group G5). Post-
hoc analysis showed significant differences between the group of
adults G5 (0.266 ± 0.084) and the groups of infants G1 (0.112 ±
0.041; p = 0.008), G2 (0.100 ± 0.049; p = 0.004), whereas a ten-
dency toward significant difference was observed between G5 and
G3 (0.125 ± 0.045; p = 0.026).

These results indicate that, during infancy, global measures
of functional segregation over the sensorimotor cortex are sig-
nificantly lower than in adulthood, and that they increase with
age. Although no statistically significant difference was observed
between conditions, in the very young infants (G1), functional
segregation seems to be higher during prehension than at rest,
whereas in children and in adults it seems to decrease from
rest to prehension. As for SLMEAN, this aspect deserves further
investigation in larger populations of infants and children.

MEASURES OF FUNCTIONAL INTEGRATION
The changes of the group-averaged L and Eglob values with age in
the two experimental conditions (rest and prehension) are shown
in Figures 4C,D. ANOVA results on the individual measures of L
showed significant differences across age groups [F(4, 27) = 4.245
p = 0.009, η2

p = 0.386, power = 0.873], no significant differences
between conditions, and no interaction between groups and con-
ditions. L tends to decrease with age, although discontinuously.
Post-hoc analysis showed significant difference between the group
of adults G5 (12.975 ± 3.034) and the group of older infants G2
(28.588 ± 7.575; p = 0.007), and a trend toward significant dif-
ference between G5 and the group of older children G4 (25.739 ±
10.494; p = 0.047).

ANOVA results on the individual measures of Eglob showed sig-
nificant differences across age groups [F(4, 27) = 5.594 p = 0.002,
η2

p = 0.453, power = 0.952], no significant differences between
conditions, and no interaction between groups and conditions.
We can see that Eglob remains almost unchanged in infancy
(groups G1 and G2), and that it increases with age. Post-hoc anal-
ysis showed significant differences between the group of adults G5
(0.158 ± 0.037) and the groups of infants G1 (0.071 ± 0.022; p =
0.004) and G2 (0.068 ± 0.029; p = 0.003). A tendency toward
significant difference was observed between G5 and G3 (0.085 ±
0.027; p = 0.030).

Both measures indicate a significant difference of functional
integration over the sensorimotor cortex between infancy and
adulthood, and that functional integration over the sensorimo-
tor cortex increases with age. Although no statistically difference
was observed between conditions, both L and Eglob seem to indi-
cate a higher functional integration during prehension in the
very young infants (G1), whereas in children and in adults func-
tional integration seems to decrease from rest to prehension. As
for the other connectivity and segregation measures, this aspect
deserves further investigation in larger populations of infants and
children.
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FIGURE 3 | Examples of SLMAD matrices at rest and during prehension

(one example per age group). G1: infant, 12 weeks; G2: infant, 36 weeks;
G3: child, 34 months; G4: child, 41 months; G5: adult, 28 years. A schematic

representation of the sensor array and its approximate placement over the left
hemisphere is shown in the lower right hand panel. In the SLMAD matrices, the
MEG channels are displayed from the medial to the lateral areas.

DISCUSSION
Our goals were to contribute to the identification of the
developmental trajectories of the functional properties over the
sensorimotor cortex, and to explore whether any differences
could be observed between the rest condition and the execu-
tion of a prehension task. To ensure that all findings were related
to the sensorimotor cortex, all analyses were performed within
a frequency band centered on the individual mu rhythm peak
frequency of each subject, as defined in our previous study
(Berchicci et al., 2011), since the mu rhythm is known to be
the idling rhythm of the sensorimotor cortex. Furthermore, the
use of a prehension task for the active condition permitted us
to investigate the contribution of sensorimotor processing to the
generation of perception and action coupling in infants.

We first observed that the probability of functional connectiv-
ity across the sensorimotor areas, estimated by means of SLMEAN ,
remained almost unchanged during the first year of life, whereas
it afterwards increased across groups to reach adult values, sig-
nificantly different from the infant ones. This increase, occurring
after 12 months of age, is in agreement with the suggested pattern
of brain maturation in which areas with fronto-temporal connec-
tions develop more slowly than other regions (Lebel et al., 2008),
and with the notion that motor experience increases the capacity
of the whole network to work in an integrated way (Fair et al.,
2009; Giedd et al., 2009; Boersma et al., 2011). Unfortunately, no
information on the relative position of the MEG sensor array and

the subject’s head could be collected, therefore we could not pre-
cisely ascribe the observed functional connections across MEG
signals to specific brain areas. Consequently, our observations on
the probability of functional connectivity should be interpreted
as global measures over the sensorimotor network.

To support the interpretation of these results, we used graph
theoretical concepts to examine the changes occurring in the
functional organization of the sensorimotor network across ages,
and found that all segregation and integration measures showed
a trend similar to SLMEAN : during the first year of life these
properties remained almost unchanged, whereas they increased
significantly across groups afterwards, as assessed by a marked
increase of both segregation parameters (C and Eloc), by a ten-
dency of L to decrease, and by a clear increase of Eglob across age
groups.

The age-related increase of the functional segregation param-
eters (C and Eloc) is compatible with the observation that the
widespread brain electrical activity typical of infants (8 months
of age) becomes more localized during early childhood (3 years of
age) (Bell and Wolfe, 2007). We hypothesize that the increase of
functional connections among adjacent cortical areas, which con-
tributes to the functional specialization of the sensorimotor net-
work and to the onset of a connection redundancy that protects
the network from local errors and failures (Latora and Marchiori,
2001), is due to brain maturation, a process that involves both
physical growth and the intellectual and/or emotional process of
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FIGURE 4 | Group-averaged values (mean ± SD) of the

segregation and integration measures for the five age

groups (G1–G5) and the two experimental conditions (rest

and prehension). (A) mean clustering coefficient C; (B) local
efficiency Eloc; (C) characteristic path length L; (D) global
efficiency Eglob. ∗p < 0.05.

development. Also, the increase of local efficiency over the senso-
rimotor cortex is in line with the findings by Wu et al. (2013),
who observed an age-related increase in the local efficiency of
the whole functional networks, which may contribute to the
development of modular information processing of functional
systems.

Although the findings on the functional integration proper-
ties over the sensorimotor cortex should be taken with caution
because the MEG sensor array covered only one hemisphere, it
is interesting to observe that also these properties increased with
age after the first year of life, and that the infant values were sig-
nificantly different from the adult ones. The irregular trend of
L is also worth noting, as it might be related to the occurrence
of growth spurts that coincide with periods of discontinuous
development in cognition (van Baal et al., 2001).

Overall, our findings on the functional segregation and inte-
gration properties over the sensorimotor cortex support the
notion that maturation contributes to both the functional spe-
cialization of the sensorimotor network, and the wiring of more
efficient long-range connections among different brain circuits.
This interpretation is in agreement with the observations by Gao
et al. (2011) on the increase of both local and global efficiency at

rest from newborns to infants, and with the findings of Damaraju
et al. (2014) that the connectivity strength between more distant
networks increases with age in infants between 4 and 9 months.
Conversely, our results are only partially compatible with the
notion that strong local connectivity in the young brain gradually
shifts toward stronger long-distance connectivity with matura-
tion (van Baal et al., 2001; Lebel et al., 2008; Fair et al., 2009;
Power et al., 2010; Yap et al., 2011).

Our results on the age-related increase of both local and global
efficiency are consistent also with the outcome of other studies
on the developing brain, which demonstrated a steady increase
of global efficiency after 1 year of age (Fransson et al., 2007; Fan
et al., 2011), a positive relationship between age and local effi-
ciency throughout the life span (Supekar et al., 2009; Dennis
et al., 2013; Wu et al., 2013), and the involvement of both seg-
regation and integration in the development of the adult fronto-
parietal network for adaptive online task control (Fair et al.,
2007; Sepulcre et al., 2010). Our findings seem to support this
interpretation of the functional evolution of the fronto-parietal
network, known to host sensorimotor processing (Pineda, 2005).
From this perspective, our results seem to fit well also with the
suggestion that perceptual and cognitive developments involve
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the simultaneous segregation and integration of information-
processing streams (Bunge and Wright, 2007), which in turn
support the learning processing in infants and children (de Klerk
et al., 2014).

Some authors have also suggested that the child brain has
a small-world organization that combines the high clustering
properties of an ordered network and the short path length
of a random network (Fair et al., 2009; Supekar et al., 2009;
Power et al., 2010; Boersma et al., 2011). Other authors have
observed that, in school children, the brain functional networks
evolve from more random toward a more ordered configuration
(Smit et al., 2010, 2012; Boersma et al., 2011). Although our
hemispheric recordings do not allow for general conclusions on
the functional organization of the whole brain, nonetheless our
results complement the above mentioned findings by suggesting
that, during infancy, the functional properties over the sensori-
motor network have a more random organization that, after 1
year of age, shifts toward a more efficient small-world config-
uration characterized by higher local and global efficiency. It is
interesting to observe that this change toward a more efficient
functional organization over the sensorimotor network contin-
ued throughout childhood until adulthood. The shift from a
more random to a small-world configuration could be ascribed
to brain maturation, which derives from changes at the struc-
tural level, with the thickening of long-range connections among
distant brain regions starting during the first year of life (Yap
et al., 2011) and with the emergence of inter-hemispheric con-
nectivity earlier than longer-range antero-posterior connections
(Bell and Fox, 1992), but is also shaped by experience, which can
support the capacity of the network to create long-range connec-
tions that are functional to goal-directed actions (Wu et al., 2013;
Rotem-Kohavi et al., 2014).

Unfortunately, we could not draw any conclusions on the
contribution of sensorimotor processing to the generation of
perceptual-motor coupling, since we did not find any significant
difference in the functional properties over the sensorimotor cor-
tex between rest and prehension. However, it is worth noting that
the pattern of functional organization over the sensorimotor cor-
tex seems to change around 1 year of age. All measures seem to
suggest that, during infancy, prehension could be characterized,
with respect to rest, by an increased probability of functional
connectivity and by increased segregation and integration. This
pattern seems to reverse after 1 year of age. These observations,
if confirmed in future studies on larger populations of infants
and children supported by measurements of motor experience,
could indicate that, in young infants, perceptual-motor cou-
pling is accompanied by an increased connectivity within the
sensorimotor network to compensate for the lack of functional
specialization to accomplish the given task (prehension). The
evolution of this functional pattern could be due to the develop-
mental timeline of the infant grasping or to the tight correlation
between grasping recognition and execution, which are poor until
6 months of age (Del Giudice et al., 2009), hence requiring the
recruitment of more functional resources in early infancy with
respect to later ages. On the other hand, the pattern reversal that
seems to occur after 1 year of age might indicate that maturation
had fostered a more efficient execution of goal-directed actions, in

line with the experience-dependent position on perceptual-motor
coupling development of the sensorimotor cortex (Heyes, 2001;
van Elk et al., 2008; Del Giudice et al., 2009; Cook et al., 2014),
and with the concept that sensorimotor experience contributes to
the development of more efficient functional networks to support
sensorimotor development (Fransson et al., 2011).

We are aware that the impact of our study is limited by a
number of factors. First, the shape and size of the MEG sensor
array allowed the recording of brain activity originating only from
one hemisphere. Consequently, our observations on the small-
world topology of the child brain cannot be referred to the whole
brain, and the interpretation of the integration measures needs
to be cautious. Second, we employed a cross-sectional design for
this study. Given that, during infancy and childhood, the brain
undergoes a remarkable development at both structural and func-
tional levels, the recorded brain activity could be influenced by
the size of the scalp at different ages, which fits differently on
the headrest covering the sensor array. Third, the measures of the
topological features of the developing sensorimotor network were
calculated in the sensor space rather than in the source space,
because anatomical information on the baby’s head and on its
position with respect to the MEG sensor array could not be col-
lected. This condition limits the interpretation of our results in
terms of specific cortical areas. Fourth, we are aware of the small
sample size of our age groups. However, study protocols like ours
are difficult to perform in children and even more so in infants,
and the analyses performed are extremely sensitive to noise and to
other signal features that further reduced the number of retained
subjects. Nonetheless, several research studies in adults and chil-
dren have been considered reliable even when based on a small
number of subjects (Nishitani and Hari, 2000; Simoes et al., 2004;
Lepage and Theoret, 2006; van Schie et al., 2008).

In light of these limitations, further work is needed to validate
our findings. However, we believe that our results add valuable
information to the current knowledge on the functional develop-
ment of the sensorimotor network during infancy and childhood.
The human brain performs its sensory, cognitive and motor func-
tions by dynamically employing highly complex and interwoven
neuronal networks, with the first year of life being the most
dynamic period of human postnatal brain development. Better
understanding of the functional development of these networks
during infancy may bring new insights on the pathophysiological
mechanisms of neurological development, such as Down syn-
drome, autism spectrum disorders and cerebral palsy. Further
studies employing whole head neuroimaging techniques during
motor task execution and complemented with motor experi-
ence measurements are therefore needed to support the present
findings, and to improve our understanding of the functional
development of the sensorimotor network and its contribution
to the generation of perceptual-motor coupling in infants.
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